
A BRIEF TUTORIAL ON THE F-SINGULARITIES PACKAGE, VERSION 0.1

PACKAGE BY: MORDECHAI KATZMAN, SARA MALEC, KARL SCHWEDE, EMILY WITT

This is a package for use in Macaulay2 for doing computations of F -pure thresholds, test ideals,
non-sharply F -pure ideals, and related notions. This document gives a brief tutorial on how to use
the package.

1. Loading the package

This package has been developed using Macaulay2 version 1.6. Use other versions at your own
risk.

Place the package PosChar.m2 in a folder that Macaulay2 can see (for example, the folder from
which you are starting Macaulay2 or emacs), and run the command

loadPackage "PosChar"

If there are no errors, then it worked.
If you would like to automatically load the package on startup, please edit your .Macaulay2/init.m2

and add a line such as

if fileExists "/home/myUserName/F-sing/PosChar.m2" then path=append(path,

"/home/myUserName/F-sing/")

if fileExists "/home/myUserName/F-sing/PosChar.m2" then loadPackage("PosChar")

You should edit your path appropriately.

2. F -pure thresholds

The default function here is estFPT. To use it, create a polynomial ring over a finite field, say R

= ZZ/5[x,y] and then create an element, say f = x2 − y3. Then running estFPT(f, 1) will try
to compute the F -pure threshold (if it fails, it should give a range in which the FPT can be found,
or it crash due to lack of RAM). You can replace 1 by any integer e, larger integers e may result
in longer running time, but perhaps also more success (additional details as to where e is used can
be found below).

It does it in the following way. (To watch the progress, run estFPT with the Verbose=>true

switch).

(1) It first checks whether or not the polynomial f is diagonal (using the function isDiagonal).
If so, it computes the FPT using the methods from D. Hernández’s thesis, by calling the
function diagonalFPT. You can turn this check off by including the parameter inside the
function call, DiagonalCheck=>false. diagonalFPT is maintained by Emily Witt.

(2) Next it checks whether or not the polynomial f is binomial (using the function isBinomial).
If so, it computes the FPT using the methods from D. Hernández’s thesis, by calling the
function binomialFPT. You can turn this check off by including the parameter inside the
function call, BinomialCheck=>false. binomialFPT is maintained by Emily Witt.

(3) If these operations fail, using the e you provided, it will compute the largest νe such that
fνe /∈ 〈x1, . . . , xn〉. To compute this νe yourself, use the functions nu and nuList (maintained
by Emily Witt). Regardless, we now know that νe

pe−1
≤ FPT(f) ≤ νe+1

pe
.
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(4) We check whether (R, f
νe

pe−1 ) is strongly F -regular by calling the function isFRegularPoly,
if it is not, then νe

pe−1
= FPT(f). Indeed, if the denominator of the FPT is not divisible by

p > 0, then this method will always return the FPT as long as you provide a sufficiently
divisible e. You can turn this check off by including the parameter inside the function call,
NuPEMinus1Check=>false. This part of the function and isFRegularPoly is maintained
by Karl Schwede.

(5) If the previous check failed, then the F -signature of (R, f
νe
pe ) and (R, f

νe−1
pe ) are computed

using the fSig function. This can be very slow, but currently it cannot be turned off.
You can try to run this in a multithreaded way with MultiThread=>true, but it provides
no performance gains at the moment. Substantial performance gains can be found by
using a different monomial order, or making sure your polynomial is quasi-homogeneous.
Regardless, the secant line between(

νe
pe
, (R, f

νe
pe )

)
and

(
νe−1
pe

, (R, f
νe−1
pe )

)
intersects the x-axis at a point a ≤ FPT(f). This part is maintained by Karl Schwede.

(6) Finally, the program checks whether (R, fa) is strongly F -regular again using the function
isFRegularPoly. If not, then a = FPT(f). Otherwise, the range [a, νe+1

pe
] is returned. This

method may never find the FPT, even for large and divisible e.

In the future, we hope to be able to compute FPTs for wider classes of quasi-homogeneous
polynomials, for non-principal ideals, and for more general ambient rings. If you need some of this
functionality now, please contact us and we may be able to help.

You can check whether a particular value is the FPT by running isFPTPoly (for instance
isFPTPoly(x2 − y3, 5/6)). You can also use guessFPT to try to find potential values of the FPT.
You can also see isFJumpingNumberPoly

3. Test ideals and non-sharply-F -pure ideals

There are several functions for computing test ideals. We list them below. These are maintained
by Karl Schwede, but they rely heavily on the ethRoot function (which computes •[1/pe] also denoted
by Ie(•)) written and maintained by Mordechai Katzman.

(1) tauPoly(f,t) Suppose R is a polynomial ring containing an element f and t ≥ 0 is a rational
number. This computes the test ideal τ(R, ft). This is done by writing t = a

(pb−1)pc , first

computing τ(R, f
a

pb−1 ) via tauAOverPEMinus1Poly(f, a, b). And then using the formula

τ(R, f
a

pb−1 )[1/p
c] = τ(R, f

a

(pb−1)pc ).

The [1/pc] implementation was originally written by Katzman.
(2) tauAOverPEMinus1Poly(f,a,e) Suppose R is a polynomial ring containing an element f

and a, e ≥ 1 are integers. This computes the test ideal τ(R, f
a

pe−1 ). This uses the same
strategy as the work of Katzman for computing parameter test ideals.

(3) tauQGor(R, e, f, t) Suppose that R is a Q-Gorenstein normal ring containing an element
f and that the index of KR divides pe − 1. Further t ≥ 0 is a rational number. Then this
computes the test ideal τ(R, ft). The strategy is similar to tauPoly(f,t) above.

(4) tauQGorAmb(R, e) Suppose that R is a Q-Gorenstein normal ring and that the index of KR

divides pe − 1. Then this computes the test ideal τ(R).

Using these functions, we also have implemented F -regularity checks: for polynomial rings
isFRegularPoly and for Q-Gorenstein rings isFRegularQGor.

There is also support for non-sharply-F -pure ideals.
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(1) sigmaAOverPEMinus1Poly(f, a, e) Suppose R is a polynomial ring containing an element

f and a, e ≥ 1 are integers. This computes the non-sharply-F -pure ideal σ(R, f
a

pe−1 ).
(2) sigmaQGorAmb(R, g) Suppose that R is a Q-Gorenstein normal ring and that the index of

KR divides pg − 1. Then this computes the non-sharply-F -pure ideal σ(R).
(3) sigmaQGorAOverPEMinus1(f, a, e, g) Suppose that R is a Q-Gorenstein normal ring

containing an element f and that the index of KR divides pg − 1. Further a, e ≥ 1 are

integers. Then this computes the non-sharply-F -pure ideal σ(R, f
a

pe−1 ).

In each of these cases, σ is the stable image of certain p−e-linear maps, which can be reduced to
twists of ethRoot. Using these functions, we also have implemented a sharp F -purity check for
polynomial rings isSharplyFPurePoly.

In the future we also hope to include parameter test module and ideal computations and F -
rationality / F -injectivity checks. These have previously been implemented by Katzman. We also
hope to include within this package tools for computing compatibly split ideals, and more generally
φ-fixed ideals. See the recent work of Boix-Katzman (and also Katzman-Zhang).
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