
EXTRA PROBLEMS #6

SOLUTIONS

In this assignment, we give a proof for the chain rule. We gave an incomplete proof in
class. In particular, we assumed that the inner-function, didn’t actually achieve the value of
its limit in a little interval around that point.

Consider the following function.

f(t) =

{
0, t = 0
t2 sin(1

t
), t 6= 0

We’ve talked about why this function is continuous in class before. Even more can be said
however, this function is actually differentiable everywhere.

FACTS: We’ve done the following things in class (or done things close enough to them).
You may use them without proving them.

(i) The functions

s(t) =

{
0, t = 0
sin(1

t
), t 6= 0

and c(t) =

{
0, t = 0
cos(1

t
), t 6= 0

are NOT continuous at t = 0. Even more, the functions s(t) and c(t) even have
undefined limits at t = 0.

(ii) The functions ts(t) and tc(t) ARE continuous at t = 0. Here ts(t) is just the product
of the functions i(t) = t with the function s(t). We can also view the function ts(t)
as the multipart function

ts(t) =

{
0, t = 0
t sin(1

t
), t 6= 0

Exercise 0.1. Prove that

f ′(t) =

{
0, t = 0
2t sin(1

t
)− cos(1

t
), t 6= 0

Hint: The case where t 6= 0 should be easy, simply apply the chain and product rules. For
the case of t = 0, you’ll have to use the limit-definition of the derivative.

Proof. Let us consider the derivative at some t0. If t0 6= 0, we can restrict our domain to
t 6= 0, and then note that f(t) = t2 sin(1

t
) is just made up of differentiable functions. Thus

by the power and product rules, we have

f ′(t0) = 2t0 sin(
1

t0
) + t20 cos(

1

t0
)(−1)(t−2

0 ) = 2t0 sin(
1

t0
)− cos(

1

t0
)

at least for t0 6= 0. We now consider the case where t0 = 0. Then

f ′(t0) = f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

f(h)

h
= lim

h→0

h2 sin( 1
h
)

h
= lim

h→0
h sin(

1

h
) = hs(h).

But the function hs(h) is continuous by fact (ii), and so the limit is equal to zero as desired.
¤
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Exercise 0.2. Prove that the related function

k(t) =

{
0, t = 0
2t sin(1

t
), t 6= 0

is continuous but not differentiable.

Hint: You’ll need to use the limit definition of the derivative to prove the function is not
differentiable.

Proof. Note that k(t) = 2ts(t), and so k(t) is continuous since ts(t) is continuous. To prove it
is not differentiable, we need only prove it is not differentiable at a single point (k is actually
differentiable at all t 6= 0). We will prove it is not differentiable at t = 0.

Suppose it was differentiable, then consider the following limit,

lim
h→0

k(0 + h)− k(0)

h
= lim

h→0

k(h)

h
= lim

h→0

2h sin( 1
h
)

h
= lim

h→0
2 sin(

1

h
) = 2 lim

h→0
s(h)

Now we know that the limit limh→0 s(h) does not exist by fact (i) and so we are done. ¤

Exercise 0.3. Prove that f ′(t) is not continuous.

Hint: Show that k(t) can be added to a non-continuous function, to get f ′(t).

Proof. Suppose that f ′(t) was continuous, but then we note that

f ′(t) =

{
0, t = 0
2t sin(1

t
)− cos(1

t
), t 6= 0

= k(t)− c(t).

Thus c(t) = k(t)− f ′(t). However, since k(t) is continuous, and we are assuming that f ′(t)
is continuous, this would imply that c(t) is continuous. This contradicts fact (i), and so our
assumption that f ′(t) was continuous must be incorrect. ¤

Now we get into the real work.

Theorem 0.4. Let f : (a, b) → (c, d) and g : (c, d) → R be differentiable functions. Then

(g ◦ f)′(x) = g′(f(x))f ′(x)

for every x ∈ (a, b).

We only proved this in class in the case that f did not do exactly what the f function
above did (equal its limit many times around the limiting value). We begin with a warm-up
exercise that gives us a new perspective to the derivative.

Exercise 0.5. Suppose f : (a, b) → R is differentiable at x0 ∈ (a, b) and set L = f ′(x0).
Consider a new function E : (−δ, δ) \ {0} → R defined by the formula

E(h) =
f(x0 + h)− f(x0)

h
− L.

Here δ > 0 is assumed to be chosen in such a way that E can be defined.
Show that

a. for every h ∈ (−δ, δ) \ {0} we have

f(x0 + h) = f(x0) + Lh + hE(h).

b. limh→0 E(h) = 0.



Proof. We first show part (a). We simply plug in the definition of E(h) to obtain

f(x0) + Lh + hE(h) = f(x0) + Lh + h
(

f(x0+h)−f(x0)
h − L

)
= f(x0) + Lh− Lh + f(x0 + h)− f(x0) = f(x0 + h)

which is exactly what we want.
To prove (b) we note that L = f ′(x0) is a constant and observe that

lim
h→0

E(h) = lim
h→0

(
f(x0 + h)− f(x0)

h
− L

)
= lim

h→0

(
f(x0 + h)− f(x0)

h

)
−lim

h→0
L = f ′(x0)−L = L−L = 0

as desired. ¤

The function E defined in the exercise can be called as an error term. This error term
actually characterizes the derivative as the following exercise shows.

Exercise 0.6. Let f : (a, b) → R be a function and x0 ∈ (a, b). Suppose that there exists a
function E : (−δ, δ) \ {0} → R so that limh→0 E(h) = 0 and

f(x0 + h) = f(x0) + Lh + hE(h)

where L is a number. Show that f is differentiable at x0 and f ′(x0) = L.

Proof. Consider limh→0
f(x0+h)−f(x0)

h
. We plug in the equality from the exercise and we get

lim
h→0

f(x0) + Lh + hE(h)− f(x0)

h
= lim

h→0

Lh + hE(h)

h
= lim

h→0
(L + E(h)) = L + 0 = L = f ′(x0)

¤
These two exercises can be combined as a lemma which we will use later.

Lemma 0.7. A function f : (a, b) → R has derivative L at x0 if and only if there exist δ > 0
and Ef : (−δ, δ) \ {0} → R so that

(1) limh→0 Ef (h) = 0, and
(2) f(x0 + h) = f(x0) + Lh + hEf (h)

for every 0 < |h| < δ.

Exercise 0.8. Let f : (a, b) → (c, d) and g : (c, d) → R be functions and x0 ∈ (a, b). Suppose
that f is differentiable at x0 and g is differentiable at f(x0). Let Ef : (−δ0, δ0) → R be an
error term for f (here we define Ef (0) = 0) and let Eg : (−δ1, δ1) → R be an error term
for g (we also define Eg(0) = 0). Let also `f : (−δ0, δ0) → R be the function `f (h) =
f ′(x0)h + hEf (h).

a. Show that there exists δ > 0 so that for every h ∈ (−δ, δ) we have

|`f (h)| < δ1.

(Hint: Use the limit limh→0 `f (h))
b. Show that with this δ we have

g(f(x0 + h)) = g (f(x0) + `f (h))

= g(f(x0)) + g′(f(x0))`f (h) + `f (h)Eg (`f (h))

for every 0 < |h| < δ.
c. Show that there exists a function E : (−δ, δ) \ {0} → R so that

g′(f(x0))`f (h) + `f (h)Eg (`f (h)) = g′(f(x0))f
′(x0)h + hE(h)

for every 0 < |h| < δ and limh→0 E(h) = 0.
d. Prove Theorem 0.4.



Proof. (a) We first show that limh→0 `f (h) = 0, but limh→0 `f (h) = limh→0 = f ′(x0)h +
hEf (h) = f ′(x0)(0) + (0)(0) = 0 + 0 = 0. Consider δ1 as an epsilon for this limit, thus there
exists a δ such that for all h 6= 0, h ∈ (−δ, δ), we have `f (h) ∈ (−δ1, δ1) and this condition
is exactly the same as our desired conclusion that |`f (h)| < δ1.

(b) We have two equalities to prove. First note that

g(f(x0 + h)) = g(f(x0) + Lh + hEf (h)) = g(f(x0) + `f (h))

so the first equality is easy. For the second equality, set y0 = f(x0) and set z = `f (h). Then
g (f(x0) + `f (h)) = g(y0 + z) and since g is differentiable at y0 and z ∈ (−δ1, δ2), we have

g(y0 + z) = g(y0) + g′(y0)z + zEg(z) = g(f(x0)) + g′(f(x0))`f (h) + `f (h)Eg(`f (h))

as desired.

(c) We simply note that

g′(f(x0))`f (h)+`f (h)Eg (`f (h)) = g′(f(x0))(f
′(x0)h+hEf (h))+(f ′(x0)h+hEf (h))Eg (`f (h))

by distributing and factoring, we get that the right side is equal to

g′(f(x0))f
′(x0)h + h(g′(f(x0))Ef (h) + (f ′(x0) + Ef (h))Eg (`f (h)))

so we define E(h) = g′(f(x0))Ef (h) + (f ′(x0) + Ef (h))Eg (`f (h)). We simply need to show
that limh→0 E(h) = 0. But this follows easily since limh→0 Ef (h) = 0 and

lim
h→0

Eg (`f (h)) = Eg

(
lim
h→0

`f (h)
)

= Eg(0) = 0.

We can pull the limit inside because Eg is defined so as to be continuous at zero.

(d) Combining exercise (b) and (c) we obtain that

g(f(x0 + h)) = g(f(x0)) + g′(f(x0))f
′(x0)h + hE(h)

and applying the previous lemma (for L = g′(f(x0))f
′(x0)) completes the proof. ¤

The formula

(1) f(x0 + h) = f(x0) + f ′(x0)h + hE(h)

can also be used to approximate the values of function f .

Exercise 0.9. Argue how (1) could be used to give a decimal approximation for
√

25.012 if
you are able to assume that the error term in (1) is very small. Calculate an approximation
using (1) and compare it to a result given by a calculator.

Proof. We know that
√

x is differentiable at x = 25. Thus, we can write
√

x0 + h =
√

x0 +

(1
2
)x

−1
2

0 h + hE(h) as above. Since E(h) goes to zero as h does, hE(h) goes to zero faster

than (1
2
)x

−1
2

0 h, which is just a constant times h (one can make this precise if one wants, I will

not do this here). This means that we can approximate
√

x0 + h by
√

x0 + (1
2
)x

−1
2

0 h. Now,
plugging in x0 = 25 and h = 0.012 we get

√
25.012 ∼

√
25 + (

1

2
)25

−1
2 (0.012) = 5 + (

1

10
)(0.012) = 5.0012

On the other hand, using a calculator, one sees that
√

25.012 = 5.001199856 . . .. ¤


