MACAULAY2 - INTRODUCTION

AUGUST 23RD, 2023

If you haven’t used Macaulay2 before, the easiest way to do it is to open:

http://www.unimelb-macaulay2.cloud.edu.au/

However, let’s learn how to use Macaulay2 on departmental machines.

1. INSTRUCTIONS FOR USING DEPARTMENTAL MACHINES LOCALLY

Open up the machine in front of you, logging in with your mathematics department username and password, and open a terminal application. Run the command:

M2

You should see something like:

Macaulay2, version 1.21
with packages: ConwayPolynomials, Elimination, IntegralClosure,
InverseSystems, Isomorphism, LLLBases, MinimalPrimes, OnlineLookup,
PrimaryDecomposition, ReesAlgebra, Saturation, TangentCone

i1 :

In the cursor execute the command setup(), it may ask you questions. Say yes to all. Then execute exit to leave the terminal version of Macaulay2.

Now run

emacs-28.1 &

This will start emacs, which is a nicer environment for running Macaulay2 compared to the terminal. After emacs starts, you can hit F12 and run Macaulay2 in emacs. You may want to follow that up with ctrl-x followed by the key 1. Note, you can sometimes also run emacs & depending on your machine configuration (where you logged in, the emacs & may not work). Note the symbol & means don’t lock you out of the terminal.

2. RUNNING MACAULAY2 ON DEPARTMENTAL MACHINES REMOTE FROM YOUR LAPTOP/DESKTOP

Alternately, you can also log in to departmental machines and run Macaulay2 there. Roughly the idea is to open a terminal application on your local machine, and run the following command:

ssh -X mathid@asimov.math.utah.edu

Here mathid is your mathematics department username. Then login with your mathematics department password.
Then follow the instructions above M2, `setup()`, `exit`, `emacs-28.1 &`.
If you have a fast enough internet connection (for instance if you are on
campus), that should be ok. However, you will need X11 on your system.
For Mac, you probably need XQuartz.
For Windows, you will need to use WSL2 and will need to follow the
instructions here.

Or you can run Macaulay2 in the terminal (ie, run M2 instead of emacs).

3. Running Macaulay2 locally on your machine

You’ll need to follow the instructions here.

https://www.macaulay2.com/Downloads/
For Windows, you’ll want to use WSL2 (ie, the Ubuntu app for windows),
and then basically install it like you would in linux (ie, Ubuntu). For Mac
and Linux operating systems, the procedure tends to be pretty straightforward.
In many cases, Macaulay2 is available in the default repositories.
I plan to devote the second half of next Monday’s seminar to helping
people with this if they would like. In particular, we can also work on
compiling Macaulay2 from source.

4. Simple mathematical Macaulay2 exercises

In emacs or the terminal, or the web interface, start up Macaulay2. You
should see something like the following.

Macaulay2, version 1.21
with packages: ConwayPolynomials, Elimination, IntegralClosure,
InverseSystems, Isomorphism, LLLBases, MinimalPrimes, OnlineLookup,
PrimaryDecomposition, ReesAlgebra, Saturation, TangentCone

i1 :

After the `i1 :` type

 p = 5 <enter>
 S = ZZ/p[x,y,z] <enter>
 I = ideal(x^2-y*z) <enter>
 R = S/I <enter>
 dim R <enter>
 dim S <enter>

We have just created a quotient ring and computed its dimension. Let’s
understand ring maps. The syntax to create a ring map is:

 phi = map(target, source, {a,b,c,...})

Here `target` is the target ring of the map, `source` is the source ring of the
map, and `a,b,c,...` is a list of elements of the target where the `variables`
of the source go. For example, run the following commands (in the same
window you ran the above)
You can also get help on any topic by running help map or to get help on specific syntax, help (map, Ring, Ring, List) or in a nicer format: viewHelp map, respectively viewHelp (map, Ring, Ring, List).

1. Create a Frobenius map (called F) from the ring R to itself. Verify that the map is injective by checking that kernel is zero.

2. Now, we want to view the target of a map as a module over the source. To do that, we’ll use the package PushForward. Run the following commands to learn how this works. We’ll study the inclusion $R = \mathbb{Z}/5[ab, a^2, b^2] \hookrightarrow \mathbb{Z}/5[a, b] = A$.

```macaulay2
loadPackage "PushForward" <enter>
psi = map(A, S, {a*b, a^2, b^2}) <enter>
isWellDefined psi <enter>
M = (pushFwd(psi))#0 <enter>
rank M <enter>
isHomogeneous M <enter>
pdim M <enter>
```

Here we viewed A as an R-module and computed its generic rank (over R) and its projective dimension. In particular, since the projective dimension is not zero, M is not free.

3. Do the same thing, but create a different Veronese subring.

4. Use the Macaulay2 help system to out to find a primary decomposition of an ideal. In particular, find a primary decomposition of this ideal:

```macaulay2
T = QQ[x,y,z,w]
J = ideal(y^2*w, x*y^2+y^2*z, z^2*w^2, y*z*w^2, x*z*w^2, x*y*w^2, x^2*w^2)
```

Verify that your primary decomposition is correct using the intersect command. Note you can check if two ideals I, J are equal by inputting $I == J$.

5. Use Macaulay2 to take a free resolution of the T-module T^{-1}/J which you constructed in the previous problem (use the documentation to figure out how to take a free resolution). Compute $\text{Tor}_T^1(T/J, T/J)$ in two ways, one by manually using the ** command (which means tensor), by working with the individual maps in the (resolution tensored with T^{-1}/J). Also use

\[\text{pdim}\]

\[\text{pdim}\] only works well if the module is homogeneous, which it is in this case, it also can’t verify if something has projective dimension infinity, but we just care if the module is projective.
Macaulay2’s built in Tor command. Verify that this module is nonzero by using the dim command (try looking it up). Did they give you the same answer?