EXTRA PROBLEMS # 3 – SOLUTIONS

Exercise 0.1. Show that $\sqrt{3}$ is not a rational number.

The proof can be based on the following fact: every integer $m \ge 2$ can be written uniquely written as $m = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$, where $p_1 < p_2 < \cdots < p_k$ are primes and a_1, \ldots, a_k positive integers. Primes p_1, \ldots, p_k are called as *prime factors* of m. Based on this fact you notice that every rational number q can be written as q = m/n, where m and n are integers, $n \ge 1$, and m and n do not have common prime factors. To prove that $\sqrt{3}$ is not a rational number, assume that it is and obtain a contradiction using the fact above.

Proof. Let us first observe that every integer m can be written in one of the three ways m = 3k, m = 3k + 1, or m = 3k + 2. (k is the integer part of m/3).

Let us now suppose towards a contradiction that $\sqrt{3}$ is rational, that is, $\sqrt{3} = m/n$ for some integers m and n, where n > 0. We can assume that m and n does not have common factors. Since $3 = (m/n)^2 = m^2/n^2$, we have

$$m^2 = 3n^2$$

Thus m^3 is divisible by 3. We now show that m = 3k for some k. Suppose that this is not the case but m = 3k + 1 or m = 3k + 2 for some k. Then

$$m^2 = (3k+1)^2 = (3k)^2 + 6k + 1$$

or

$$m^{2} = (3k+2)^{2} = (3k)^{2} + 12k + 4.$$

Then m^2 is at the same time divisible by 3 and not divisible by 3. This is a contradiction, so we have m = 3k for some k. However, this means that

 $3k^2 = n^2.$

Thus, by applying the argument above for n, we observe that n is divisible by 3. So m and n both have factor 3. This is a contradiction, since we assumed that m and n does not have common factors. So $\sqrt{3}$ is not rational.

Exercise 0.2. Let (a, b) be any open interval containing $\sqrt{3}$. Show that there exist rational numbers q and q' so that $a < q < \sqrt{3}$ and $\sqrt{3} < q' < b$.

Proof. Let h > 0 be the minimum of numbers $\sqrt{3} - a$ and $b - \sqrt{3}$. Fix an integer m so that m > 1/h. Let also k be the smallest integer so that k > a/m. Then k/m > a. Since $(k-1)/m \le a$ and 1/m < h, we have that

$$\frac{k}{m} = \frac{k-1}{m} + \frac{1}{m} < a+h \le a + (\sqrt{3}-a) = \sqrt{3}.$$

So $a < k/m < \sqrt{3}$ and we can take q = k/m.

Similarly, we can let n to be the smallest integer so that $n > \sqrt{3}/m$. Then $(n-1)/m \le \sqrt{3}$ and

$$\frac{n}{m} = \frac{n-1}{m} + \frac{1}{m} < \sqrt{3} + h < b.$$

So we can take q' = n/m.

Exercise 0.3. Let (a, b) be any open interval containing $\sqrt{3}$. Show that there exist infinitely many rational numbers in (a, b).

Proof. By Problem 0.2, we know that there are rational numbers q and q' so that $a < q < \sqrt{3} < q' < b$. Let us denote $q_0 = q$ and $q'_0 = q'$. As (q_0, q'_0) is an interval containing $\sqrt{3}$ we can apply Problem 0.2 again to find rational numbers $q_0 < q_1 < \sqrt{3} < q'_1 < q'_0$. By repeating this argument we find any number n of rational numbers so that

 $a < q_0 < q_1 < q_2 < \dots < q_n < \sqrt{3} < q'_n < \dots < q'_1 < q'_0 < b.$

As we can continue this process as long as we like and all the rational numbers found are contained in (a, b), we have that (a, b) contains infinitely many rational numbers.

Exercise 0.4. Show that all (non-empty) intervals contain infinitely many rational numbers. *Proof.* Let I be an interval. Then I contains an (non-empty) open interval (a, b). So it suffices to show the claim only for an open interval (a, b).

Let c = (a + b)/2. By replacing $\sqrt{3}$ by c in the solution of Problem 0.2, we note that we can find rational numbers q and q' so that a < q < c < q' < b. Thus by replacing the use of Problem 0.2 in Problem 0.3 by this observation, we see that, for any n, (a, b) contains rational numbers

$$a < q_0 < q_1 < \dots < q_n < c < q'_n < \dots < q'_1 < q'_0 < b$$

Thus (a, b) contains infinitely many rational numbers.

Exercise 0.5. Show that there exists a function f from \mathbb{N} to \mathbb{Z} so that f is onto.

Proof. Let $f: \mathbb{N} \to \mathbb{Z}$ be the function

$$f(n) = \begin{cases} n/2, & \text{if } n \text{ even or } n = 0\\ -(n+1)/2, & \text{if } n \text{ odd.} \end{cases}$$

To show that f is onto, let $m \in \mathbb{Z}$. If $m \ge 0$, then f(2m) = m. If m < 0, then

$$f(-2m-1) = -\frac{-2m-1+1}{2} = -\frac{-2m}{2} = m.$$