MATH 5320 - SAMPLE EXAM II

- 1) Use the Eiseinstein Criterion to prove that $x^6 + x^3 + 1$ is irreducible. (Hint: replace x by x + 1.)
- 2) Let $\varphi : \mathbb{Z}[x] \to \mathbb{C}$ be the map defined by $f(x) \mapsto f(\frac{1}{2} + i)$. Let I be the kernel of φ . Prove that I is principal, i.e. find a generator g(x) and prove that any element in I is a multiple of g(x). Hint: you will need to use Gauss' Lemma for this.
- 3) Prove that the ring $\mathbb{Z}[\sqrt{-2}]$ is euclidean with respect to the norm $N(x+y\sqrt{-2})=x^2+2y^2$, i.e. for every $\alpha,\beta\in\mathbb{Z}[\sqrt{-2}]$, with $\beta\neq 0$, show that there exists $\gamma,\delta\in\mathbb{Z}[\sqrt{-2}]$, such that $\alpha=\gamma\beta+\delta$, and $N(\delta)< N(\beta)$. Do this for $\alpha=4+2\sqrt{-2}$ and $\beta=1+\sqrt{-2}$.
- 4) Let $R = \mathbb{Z}[\sqrt{-2}]$. Let p be a prime. When is the principal ideal $(p) \subseteq R$ maximal? (Hint: use $R \cong \mathbb{Z}[x]/(x^2+2)$ to understand R/(p).) Use this to determine primes p that can be written as $p = x^2 + 2y^2$. (Using the quadratic reciprocity, the answer depends on p modulo 8).
- 5) Let R be a ring such that any ideal is finitely generated. Let $I_1 \subseteq I_2 \subseteq I_2 \subseteq ...$ be an infinite sequence of ideals in R. Prove that exists an integer n such that $I_n = I_{n+1} = ...$