22 June Lab Stuff

1 Miller Rabin

Let us recall how the Miller-Rabin primality test works:

The idea is that if n is prime, then the only numbers z such that 22 =,, 1 are 1 and —1. Therefore, if we
can find an x that is not 1 or —1 where 22 =,, 1 then n is not prime.

We also know by Fermat’s little theorem that if n is prime then 2"~ ! =,, 1 for all z. If we write n = 2°-d
where d is odd, we can choose a random x and consdier the following sequence of values:

xd’x2d7 m22d)$23d7 .“73625*1(1):571—1
Notice that each term in this sequence is the square of the previous term; e.g. g?’d = (xQQd)2. If n is prime,
then the last number in this sequence is 1. Since the only square roots of 1 are 1 and —1, it must be that
the second to last term in this sequence is 1 or —1. If the second to last term is 1, then the third to last
term must be 1 or —1, and so on all the way down.

If we pick a random z and z% =, 1 or z¢ =, —1, then n might be prime. If % is not one of these
numbers, then we start squaring. If n is prime then we have to hit 1 eventually, but since the only numbers
that square to 1 are 1 and —1 we will always hit —1 first. Turning this around, we get the following way to
identify a number as composite:

If for some x we have ¢ not equivalent to 1 or —1, and upon repeating squarings we see 1 before
—1, then n is not prime.

This gives us the following algorithm to determine if a number n is composite:
e Write n — 1 = 2% - d where d is odd.
e Choose some .

e Compute % mod n. If this is 1 or —1, stop; n might be prime.

Compute 22¢ mod n. If this is 1, stop; n is definitely not prime. If this is —1, stop; n might be prime.
Else, keep going.

Compute 22°d mod n. If this is 1, stop; n is definitely not prime. If this is —1 stop; n might be prime.
Else, keep going.

Compute 22°d mod n. If this is 1, stop; n is definitely not prime. If this is —1 stop; n might be prime.
Else, keep going.

Compute 224 mod n. If this is 1, stop; n is definitely not prime. If this is —1 stop; n might be
prime. Else, n is definitely not prime.

It is important to keep in mind that this test can tell you that n is definitely not prime but it cannot tell
you that n is definitely prime. Consequently, it is important to check several values for x; some of them may
say that n might be prime while others may tell you n is definitely not prime. If you check many values of
2 and all of them say that n might be prime, then n is probably prime.

e Write a function RMwitness(n,x) that uses x to test if n is prime.

e Write a function checkprime(n) that uses RMwitness(n,x) to check if a number is prime. The idea
is for checkprime(n) to run RMwitness(n,x) for many values of z. You can choose random values
x using the command ZZ.random_element (a,b); this returns a random integer between a and b. To
make this even better you can also incorporate trial divison by small primes (say less than 100) and/or
the p — 1 factor test you wrote yesterday.

e Write a function findprime(a,b) that tries to find a prime number between a and b.

When you are done go to www.summermathprogram2016.blogspot.com. There are posts containing tests
for your ElGamal and RSA functions.

