K-TYPES OF MINIMAL REPRESENTATIONS (p-ADIC CASE)

GORDAN SAVIN

ABSTRACT. Let F be a p-adic field. Let G be a split simple simply connected group over F of type D_n , $(n \ge 4)$, or E_n , (n = 6, 7, 8). Let K be a hyperspecial maximal compact subgroup of G. In this article we describe K-types of the minimal representation of G.

1. MINIMAL REPRESENTATION

It will be convinient for us to think of G as the group of F-points of a Chevalley group **G**. Let \mathcal{R} be the ring of integers of F. Then K is simply the group of \mathcal{R} -points of **G**. Let ϖ be a uniformizing element of \mathcal{R} and $\mathcal{R}/\varpi \mathcal{R} \cong \mathbb{F}_q$ the residue field of F.

Let K_1 be the first principal congruence subgroup. Then $K/K_1 \cong \mathbb{G}$ is the finite group of \mathbb{F}_q -points of \mathbf{G} . Let $I, K_1 \subset I \subset K$ be an Iwahori subgroup of G. Then $I/K_1 \cong \mathbb{B}$, a Borel subgroup of \mathbb{G} . Let H be the Hecke algebra of I-biinvariant compactly supported functions on G. The space of I-fixed vectors of a smooth representation of G is naturally an H-module. It is a well known result of Borel [1] that this correspondence defines an equivalence between the category of representations of G generated by its I-fixed vectors and the category of representations of H.

The algebra H can be described as follows. Let $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ be a set of simple roots. Let $-\alpha_0$ be the maximal root and let $\overline{\Delta} = \Delta \cup \{\alpha_0\}$. Let $\langle \rangle$ be a Killing form normalized so that $\langle \alpha_i, \alpha_i \rangle = 2$ for all i. Then H is generated by $T_i, i = 0, \ldots, n$ satisfying the following relations:

$$T_i T_j = T_j T_i \quad \text{if} \quad <\alpha_i, \alpha_j >= 0;$$

$$T_i T_j T_i = T_j T_i T_j \quad \text{if} \quad <\alpha_i, \alpha_j >= -1;$$

and
$$(T_i - q)(T_i + 1) = 0.$$

Define an irreducible H-module E by (see [7])

$$E = \oplus_{i=0}^{n} \mathbb{C}e_{i}$$

with the action of H given by

$$T_i e_j = \begin{cases} -e_j & \text{if } \alpha_i = \alpha_j; \\ q e_j + q^{\frac{1}{2}} e_i & \text{if } < \alpha_i, \alpha_j > = -1; \\ q e_j & \text{if } < \alpha_i, \alpha_j > = 0. \end{cases}$$

1991 Mathematics Subject Classification. Primary 22E35 and 50, Secondary 11F70.

GORDAN SAVIN

Definition 1.1. The minimal representation is the unique irreducible representation V_{\min} such that the space of I-fixed vectors in V_{\min} is isomorphic to E, as an H-module.

Repeating previous constructions with Δ (instead of Δ) gives \mathbb{H} , the Hecke algebra of \mathbb{B} -biinvariant functions on \mathbb{G} and an \mathbb{H} -module \mathbb{E} which corresponds to \mathbb{V}_{\min} , the representation of \mathbb{G} with the minimal dimension (see [3]). It is interesting to note that by setting q = 1, \mathbb{H} becomes the group algebra of the Weyl group of G and \mathbb{E} its reflection representation.

Let h_1, \ldots, h_n and $x_{\alpha}, \alpha \in \Phi$ (Φ is the root system) be a Chevalley basis of \mathfrak{g} as in [6]. Let $\mathfrak{g}_{\mathbb{Z}}$ be \mathbb{Z} -span of the Chevalley basis of \mathfrak{g} . Let

$$\mathfrak{g}_i=\mathfrak{g}_\mathbb{Z}\otimes_\mathbb{Z} arpi^i\mathcal{R}.$$

Let v_F be an evaluation on F normalized so that $v_F(\varpi) = 1$. If $v_F(p) < p-1$ then the exponential map is well defined on \mathfrak{g}_1 , and it preserves Haar measures. The groups $K_i = \exp(\mathfrak{g}_i), i = 1, 2...$ are the principal congruence subgroups. If $v_F(p) < 1/3(p-1)$ then the multiplication in K_1 can be defined using the Campbell-Hausdorff formula [9], LG 5.19.

The Killing form \langle , \rangle , normalized by $\langle h_i, h_i \rangle = 2$ for all *i*, is unimodular on \mathfrak{g}_0 if *p* is prime to the determinant of the Cartan matrix (which is 4, 3, 2 and 1 for D_n , E_6 , E_7 and E_8 respectively). Note that $v_F(p) < 1/3(p-1)$ implies that $p \neq 2, 3$, hence we can assume that the Killing form is unimodular on \mathfrak{g}_0 .

Let f_i be the characteristic function of \mathfrak{g}_i . Let ψ be a non-trivial additive character of F with conductor \mathcal{R} . Let f be a locally constant compactly supported function on \mathfrak{g} . Define the Fourier transform \hat{f} of f by

$$\widehat{f}(x) = \int_{\mathfrak{g}} f(y) \psi(< x, y >) dy$$

where the Haar measure dy is normalized so that

$$\hat{f}_i = |\varpi|^{i \dim \mathfrak{g}} f_{-i}.$$

Let (π, V) be an irreducible representation of G. It defines a distribution Θ_{π} as follows. Let f be a locally constant function supported in \mathfrak{g}_1 . Then

$$\Theta_{\pi}(f) = tr \int_{\mathfrak{g}} \pi(\exp x) f(x) dx.$$

A result of Howe and Harish-Chandra [4] says that there is a positive integer n_V and numbers $c_{\mathcal{O}}$ such that

$$\Theta_{\pi}(f) = \sum_{\mathcal{O}} c_{\mathcal{O}} \int \hat{f} \mu_{\mathcal{O}}$$

for every locally constant function f supported in \mathfrak{g}_{n_V} . Here the sum is taken over nilpotent orbits and $\mu_{\mathcal{O}}$ is a G-invariant measure on \mathcal{O} constructed as follows. Let $x \in \mathcal{O}$ and let

$$B_x(y,z) = \langle x, [y,z] \rangle$$

be a bilinear form on \mathfrak{g} . It induces a non-degenerate symplectic form on $T_{\mathcal{O},x}$, the tangent space of \mathcal{O} at x. Then $\mu_{\mathcal{O}}(x) = |\wedge^d B_x|$ (we shall see on the example of the minimal orbit how this works).

Remark 1.2. One expects that $n_V = 1$ for representations generated by its *I*-fixed vectors. Indeed, Waldspurger has shown this to be true for classical groups [11].

Let $D = \max_{c_{\mathcal{O}} \neq 0} \frac{1}{2} \dim \mathcal{O}$. It follows from the character expansion (see [8]) that the dimension of the space of K_i -fixed vectors in V grows as q^{Di} .

The minimal non-trivial nilpotent orbit \mathcal{O}_{\min} is the orbit of $x_{-\alpha_0}$. Let Θ_{\min} be the character of V_{\min} . Theorem 2.1 in [8] says that

$$\Theta_{\min}(f) = \int \hat{f} \mu_{\mathcal{O}_{\min}} + c \int \hat{f} \mu_0$$

Hence the growth of dim $V_{\min}^{K_i}$ is the slowest possible, justifying the name "minimal".

2. K-types

The main result is the following.

Proposition 2.1. Assume that $v_F(p) < 1/3(p-1)$ and $n_{V_{\min}} = 1$. Then

$$V_{\min}|_K = \bigoplus_{i=0}^{\infty} V_i$$

where V_i are irreducible representations of K such that $V_{\min}^{K_{i-1}} \oplus V_i = V_{\min}^{K_i}$. Here $K_0 = K$, K_i , $i \ge 1$, are principal congruence subgroups and $V_{\min}^{K_i}$ is the space of K_i -fixed vectors. Furthermore $V_0 = \mathbb{C}$ (the trivial representation of K) and $V_1 = \mathbb{V}_{\min}$, the minimal representation of \mathbb{G} , pulled back to K. We also describe V_i for i > 1 explicitly.

Proof. We first describe K-types contained in $V_{\min}^{K_1}$. Let B be a Borel subgroup of G. Since G = BK and $V_{\min} \subset \operatorname{ind}_B^G \chi$ for some unramified character χ , it follows that

$$V_{\min}^{K_1} \subset C(\mathbb{B}\backslash \mathbb{G})$$

and

$$V_{\min}^{I} \subset C(\mathbb{B}\backslash \mathbb{G}/\mathbb{B}).$$

Hence the K-types contained in $V_{\min}^{K_1}$ are obtained by restricting the H-module E to \mathbb{H} . Since $E|_{\mathbb{H}} = \mathbb{C} \oplus \mathbb{E}$ the claim follows.

To continue we need to describe \mathcal{O}_{\min} . Write $\alpha_0 = m_1\alpha_1 + \ldots + m_n\alpha_n$. Let $h_0 = m_1h_1 + \ldots + m_nh_n$. Then $(x_{\alpha_0}, h_0, x_{-\alpha_0})$ is an sl(2)-triple. Let

$$\mathfrak{g}(i) = \{ x \in \mathfrak{g} \mid [h_0, x] = ix \}.$$

Then $\mathfrak{g} = \bigoplus_{-2 \leq i \leq 2} \mathfrak{g}(i)$. Assume that α_1 is the unique simple root such that $\langle \alpha_0, \alpha_1 \rangle \neq 0$. Then $\mathfrak{p} = \bigoplus_{i \geq 0} \mathfrak{g}(i)$ is the maximal parabolic subalgebra corresponding to α_1 (see the diagrams on the end of this section). The unipotent radical of \mathfrak{p} is $\mathfrak{g}(1) \oplus \mathfrak{g}(2)$. It is a Heisenberg Lie algebra with center $\mathfrak{g}(2)$, spanned by $x_{-\alpha_0}$. Let

$$\mathfrak{s} = [\mathfrak{g}(0), \mathfrak{g}(0)] \oplus \mathfrak{g}(1) \oplus \mathfrak{g}(2).$$

It is the centralizer of $x_{-\alpha_0}$. Let S be the centralizer of $x_{-\alpha_0}$ in G and let $\mathbb{S} \subset \mathbb{G}$ the corresponding finite group.

Lemma 2.2. Let $g = \#\mathbb{G}/\mathbb{S}$ and $d = 1/2 \dim \mathcal{O}_{\min}$ (d=2n-3,11,17 and 29, respectively). If i > 2 then

$$\dim V_{\min}^{K_i} - \dim V_{\min}^{K_{i-1}} = gq^{d(i-2)}.$$

Proof. Let $\chi_i(x) = |\varpi|^{-i \dim \mathfrak{g}} f_0(\varpi^{-i}x)$. Then $P_i = \pi(\chi_i)$ is a projection on $V_{\min}^{K_i}$. Since $\dim V_{\min}^{K_i} = tr(P_i)$ and $\hat{\chi}_i(x) = f_{-i}(x)$, it follows that

$$\dim V_{\min}^{K_i} - \dim V_{\min}^{K_{i-1}} = \int (f_{-i} - f_{-i+1}) \mu_{\mathcal{O}_{\min}}$$

Write $\mathcal{O}_{\min} = x_{-\alpha_0}^G$. Since G = KB, it follows that $\mathcal{O}_{\min} = \bigcup \varpi^i x_{-\alpha_0}^K$. Hence

$$\mathcal{O}_{\min} \cap (\mathfrak{g}_{-i} \setminus \mathfrak{g}_{-i+1}) = \varpi^{-i} x_{-\alpha_0}^K$$

Let $\mathcal{O}_i = \varpi^{-i} x_{-\alpha_0}^K$. Then \mathcal{O}_i breaks into $g K_1$ -orbits

$$\mathcal{O}_i = \cup_{j=1}^g \mathcal{O}_{i,j}$$

Assume that $\mathcal{O}_{i,1}$ is the K_1 -orbit of $x_{-\alpha_0}$. Hence

$$\dim V_{\min}^{K_i} - \dim V_{\min}^{K_{i-1}} = g \int_{\mathcal{O}_{i,1}} \mu_{\mathcal{O}_{\min}}$$

To compute the volume of $\mathcal{O}_{i,1}$ we need to describe precisely the normalization of $\mu_{\mathcal{O}_{\min}}$ at $\varpi^{-i}x_{-\alpha_0}$. Let \mathfrak{s}' be the span of h_0 , $\mathfrak{g}(-2)$ and $\mathfrak{g}(-1)$. Then $\mathfrak{g} = \mathfrak{s} \oplus \mathfrak{s}'$ and the tanget space of \mathcal{O}_{\min} at $x_{-\alpha_0}$ can naturally be identified with \mathfrak{s}' . Note that $\mathfrak{g}(-1) \oplus \mathfrak{g}(-2)$ is a Heisenberg Lie algebra with center $\mathfrak{g}(-2)$, spanned by x_{α_0} . Let $\{e_1, \ldots e_{d-1}, f_1, \ldots f_{d-1}\}$ be the part of the Chevalley basis contained in $\mathfrak{g}(-1)$ labeled so that $[e_j, f_k] = \delta_{j,k} x_{\alpha_0}$ $(\delta_{j,k} = 1 \text{ if } j = k \text{ and } 0 \text{ otherwise})$. We complete it to a basis of \mathfrak{s}' by adding $e_d = x_{\alpha_0}$ and $f_d = \frac{1}{2}h_0$.

Let $\mathfrak{s}'_{\mathbb{Z}[1/2]}$ be $\mathbb{Z}[1/2]$ -span of $\{e_1, \ldots e_d, f_1, \ldots f_d\}$. Let $\mathfrak{g}_{\mathbb{Z}[1/2]}$ and $\mathfrak{s}_{\mathbb{Z}[1/2]}$ be $\mathbb{Z}[1/2]$ -span of the Chevalley basis and of its part contained in \mathfrak{s} respectively. Since $m_1 = 2$, and 2 is invertible in $\mathbb{Z}[1/2]$,

$$\mathfrak{g}_{\mathbb{Z}[1/2]} = \mathfrak{s}_{\mathbb{Z}[1/2]} \oplus \mathfrak{s}'_{\mathbb{Z}[1/2]}$$

Let

$$\mathfrak{s}'_i = \mathfrak{s}_{\mathbb{Z}[1/2]} \otimes_{\mathbb{Z}[1/2]} \varpi^i \mathcal{R}$$

and let $S'_i = \exp \mathfrak{s}'_i$, i = 1, 2... Define analogously \mathfrak{s}_i and S_i . Also, since p is odd

$$\mathfrak{g}_i = \mathfrak{g}_{\mathbb{Z}} \otimes_{\mathbb{Z}} arpi^i \mathcal{R} = \mathfrak{g}_{\mathbb{Z}[1/2]} \otimes_{\mathbb{Z}[1/2]} arpi^i \mathcal{R}$$

Hence $\mathfrak{g}_i = \mathfrak{s}_i \oplus \mathfrak{s}'_i$, $K_i = S_i S'_i$, i = 1, 2... and we have a sequence of measure-preserving bijections:

$$\mathcal{O}_{1,j} \cong S'_1 \cong \mathfrak{s}'_1.$$

Since \mathfrak{s}'_1 is the \mathcal{R} -span of ϖe_j and ϖf_j $j = 1, \ldots d$, and

$$|B_{\varpi^{-i}x_{-\alpha_0}}(\varpi e_j, \varpi f_k)| = \delta_{j,k} q^{(i-2)}$$

it follows that the volume of $\mathcal{O}_{i,1}$ is $q^{d(i-2)}$. The lemma is proved.

Recall [5], Lemma 1.2, that irreducible representations of K_1/K_i are parametrized by K_1 -orbits in $\mathfrak{g}_{-i}/\mathfrak{g}_{-1}$. To describe the correspondence, recall that the Fourier transform defines an isomorphism between the spaces of functions $C(\mathfrak{g}_1/\mathfrak{g}_i)$ and $C(\mathfrak{g}_{-i}/\mathfrak{g}_{-1})$. Let \mathcal{O} be a K_1 -orbit in $\mathfrak{g}_{-i}/\mathfrak{g}_{-1}$ and $E_{\mathcal{O}}$ the corresponding irreducible representation of K_1 . Then

- (1) the character of $E_{\mathcal{O}}$, pulled back to \mathfrak{g}_1 via log, is the Fourier transform of the characteristic function of \mathcal{O} divided by $\#\mathcal{O}^{1/2}$.
- (2) dim $E_{\mathcal{O}} = \# \mathcal{O}^{1/2}$; this is a consequence of (1).

Let $\mathcal{O}_{i,j} \subset \mathcal{O}_i$, $(i \geq 2)$ be a K_1 -orbit. Then $\mathcal{O}'_{i,j} = \mathcal{O}_{i,j} + \mathfrak{g}_{-1}$ is a K_1 -orbit in $\mathfrak{g}_{-i}/\mathfrak{g}_{-1}$. Since $\mathcal{O}'_{i,j}$ are K-conjugated and $\#\mathcal{O}_{i,1} = \#K_1/S_1K_{i-1} = q^{2d(i-2)}$, it follows that

(1) dim $E_{\mathcal{O}'_{i,j}} = q^{d(i-2)}$.

(2) $E_{\mathcal{O}_{i,i}}$ is a summand of V_{\min} .

From this and Lemma 2.2 we conclude that

$$V_{\min}^{K_i} = V_{\min}^{K_{i-1}} \oplus (\bigoplus_{j=1}^g E_{\mathcal{O}'_{i,j}})$$

Let $S_0 = S \cap K$. Obviously, S_0 preserves $E_{\mathcal{O}'_{i,1}} \subset V_{\min}^{K_i}$. Let

$$V_i = \operatorname{ind}_{S_0K_1}^K E_{\mathcal{O}'_{i,1}}.$$

Since

$$V_i|_{K_1} = \bigoplus_{j=1}^g E_{\mathcal{O}'_{i,j}}$$

it follows from the Mackey's irreducibility criterion ([10] Prop. 23) that V_i is irreducible. Also, by the Frobenius reciprocity $V_i \subset V_{\min}$. The proposition is proved.

We proceed to write down V_i , the irreducible representations of K/K_i . Let ψ_i be a character of \mathfrak{g} defined by $\psi_i(x) = \psi(\langle x, \varpi^{-i}x_{-\alpha_0} \rangle)$. If $j \leq i \leq 2j$ then $K_j/K_i \cong \mathfrak{g}_j/\mathfrak{g}_i$ (this follows from the Campbell-Hausdorff formula). Hence ψ_i defines a character of K_j/K_i . We first describe $E_{\mathcal{O}'_{i-1}}$. We have two cases.

(1) *i* is even. Write i = 2j. Then ψ_i defines a character of K_j/K_i . Note that $\psi_i|_{S_j} = 1$. Therefore, since S_1 centralizes ψ_i , we can extend ψ_i to S_1K_j by $\psi_i|_{S_1} = 1$. Then

$$E_{\mathcal{O}'_{i,1}} = \operatorname{ind}_{S_1 K_j}^{K_1} \psi_i.$$

(2) *i* is odd. Write i = 2j + 1. Then ψ_i defines a character of K_{j+1}/K_i . As in the even case extend ψ_i to S_1K_{j+1} . Then $S_1K_j/\ker\psi_i$ is a Heisenberg group. Let ρ_i be the corresponding irreducible representation such that the center acts via the character ψ_i . Then

$$E_{\mathcal{O}'_{i,1}} = \operatorname{ind}_{S_1 K_j}^{K_1} \rho_i.$$

GORDAN SAVIN

We know apriori that $E_{\mathcal{O}'_{i,1}}$ extends to S_0 . Since $[\mathbb{S}, \mathbb{S}] = \mathbb{S}$ the extension is unique in view of the following lemma (take $A = S_0 K_1$ and $B = K_1$).

Lemma 2.3. Let A be a group and B a normal subgroup. Let C = A/B. Assume that [C, C] = C. Let ρ be an irreducible finite-dimensional representation of B. If ρ extends to A then it extends uniquely.

Proof. Let ρ_1 and ρ_2 be two extensions. By the Schur Lemma, for any $a \in A$ there exists a scalar $\chi(a)$ such that $\rho_1(a) = \chi(a)\rho_2(a)$. Obviously, χ is a character of C. Since [C, C] = C, it must be trivial. The lemma is proved.

We now give precise definitions of V_i , i = 2, 3... Again we have two cases.

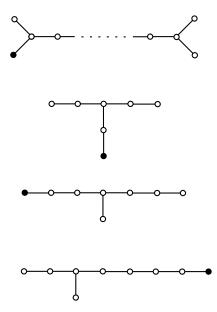
(1) *i* is even. Write i = 2j. Then ψ_i defines a character of K_j/K_i . Extend ψ_i to S_0K_j by $\psi_i|_{S_0} = 1$. Then

$$V_i = \operatorname{ind}_{S_0 K_i}^{K} \psi_i.$$

(2) *i* is odd. Write i = 2j + 1. Then ψ_i defines a character of K_{j+1}/K_i . Extend ψ_i to S_1K_{j+1} by $\psi_i|_{S_1} = 1$. Then $S_1K_j/\ker\psi_i$ is a Heisenberg group. Let ρ_i be the corresponding irreducible representation such that the center acts via the character ψ_i . It extends to S_0 via the usual Weil representation argument. Then

$$V_i = \operatorname{ind}_{S_0 K_i}^K \rho_i.$$

We conclude this paper by giving some explicit data. Recall that the extended Dynkin diagram for G is a graph obtained from the set of roots $\overline{\Delta}$ by connecting α_i and α_j if and only if $\langle \alpha_i, \alpha_j \rangle = -1$:



The black vertex in each diagram corresponds to the root α_0 .

Recall that α_1 is the unique simple root such that $\langle \alpha_0, \alpha_1 \rangle = -1$. Since S is a semidirect product of a Heisenberg group of order q^{2d-1} , and a semi-simple, simply connected group with the Dynkin diagram obtained by removing α_1 from the Dynkin diagram of G, one can compute $g = \#\mathbb{G}/\mathbb{S}$ using formulas in [2], page 75. The answers are:

$$D_n \qquad \frac{(q^n - 1)(q^{2n-4} - 1)(q^{2n-2} - 1)}{(q^2 - 1)(q^{n-2} - 1)}$$

$$E_6 \qquad \frac{(q^8 - 1)(q^9 - 1)(q^{12} - 1)}{(q^3 - 1)(q^4 - 1)}$$

$$E_7 \qquad \frac{(q^{12} - 1)(q^{14} - 1)(q^{18} - 1)}{(q^4 - 1)(q^6 - 1)}$$

$$E_8 \qquad \frac{(q^{20} - 1)(q^{24} - 1)(q^{30} - 1)}{(q^6 - 1)(q^{10} - 1)}$$

Finally, we note that

 $\dim \mathbb{V}_{\min} = gq/(q^{d+1}-1)$

 $d = 1/2 \dim \mathcal{O}_{\min}$, and it is 2n - 3, 11, 17 and 29 respectively.

Acknowledgements

It is a pleasure to thank B. Gross for initiating this project. The author is generously supported by an NSF Postdoctoral Fellowship and a Sloan Research Fellowship.

References

- [1] A. Borel, Admissible representations of a semi simple group over a local field with vectors fixed under Iwahori subgroup, Invent. Math. **35** (1976), 233–260.
- [2] R. Carter, *Finite Groups of Lie Type*, Wiley, 1985.
- [3] C. W. Curtis, N. Iwahori and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (B, N) pairs, Publ. Math. IHES 40 (1972), 81–116.
- [4] Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, Queen's Papers in Pure and Applied Math. 48 (1978), 281–347.
- [5] R. Howe, Kirillov theory for compact p-adic groups, Pacific J. Math. 73 (1977), 365–381.
- [6] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, New York-Heidelberg-Berlin, 1972.
- G. Lusztig, Some examples of square integrable representations of semisimple p-adic groups, Tran. Am. Math. Soc. 277 (1983), 623–653.
- [8] G. Savin, Dual pair $G_{\mathcal{J}} \times PGL_2$; $G_{\mathcal{J}}$ is the automorphism group of the Jordan algebra \mathcal{J} , Invent. Math. **118** (1994), 141–160.
- [9] J.-P. Serre, Lie Algebras and Lie Groups, Benjamin, New York, 1965.
- [10] J.-P. Serre, Linear Representations of Finite Groups, Springer, New York-Heidelberg-Berlin, 1977.
- [11] J.-L Waldspurger, Homogeneite de certaines distributions sur les groupes p-adiques, preprint.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UT 84112 *E-mail address:* savin@math.utah.edu