
22 June Lab Stuff

1 Miller Rabin

Let us recall how the Miller-Rabin primality test works:
The idea is that if n is prime, then the only numbers x such that x2 ≡n 1 are 1 and −1. Therefore, if we

can find an x that is not 1 or −1 where x2 ≡n 1 then n is not prime.
We also know by Fermat’s little theorem that if n is prime then xn−1 ≡n 1 for all x. If we write n = 2s ·d

where d is odd, we can choose a random x and consdier the following sequence of values:

xd, x2d, x22d, x23d, ..., x2s−1d, xn−1

Notice that each term in this sequence is the square of the previous term; e.g. x23d = (x22d)2. If n is prime,
then the last number in this sequence is 1. Since the only square roots of 1 are 1 and −1, it must be that
the second to last term in this sequence is 1 or −1. If the second to last term is 1, then the third to last
term must be 1 or −1, and so on all the way down.

If we pick a random x and xd ≡n 1 or xd ≡n −1, then n might be prime. If xd is not one of these
numbers, then we start squaring. If n is prime then we have to hit 1 eventually, but since the only numbers
that square to 1 are 1 and −1 we will always hit −1 first. Turning this around, we get the following way to
identify a number as composite:

If for some x we have xd not equivalent to 1 or −1, and upon repeating squarings we see 1 before
−1, then n is not prime.

This gives us the following algorithm to determine if a number n is composite:

• Write n− 1 = 2s · d where d is odd.

• Choose some x.

• Compute xd mod n. If this is 1 or −1, stop; n might be prime.

• Compute x2d mod n. If this is 1, stop; n is definitely not prime. If this is −1, stop; n might be prime.
Else, keep going.

• Compute x22d mod n. If this is 1, stop; n is definitely not prime. If this is −1 stop; n might be prime.
Else, keep going.

• Compute x23d mod n. If this is 1, stop; n is definitely not prime. If this is −1 stop; n might be prime.
Else, keep going.

...

• Compute x2s−1d mod n. If this is 1, stop; n is definitely not prime. If this is −1 stop; n might be
prime. Else, n is definitely not prime.

It is important to keep in mind that this test can tell you that n is definitely not prime but it cannot tell
you that n is definitely prime. Consequently, it is important to check several values for x; some of them may
say that n might be prime while others may tell you n is definitely not prime. If you check many values of
x and all of them say that n might be prime, then n is probably prime.

• Write a function RMwitness(n,x) that uses x to test if n is prime.

• Write a function checkprime(n) that uses RMwitness(n,x) to check if a number is prime. The idea
is for checkprime(n) to run RMwitness(n,x) for many values of x. You can choose random values
x using the command ZZ.random element(a,b); this returns a random integer between a and b. To
make this even better you can also incorporate trial divison by small primes (say less than 100) and/or
the p− 1 factor test you wrote yesterday.

1



• Write a function findprime(a,b) that tries to find a prime number between a and b.

When you are done go to www.summermathprogram2016.blogspot.com. There are posts containing tests
for your ElGamal and RSA functions.

2


