
21 June Lab Stuff

The trouble with quotes on the internet is that you can never know if they are genuine. – Abraham Lincoln

1 RSA

Let us remember how the RSA encryption programme works:
Alice wants people to send her secret messages. She constructs a public key as follows: choose two primes

p and q, compute n = pq, find e relatively prime to ϕ(pq) and compute d = e−1 mod ϕ(pq). The public key
is (n, e), and d is kept private for decryption purposes.

• Write a function keygen(p,q) that takes in two primes and outputs [n,e,d] as above. You should
be able to do most of this by piecing together functions you have already written. The tricky bit is
generating e; this needs to be relatively prime to ϕ(pq) so you can’t just choose anything. You can
use your GCD function to test whether any particular e works, but you’ll need some way to selecting
different e’s until you find one that works.

Now you are Bob and you want to send Alice a message using her public key (1405661, 125). To do so
you write your message as a number m and compute c = m125 mod 1405661. The number c is the encrypted
message you send to Alice.

• Write a function RSA(message,n,e,blocksize) that first blocks up the message as per last time, then
performs RSA on each of the pieces. For example, using the given public key, I could run my function
RSA(’SEASONSINTHEABYSS’,1405661,125,4) and it does the following:

’SEASONSINTHEABYSS’

’SEASONSINTHEABYSSXXX’

[SEAS, ONSI, NTHE, ABYS, SXXX]

[319090, 255328, 241518, 1318, 332537]

[319090^125 mod 1405661, 255328^125 mod 1405661, 241518^125 mod 1405661, 1318^125 mod 1405661, 332537^125 mod 1405661]

[559261, 596833, 232812, 1169293, 473729]

Now you are Alice again and you want to decypt the message that Bob has sent to you. This is accom-
plished by raising all of the numbers you received to the secret power d that you computed with your key,
reducing mod n and changing things back to letters.

• Write a function unRSA(message,n,d,blocksize) that undoes the above process. The code for this
can look almost exactly the same as for RSA; the difference is that RSA changes words to numbers at
the beginning, while unRSA changes numbers to words at the end.

If you get your code working, go to http://summermathprogram2016.blogspot.com/ to find an RSA
public key I’ve posted. Use this to post a message in the comments section and I’ll decrypt it (make sure
you tell me the blocksize!). If you post your own public key in the comments section I’ll send you a message
that you can decrypt.

1



2 Factoring method

We have seen that factoring n = pq can be accomplised relatively easily if either p − 1 or q − 1 has prime
factorization involving only small primes. Roughly, if p− 1 has small prime factors, then p− 1 will divide k!
for some k that is not too big. We write k! = (p− 1)m and get

ak! = am(p−1) = (am)p−1 ≡p 1

The last equvalence comes from Fermat’s little theorem; everything to the p − 1 power is equivalent to 1
modulo p.

The equation ak! ≡p 1 means that p evenly divides ak! − 1. If q does not evenly divide ak! − 1 then
gcd(ak! − 1, pq) = p and we have successfully factored the number.

This leads to the following algorithm that attempts to factor a number n = pq:

• Choose a.

• If gcd(a, n) > 1 then you have found a factor.

• Compute a2! mod n. If 1 <gcd(a2! − 1, n) < n then you have found a factor.

• Compute a3! mod n. If 1 <gcd(a3! − 1, n) < n then you have found a factor.

...

• Compute ak! mod n. If 1 <gcd(ak! − 1, n) < n then you have found a factor.

...
It may be that some choices of a work better than others. How does one know when to stop the above

process? By Euler’s generalization of Fermat’s little theorem, we know that so long as a is relatively prime
to n then aϕ(n) ≡n 1. This means that once k is large enough so that k! contains all of the prime factors of
ϕ(n), then ak! will be equivalent to 1 modulo n for all larger k.

So, the short way to answer the question of when to stop is, if you get ak! ≡n 1 for some k and you
haven’t found a divisor yet, stop because a to all higher factorials will be 1 also.

• Write a function factortest(n,a) that tries to find a factor of n using an initial guess a, as per the
algorithm above. This is most easily accomplished using a while loop.

If you think you have your code working, use it to factor 2547815019113754972004330272778634769211
into two primes. You should be able to use any small number for a (I tried 2,3,4 and they all worked). You
may have to let your program run for a minute or two. Consider that since each of the prime factors that
divide this number are on the order of 1019, if one tried to find the factors by starting at 2 and dividing
by every number it would take more than 350,000,000,000 years if you could check one-billion numbers per
second. With this in mind, a little under two minutes is pretty good!

2


