EXTRA PROBLEMS #6

SOLUTIONS

In this assignment, we give a proof for the chain rule. We gave an incomplete proof in
class. In particular, we assumed that the inner-function, didn’t actually achieve the value of
its limit in a little interval around that point.

Consider the following function.

0, t=0
1) = { t?sin(y), t#0
We’ve talked about why this function is continuous in class before. Even more can be said
however, this function is actually differentiable everywhere.

FACTS: We've done the following things in class (or done things close enough to them).
You may use them without proving them.

(i) The functions

0, t=0 fo, t=0
s(t) = { sin(1), t#£0 and c(t) = { cos(1), t#0
are NOT continuous at ¢ = 0. Even more, the functions s(¢) and c¢(t) even have
undefined limits at ¢t = 0.
(ii) The functions ts(t) and tc(t) ARE continuous at ¢t = 0. Here ¢s(t) is just the product
of the functions i(t) = ¢ with the function s(¢). We can also view the function ¢s(t)

as the multipart function

0, t=20
ts(t) = { tsin(1), t#0
Exercise 0.1. Prove that

/ 0, t=0
Ft) = { 2tsin(1) —cos(3), t#0

Hint: The case where t # 0 should be easy, simply apply the chain and product rules. For
the case of t = 0, you’ll have to use the limit-definition of the derivative.

Proof. Let us consider the derivative at some t,. If ty # 0, we can restrict our domain to

t # 0, and then note that f(¢) = ¢*sin() is just made up of differentiable functions. Thus
by the power and product rules, we have

1 1 1 1
f'(to) = 2tgsin(—) + t3 cos(—)(—1)(ty?) = 2t sin(—) — cos(—)
to to to to
at least for tg # 0. We now consider the case where tg = 0. Then
 JO+R) = fO) . f(h) . h¥sin(p) o1
/ _ ! _ J— — — —) =
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But the function hs(h) is continuous by fact (ii), and so the limit is equal to zero as desired.
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Exercise 0.2. Prove that the related function

0, t=20
k(t) = { otsin(L), ¢ 0
is continuous but not differentiable.

Hint: You’ll need to use the limit definition of the derivative to prove the function is not
differentiable.

Proof. Note that k(t) = 2ts(t), and so k(t) is continuous since ts(t) is continuous. To prove it
is not differentiable, we need only prove it is not differentiable at a single point (k is actually
differentiable at all ¢ # 0). We will prove it is not differentiable at ¢ = 0.

Suppose it was differentiable, then consider the following limit,
E(O+ h) — k(0) k(h) . 2hsin(s)

: : : o1 :
T A L

Now we know that the limit lim,_o s(h) does not exist by fact (i) and so we are done. [

Exercise 0.3. Prove that f’(¢) is not continuous.

Hint: Show that k(t) can be added to a non-continuous function, to get f'().

Proof. Suppose that f’(t) was continuous, but then we note that

fit) = { g% sin(%) — cos(%), i ; 8 = k(t) — c(t)-

Thus ¢(t) = k(t) — f'(t). However, since k(t) is continuous, and we are assuming that f’(¢)
is continuous, this would imply that ¢(t) is continuous. This contradicts fact (i), and so our
assumption that f’(t) was continuous must be incorrect. U

Now we get into the real work.

Theorem 0.4. Let f: (a,b) — (c,d) and g: (¢,d) — R be differentiable functions. Then
(9o f)(x) =4 (f(x)f (x)
for every x € (a,b).
We only proved this in class in the case that f did not do exactly what the f function

above did (equal its limit many times around the limiting value). We begin with a warm-up
exercise that gives us a new perspective to the derivative.

Exercise 0.5. Suppose f: (a,b) — R is differentiable at xy € (a,b) and set L = f'(x).
Consider a new function E: (—4,d) \ {0} — R defined by the formula

f(zo +h) — f(x0)
h

Here 6 > 0 is assumed to be chosen in such a way that E can be defined.
Show that

a. for every h € (—9,6) \ {0} we have
flao + h) = f(z0) + Lh + hE(h).

E(h) = — L.

b. limp_q E(h) = 0.



Proof. We first show part (a). We simply plug in the definition of E(h) to obtain
f(2o) + L+ RE(R) = f(wo) + Lh+ h (Lee=te0l 1) — f(ag) + Lh — Lh+ f(zo +h) = f(z0) = f(zo + h)

which is exactly what we want.
To prove (b) we note that L = f’(x¢) is a constant and observe that

,ILT%E(h) _ ;ILIE% (f(%‘f'h})L— f(zo) L) _ ;ILIE% <f($0+h})L_ f(fo))_}g%L — f(20)—L=L—L=0
as desired. O

The function F defined in the exercise can be called as an error term. This error term
actually characterizes the derivative as the following exercise shows.

Exercise 0.6. Let f: (a,b) — R be a function and zy € (a,b). Suppose that there exists a
function E: (—4,0) \ {0} — R so that lim, o F(h) = 0 and

f(xo + h) = f(il?o) + Lh + hE(h)
where L is a number. Show that f is differentiable at z and f'(x¢) = L.

w. We plug in the equality from the exercise and we get

Proof. Consider limy_,
. f(wo) + Lh+hE(h) — f(xo) . Lh+hE(h) . B o
}ZILI(I) - _;ILILI(I)T_}L%(L+E(h))_L+O_L_f($O>

O

These two exercises can be combined as a lemma which we will use later.

Lemma 0.7. A function f: (a,b) — R has derivative L at xq if and only if there exist § > 0
and Ey: (—6,0) \ {0} — R so that
(1) limy_o E;(h) =0, and
(2) f(zo+h) = f(zo) + Lh+ hEy(h)
for every 0 < |h| <.
Exercise 0.8. Let f: (a,b) — (¢,d) and g: (¢,d) — R be functions and zq € (a,b). Suppose
that f is differentiable at x¢ and g is differentiable at f(xy). Let E;: (—dg,09) — R be an
error term for f (here we define E;(0) = 0) and let E,: (—d1,6;) — R be an error term
for g (we also define E,(0) = 0). Let also £;: (—dp,00) — R be the function ¢;(h) =
f'(xo)h + hE;(h).
a. Show that there exists 0 > 0 so that for every h € (—4,) we have
£(h)] < 6.
(Hint: Use the limit limy,_o ¢¢(h))
b. Show that with this 0 we have
g(f(zo+h)) = g(f(xo) + s(h))
= 9(f(z0)) + ¢'(f(20))ls(h) + Ly (h) Ey (L4 (h))
for every 0 < |h| < 0.
c. Show that there exists a function E: (—0,9) \ {0} — R so that
/

9'(f (o)) ls(h) + Ls(h) Eg (€4(h)) = g (f (o)) f' (o) h + hE(R)
for every 0 < |h| < § and lim,_o E(h) = 0.
d. Prove Theorem 0.4.



Proof. (a) We first show that lim; .o ¢;(h) = 0, but lim,_olf(h) = lim,_o = f'(xo)h +
hE¢(h) = f'(20)(0) + (0)(0) = 0+ 0 = 0. Consider 0; as an epsilon for this limit, thus there
exists a ¢ such that for all h # 0, h € (—0,6), we have (;(h) € (—d1,6;) and this condition

is exactly the same as our desired conclusion that |(¢(h)| < d5.

(b) We have two equalities to prove. First note that

9(f (o +h)) = g(f(wo) + Lh+ hEf(h)) = g(f(x0) + L¢(h))

so the first equality is easy. For the second equality, set yo = f(z¢) and set z = £¢(h). Then
g (f(zo) +L(h)) = g(yo + 2z) and since g is differentiable at yy and z € (—d;,2), we have

9(yo +2) = g(yo) + 9'(y0)z + 2E4(2) = g(f(w0)) + g’ (f(20))ls(h) + Ls(h)E,(Ls(h))

as desired.

(c) We simply note that
9 (f (o)) lp(h)+Ls(h) Eyg (£5(h)) = g'(f (x0)) (f (x0) ht-hEy(h))+(f (z0) h+-hEy(h)) Eg (L5 ()
by distributing and factoring, we get that the right side is equal to
g'(f (o)) ' (wo)h + h(g'(f (o)) Ef(h) + (f'(wo) + Ey(h)) Ey (£5(R)))
so we define E(h) = ¢'(f(z0))Ef(h) + (f'(x0) + Ef(h))E, (€¢(h)). We simply need to show
that limy,_o £(h) = 0. But this follows easily since lim,_o E¢(h) = 0 and
lim E, (¢;()) = E, (lim (4(h)) = E,(0) =0,
We can pull the limit inside because E; is defined so as to be continuous at zero.

(d) Combining exercise (b) and (c) we obtain that

9(f(wo +h)) = g(f(x0)) + ¢'(f(20)) f'(x0)h + RE(R)
and applying the previous lemma (for L = ¢'(f(x¢))f'(x¢)) completes the proof. O

The formula

(1) f(xo+h) = f(zo) + f'(x0)h + RE(R)
can also be used to approximate the values of function f.

Exercise 0.9. Argue how (1) could be used to give a decimal approximation for v/25.012 if
you are able to assume that the error term in (1) is very small. Calculate an approximation
using (1) and compare it to a result given by a calculator.

Proof. We know that /x is differentiable at & = 25. Thus, we can write \/zo + h = VZo +
(%):po%lh + hE(h) as above. Since E(h) goes to zero as h does, hE(h) goes to zero faster
than (%):1:0_71 h, which is just a constant times h (one can make this precise if one wants, I will
not do this here). This means that we can approximate v/zo + k by /zg + (%)xo%l h. Now,
plugging in zy = 25 and h = 0.012 we get

| 1
V25.012 ~ /25 + (5)257(0.012) =5+ (1—0)(0.012) = 5.0012
On the other hand, using a calculator, one sees that 1/25.012 = 5.001199856 . . .. 0



