
EXTRA PROBLEMS # 3 – SOLUTIONS

Exercise 0.1. Show that
√

3 is not a rational number.

The proof can be based on the following fact: every integer m ≥ 2 can be written uniquely
written as m = pa1

1 pa2
2 · · · p

ak
k , where p1 < p2 < · · · < pk are primes and a1, . . . , ak positive

integers. Primes p1, . . . , pk are called as prime factors of m. Based on this fact you notice
that every rational number q can be written as q = m/n, where m and n are integers, n ≥ 1,
and m and n do not have common prime factors.To prove that

√
3 is not a rational number,

assume that it is and obtain a contradiction using the fact above.

Proof. Let us first observe that every integer m can be written in one of the three ways
m = 3k, m = 3k + 1, or m = 3k + 2. (k is the integer part of m/3).

Let us now suppose towards a contradiction that
√

3 is rational, that is,
√

3 = m/n for
some integers m and n, where n > 0. We can assume that m and n does not have common
factors. Since 3 = (m/n)2 = m2/n2, we have

m2 = 3n2.

Thus m3 is divisible by 3. We now show that m = 3k for some k. Suppose that this is not
the case but m = 3k + 1 or m = 3k + 2 for some k. Then

m2 = (3k + 1)2 = (3k)2 + 6k + 1

or
m2 = (3k + 2)2 = (3k)2 + 12k + 4.

Then m2 is at the same time divisible by 3 and not divisible by 3. This is a contradiction,
so we have m = 3k for some k. However, this means that

3k2 = n2.

Thus, by applying the argument above for n, we observe that n is divisible by 3. So m and
n both have factor 3. This is a contradiction, since we assumed that m and n does not have
common factors. So

√
3 is not rational. �

Exercise 0.2. Let (a, b) be any open interval containing
√

3. Show that there exist rational
numbers q and q′ so that a < q <

√
3 and

√
3 < q′ < b.

Proof. Let h > 0 be the minimum of numbers
√

3 − a and b −
√

3. Fix an integer m so
that m > 1/h. Let also k be the smallest integer so that k > a/m. Then k/m > a. Since
(k − 1)/m ≤ a and 1/m < h, we have that

k

m
=

k − 1

m
+

1

m
< a + h ≤ a + (

√
3− a) =

√
3.

So a < k/m <
√

3 and we can take q = k/m.
Similarly, we can let n to be the smallest integer so that n >

√
3/m. Then (n−1)/m ≤

√
3

and
n

m
=

n− 1

m
+

1

m
<
√

3 + h < b.

1



So we can take q′ = n/m. �

Exercise 0.3. Let (a, b) be any open interval containing
√

3. Show that there exist infinitely
many rational numbers in (a, b).

Proof. By Problem 0.2, we know that there are rational numbers q and q′ so that a < q <√
3 < q′ < b. Let us denote q0 = q and q′

0 = q′. As (q0, q
′
0) is an interval containing

√
3 we

can apply Problem 0.2 again to find rational numbers q0 < q1 <
√

3 < q′
1 < q′

0. By repeating
this argument we find any number n of rational numbers so that

a < q0 < q1 < q2 < · · · < qn <
√

3 < q′
n < · · · < q′

1 < q′
0 < b.

As we can continue this process as long as we like and all the rational numbers found are
contained in (a, b), we have that (a, b) contains infinitely many rational numbers. �

Exercise 0.4. Show that all (non-empty) intervals contain infinitely many rational numbers.

Proof. Let I be an interval. Then I contains an (non-empty) open interval (a, b). So it
suffices to show the claim only for an open interval (a, b).

Let c = (a + b)/2. By replacing
√

3 by c in the solution of Problem 0.2, we note that we
can find rational numbers q and q′ so that a < q < c < q′ < b. Thus by replacing the use
of Problem 0.2 in Problem 0.3 by this observation, we see that, for any n, (a, b) contains
rational numbers

a < q0 < q1 < · · · < qn < c < q′
n < · · · < q′

1 < q′
0 < b.

Thus (a, b) contains infinitely many rational numbers. �

Exercise 0.5. Show that there exists a function f from N to Z so that f is onto.

Proof. Let f : N → Z be the function

f(n) =

{
n/2, if n even or n = 0

−(n + 1)/2, if n odd.

To show that f is onto, let m ∈ Z. If m ≥ 0, then f(2m) = m. If m < 0, then

f(−2m− 1) = −−2m− 1 + 1

2
= −−2m

2
= m.

�


