
MATH 185-4, EXAM #1
SOLUTIONS

1. Definitions and short answers.
(a) Give a precise definition of what it means for a function f with domain [a, b] to be continuous
on [a, b]. (5 points)

A function f with domain [a, b] is said to be continuous on [a, b] if all of the following conditions
hold:

• for all c ∈ (a, b), limx→c f(x) = f(c).
• limx→a+ f(x) = f(a).
• limx→b− f(x) = f(b).

(b) Give a precise definition of the following term: surjective function (5 points)

A function f is called surjective if for every c ∈ R, there exists an element d in the domain of
f such that f(d) = c.

(c) Give a precise definition of the following term: linearly independent set of vectors in the plane
(5 points)

A pair of vector u,v in the plane are said to be linearly independent if whenever one has an
equation au + bv = 0 for real numbers a and b, then both a = 0 and b = 0.

(d) Suppose that u and v are vectors. Explain using words how to define u + v (you may use a
picture to help illustrate). (5 points)

Fix a point A and realize the vector u as ~AB for some point B. Realize the vector v as ~BC

where the point B is as before. Define u + v to be ~AC.
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2 Use ε’s and δ’s in part (a)
(a) (20 points) Show that:

lim
x→0

(x3 − 2x) = 0

Fix ε > 0. Choose δ = min(1, ε/3). Suppose that x satisfies 0 < |x− 0| < δ. Write f(x) = x3− 2x,
L = 0 and a = 0.

Therefore, we see that |x| < δ ≤ 1 so |x| < 1. But then |x2−2| ≤ |x2|+|−2| = |x|2+2 < 12+2 = 3.
On the other hand |x| < ε/3 so that 3|x| < ε. But then

|f(x)− 0| = |x3 − 2x− 0| = |x2 − 2| · |x| < 3|x| < ε

which completes the proof.

2(b) Define

g(x) =
{
x3 − 2x, x > 0
x, x < 0

Find a δ > 0 such that whenever 0 < |x| < δ, then |g(x)− 0| < 0.5 (ie, what δ works for ε = 0.5)?
Justify your answer (10 points)

Set δ = 0.5/3 = 1
6 . Suppose that x satisfies 0 < |x| < δ. We have two cases.

x > 0 In this case g(x) = f(x) where f(x) is as in the proof of part (a). But then we just showed
that if |x| < 1

6 = ε/3 (for ε = 0.5), then |g(x)− 0| = |f(x)| < ε = 0.5. As desired.
x < 0 In this case g(x) = x. But then if |x| < δ, then x ∈ (−1/6, 0). We now want to show that

|x| < 0.5 but that is obvious since 1/6 < 0.5.
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3. Suppose that f is a continuous function on R. Suppose also that f(0) = −2 and that f(1) = 7.
Consider the following set:

S := {x ∈ [0, 1]|f(x) = 0}
(a) Explain why S is not empty. (8 points)

By the intermediate value theorem, there exists some c ∈ [0, 1] such that f(c) = 0. Thus c ∈ S so
S 6= ∅.

(b) Set α = sup(S) (ie, α is the least supper bound for S). Explain why α ∈ [0, 1]. (5 points)

First note that 1 is an upper bound for S and so α ≤ 1. On the other hand, the c from part
(a) is in S and c ∈ S ⊆ (0, 1) which means that c > 0. But then α ≥ c > 0 so α > 0. Combining
these two facts we see that α ∈ (0, 1] (an even better statement than the problem asked for).

(c) Show that f(α) = 0. (12 points)
Hint : Suppose that f(α) 6= 0, and then use the following lemma which you may cite without proof

Lemma: If f is continuous at α and f(α) 6= 0, then there exists a δ > 0 such that f(x) 6= 0 for
all x ∈ (α− δ, α+ δ).

Use the lemma to contradict the choice of α.

Suppose α /∈ S or in other words suppose that f(α) 6= 0. By the Lemma there exists a δ > 0
such that f(x) 6= 0 for all x ∈ (α− δ, α+ δ). In particular, no element of (α− δ, α+ δ) is in S (ie
(α− δ, α+ δ) ∩ S = ∅).

We showed in class that if α is an upper bound for a set S, then for every ε > 0, we have that
(α − ε, α] ∩ S 6= ∅. But set ε = δ and then ∅ 6= (α − δ, α] ∩ S ⊆ (α − δ, α + δ) ∩ S. In particular
(α− δ, α+ δ) ∩ S 6= ∅ but that contracts what we wrote above.
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4. (25 points) Suppose that g is a function that is continuous of a and that f is a function that is
continuous at g(a). Prove that f ◦ g is continuous at a using δ’s and ε’s.

I’ll refer you to chapter 6 of the book for this.
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(Extra Credit) (10 points) We say that a set D ⊆ R is closed if R \D = {x ∈ R|x /∈ D} is open.
Suppose that f is continuous with domain R. Prove that for every closed set D ⊆ R, f−1(D) is

also closed.

To show that f−1(D) is closed we need to show that R \ f−1(D) is open. We will show this
by showing that R \ f−1(D) = f−1(R \ D) (which is open because f is continuous and R \ D is
open by assumption).

First we will show that R \ f−1(D) ⊆ f−1(R \D). So choose x ∈ R \ f−1(D). Thus f(x) /∈ D.
Therefore f(x) ∈ R \D which implies that x ∈ f−1(R \D) as desired.

Now we show that R \ f−1(D) ⊇ f−1(R \D). So choose x ∈ f−1(R \D). Then f(x) ∈ R \D. In
particular, f(x) /∈ D. Therefore x can’t be in f−1(D). But then x ∈ R \ f−1(D) again as desired.

Now we know that both R \ f−1(D) ⊇ f−1(R \D) and R \ f−1(D) ⊆ f−1(R \D). Therefore

R \ f−1(D) = f−1(R \D).

In particular R \ f−1(D) is open and so f−1(D) is closed.
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