HOMEWORK #3 MATH 185-4 FALL 2009

DUE FRIDAY SEPTEMBER 25TH

- (1) In each of the following case, find a δ such that $|f(x) L| < \epsilon$ for all x satisfying $0 < |x a| < \delta$.
 - (i) $f(x) = x^4, L = a^4.$
 - (ii) $f(x) = 1/x, a = 2, L = \frac{1}{2}$
 - (iii) $f(x) = \sqrt{x}, a = 1, L = \overline{1}.$
- (2) (a) If $\lim_{x\to a} f(x)$ exists and $\lim_{x\to a} g(x)$ does not exist, is it possible that

$$\lim_{x \to a} (f(x) + g(x))$$

exists?

(b) If $\lim_{x\to a} f(x)$ exists and $\lim_{x\to a} g(x)$ does not exist, is it possible that

$$\lim_{x \to a} (f(x) \cdot g(x))$$

exists?

(3) Prove that

$$\lim_{x\to a} f(x) = \lim_{h\to 0} f(a+h)$$

assuming that the left side exists.

- (4) (a) Suppose that $f(x) \le g(x)$ for all x. Prove that $\lim_{x\to a} f(x) \le \lim_{x\to a} g(x)$ (assuming both limits exist).
 - (b) Can you replace both the \leq by < signs and get the same statement? Prove or give a counter-example.
- (5) Prove that if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then

$$\lim_{x \to a} \max(f(x), g(x)) = \max(L, M)$$

- (6) Consider a function f with the following property
 - if g is any other function for which $\lim_{x\to 0} g(x)$ does not exist, then $\lim_{x\to 0} (f(x)+g(x))$ also does not exist.
 - Prove that this happens if and only if $\lim_{x\to 0} f(x)$ exists.

Hint: The words "if and only if" means you should prove that the two statements are equivalent. That is, first assume that $\lim_{x\to 0} f(x)$ exists and then prove that f satisfies the stated property. Conversely, assume that f satisfies the stated property and then prove that $\lim_{x\to 0} f(x)$ exists.

- (7) Prove that $\lim_{x\to a} f(x) = L$ if and only if the following condition is satisfied.
 - For every $\epsilon' > 0$, there is a $\delta' > 0$ such that if x satisfies $0 < |x a| \le \delta'$, then $|f(x) L| \le \epsilon'$.