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Abstract. Let F be a p-adic field. Let G be a split simple simply connected group over F of

type Dn, (n ≥ 4), or En, (n = 6, 7, 8). Let K be a hyperspecial maximal compact subgroup

of G. In this article we describe K-types of the minimal representation of G.

1. Minimal representation

It will be convinient for us to think of G as the group of F -points of a Chevalley group
G. Let R be the ring of integers of F . Then K is simply the group of R-points of G. Let
̟ be a uniformizing element of R and R/̟R ∼= Fq the residue field of F .

Let K1 be the first principal congruence subgroup. Then K/K1
∼= G is the finite group

of Fq -points of G. Let I, K1 ⊂ I ⊂ K be an Iwahori subgroup of G. Then I/K1
∼= B , a

Borel subgroup of G . Let H be the Hecke algebra of I-biinvariant compactly supported
functions on G. The space of I-fixed vectors of a smooth representaton of G is naturally
an H-module. It is a well known result of Borel [1] that this correspondence defines an
equivalence between the category of representations of G generated by its I-fixed vectors
and the category of representations of H.

The algebra H can be described as follows. Let ∆ = {α1, . . . αn} be a set of simple
roots. Let −α0 be the maximal root and let ∆̄ = ∆ ∪ {α0}. Let <,> be a Killing form
normalized so that < αi, αi >= 2 for all i. Then H is generated by Ti, i = 0, . . . n satisfying
the following relations:

TiTj = TjTi if < αi, αj >= 0;

TiTjTi = TjTiTj if < αi, αj >= −1;

and (Ti − q)(Ti + 1) = 0.

Define an irreducible H-module E by (see [7])

E = ⊕n
i=0C ei

with the action of H given by

Tiej =











−ej if αi = αj ;

qej + q
1

2 ei if < αi, αj >= −1;

qej if < αi, αj >= 0.
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Definition 1.1. The minimal representation is the unique irreducible representation Vmin

such that the space of I-fixed vectors in Vmin is isomorphic to E, as an H-module.

Repeating previous constructions with ∆ (instead of ∆̄) gives H , the Hecke algebra ofB -biinvariant functions on G and an H -module E which corresponds to Vmin , the rep-
resentation of G with the minimal dimension (see [3]). It is interesting to note that by
setting q = 1, H becomes the group algebra of the Weyl group of G and E its reflection
representation.

Let h1, . . . , hn and xα, α ∈ Φ (Φ is the root system) be a Chevalley basis of g as in [6].
Let gZ be Z-span of the Chevalley basis of g. Letgi = gZ⊗Z̟iR.

Let vF be an evaluation on F normalized so that vF (̟) = 1. If vF (p) < p − 1 then
the exponential map is well defined on g1, and it preserves Haar measures. The groups
Ki = exp(gi), i = 1, 2 . . . are the principal congruence subgroups. If vF (p) < 1/3(p − 1)
then the multiplication in K1 can be defined using the Campbell-Hausdorff formula [9],
LG 5.19.

The Killing form <,>, normalized by < hi, hi >= 2 for all i, is unimodular on g0 if p
is prime to the determinant of the Cartan matrix (which is 4, 3, 2 and 1 for Dn, E6, E7

and E8 respectively). Note that vF (p) < 1/3(p − 1) implies that p 6= 2, 3, hence we can
assume that the Killing form is unimodular on g0.

Let fi be the characteristic function of gi. Let ψ be a non-trivial additive character
of F with conductor R. Let f be a locally constant compactly supported function on g.
Define the Fourier transform f̂ of f by

f̂(x) =

∫g f(y)ψ(< x, y >)dy

where the Haar measure dy is normalized so that

f̂i = |̟|idim gf−i.

Let (π, V ) be an irreducible representation of G. It defines a distribution Θπ as follows.
Let f be a locally constant function supported in g1. Then

Θπ(f) = tr

∫g π(expx)f(x)dx.

A result of Howe and Harish-Chandra [4] says that there is a positive integer nV and
numbers cO such that

Θπ(f) =
∑

O

cO

∫

f̂µO

for every locally constant function f supported in gnV
. Here the sum is taken over nilpotent

orbits and µO is a G-invariant measure on O constructed as follows. Let x ∈ O and let

Bx(y, z) =< x, [y, z] >

be a bilinear form on g. It induces a non-degenerate symplectic form on TO,x, the tangent
space of O at x. Then µO(x) = | ∧d Bx| (we shall see on the example of the minimal orbit
how this works).
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Remark 1.2. One expects that nV = 1 for representations generated by its I-fixed vectors.

Indeed, Waldspurger has shown this to be true for classical groups [11].

Let D = maxcO 6=0
1
2 dimO. It follows from the character expansion (see [8]) that the

dimension of the space of Ki-fixed vectors in V grows as qDi.
The minimal non-trivial nilpotent orbit Omin is the orbit of x−α0

. Let Θmin be the
character of Vmin. Theorem 2.1 in [8] says that

Θmin(f) =

∫

f̂µOmin
+ c

∫

f̂µ0.

Hence the growth of dimV Ki

min is the slowest possible, justifying the name “minimal”.

2. K-types

The main result is the following.

Proposition 2.1. Assume that vF (p) < 1/3(p− 1) and nVmin
= 1. Then

Vmin|K = ⊕∞
i=0Vi

where Vi are irreducible representations of K such that V
Ki−1

min ⊕Vi = V Ki

min. Here K0 = K,

Ki, i ≥ 1, are principal congruence subgroups and V Ki

min is the space of Ki-fixed vectors.

Furthermore V0 = C (the trivial representation of K) and V1 = Vmin , the minimal repre-

sentation of G , pulled back to K. We also describe Vi for i > 1 explicitely.

Proof. We first describe K-types contained in V K1

min. Let B be a Borel subgroup of G. Since

G = BK and Vmin ⊂ indG
B χ for some unramified character χ, it follows that

V K1

min ⊂ C(B \G )

and
V I

min ⊂ C(B \G /B ).

Hence the K-types contained in V K1

min are obtained by restricting the H-module E to H .
Since E|H = C ⊕ E the claim follows.

To continue we need to describe Omin. Write α0 = m1α1 + . . . + mnαn. Let h0 =
m1h1 + . . .+mnhn. Then (xα0

, h0, x−α0
) is an sl(2)-triple. Letg(i) = {x ∈ g | [h0, x] = ix}.

Then g = ⊕−2≤i≤2g(i). Assume that α1 is the unique simple root such that < α0, α1 >6= 0.
Then p = ⊕i≥0g(i) is the maximal parabolic subalgebra corresponding to α1 (see the
diagrams on the end of this section). The unipotent radical of p is g(1) ⊕ g(2). It is a
Heisenberg Lie algebra with center g(2), spanned by x−α0

. Lets = [g(0), g(0)]⊕ g(1) ⊕ g(2).

It is the centralizer of x−α0
. Let S be the centralizer of x−α0

in G and let S ⊂ G the
corresponding finite group.
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Lemma 2.2. Let g = #G /S and d = 1/2 dimOmin (d=2n-3,11,17 and 29, respectively).
If i > 2 then

dimV Ki

min − dimV
Ki−1

min = gqd(i−2).

Proof. Let χi(x) = |̟|−idim gf0(̟−ix). Then Pi = π(χi) is a projection on V Ki

min. Since

dimV Ki

min = tr(Pi) and χ̂i(x) = f−i(x), it follows that

dimV Ki

min − dimV
Ki−1

min =

∫

(f−i − f−i+1)µOmin
.

Write Omin = xG
−α0

. Since G = KB, it follows that Omin = ∪̟ixK
−α0

. Hence

Omin ∩ (g−i \ g−i+1) = ̟−ixK
−α0

.

Let Oi = ̟−ixK
−α0

. Then Oi breaks into g K1-orbits

Oi = ∪g
j=1Oi,j .

Assume that Oi,1 is the K1-orbit of x−α0
. Hence

dimV Ki

min − dimV
Ki−1

min = g

∫

Oi,1

µOmin
.

To compute the volume of Oi,1 we need to describe precisely the normalization of µOmin

at ̟−ix−α0
. Let s′ be the span of h0, g(−2) and g(−1). Then g = s⊕ s′ and the tanget

space of Omin at x−α0
can naturally be identified with s′. Note that g(−1) ⊕ g(−2) is a

Heisenberg Lie algebra with center g(−2), spanned by xα0
. Let {e1, . . . ed−1, f1, . . . fd−1}

be the part of the Chevalley basis contained in g(−1) labeled so that [ej , fk] = δj,kxα0

(δj,k = 1 if j = k and 0 otherwise). We complete it to a basis of s′ by adding ed = xα0

and fd = 1
2h0.

Let s′Z[1/2] be Z[1/2]-span of {e1, . . . ed, f1, . . . fd}. Let gZ[1/2] and sZ[1/2] be Z[1/2]-span

of the Chevalley basis and of its part contained in s respectively. Since m1 = 2, and 2 is
invertible in Z[1/2], gZ[1/2] = sZ[1/2] ⊕ s′Z[1/2].

Let s′i = sZ[1/2] ⊗Z[1/2]̟
iR.

and let S′
i = exp s′i, i = 1, 2 . . . . Define analogously si and Si. Also, since p is oddgi = gZ⊗Z̟iR = gZ[1/2] ⊗Z[1/2]̟

iR.

Hence gi = si ⊕ s′i, Ki = SiS
′
i, i = 1, 2 . . . and we have a sequence of measure-preserving

bijections:
O1,j

∼= S′
1
∼= s′1.
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Since s′1 is the R-span of ̟ej and ̟fj j = 1, . . . d, and

|B̟−ix−α0

(̟ej , ̟fk)| = δj,kq
(i−2)

it follows that the volume of Oi,1 is qd(i−2). The lemma is proved.

Recall [5], Lemma 1.2, that irreducible representations of K1/Ki are parametrized by
K1-orbits in g−i/g−1. To describe the corespondence, recall that the Fourier transform
defines an isomorphism between the spaces of functions C(g1/gi) and C(g−i/g−1). Let
O be a K1-orbit in g−i/g−1 and EO the corresponding irreducible representation of K1.
Then

(1) the character of EO, pulled back to g1 via log, is the Fourier transform of the
characteristic function of O divided by #O1/2.

(2) dimEO = #O1/2; this is a consequence of (1).

Let Oi,j ⊂ Oi, (i ≥ 2) be a K1-orbit. Then O′
i,j = Oi,j + g−1 is a K1-orbit in g−i/g−1.

Since O′
i,j are K-conjugated and #Oi,1 = #K1/S1Ki−1 = q2d(i−2), it follows that

(1) dimEO′

i,j
= qd(i−2).

(2) EOi,j
is a summand of Vmin.

From this and Lemma 2.2 we conclude that

V Ki

min = V
Ki−1

min ⊕ (⊕g
j=1EO′

i,j
).

Let S0 = S ∩K. Obviously, S0 preserves EO′

i,1
⊂ V Ki

min. Let

Vi = indK
S0K1

EO′

i,1
.

Since
Vi|K1

= ⊕g
j=1EO′

i,j

it follows from the Mackey’s irreducibility criterion ([10] Prop. 23) that Vi is irreducible.
Also, by the Frobenius reciprocity Vi ⊂ Vmin. The proposition is proved.

We proceed to write down Vi, the irreducible representations of K/Ki. Let ψi be a
character of g defined by ψi(x) = ψ(< x,̟−ix−α0

>). If j ≤ i ≤ 2j then Kj/Ki
∼= gj/gi

(this follows from the Campbell-Hausdorff formula). Hence ψi defines a character ofKj/Ki.
We first describe EO′

i,1
. We have two cases.

(1) i is even. Write i = 2j. Then ψi defines a character of Kj/Ki. Note that ψi|Sj
= 1.

Therefore, since S1 centralizes ψi, we can extend ψi to S1Kj by ψi|S1
= 1. Then

EO′

i,1
= indK1

S1Kj
ψi.

(2) i is odd. Write i = 2j + 1. Then ψi defines a character of Kj+1/Ki. As in the
even case extend ψi to S1Kj+1. Then S1Kj/ kerψi is a Heisenberg group. Let ρi

be the corresponding irreducible representation such that the center acts via the
character ψi. Then

EO′

i,1
= indK1

S1Kj
ρi.
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We know apriori that EO′

i,1
extends to S0. Since [S,S] = S the extension is unique in

view of the following lemma (take A = S0K1 and B = K1).

Lemma 2.3. Let A be a group and B a normal subgroup. Let C = A/B. Assume that

[C,C] = C. Let ρ be an irreducible finite-dimensional representation of B. If ρ extends to

A then it extends uniquely.

Proof. Let ρ1 and ρ2 be two extensions. By the Schur Lemma, for any a ∈ A there
exists a scalar χ(a) such that ρ1(a) = χ(a)ρ2(a). Obviously, χ is a character of C. Since
[C,C] = C, it must be trivial. The lemma is proved.

We now give precise definitions of Vi, i = 2, 3 . . . . Again we have two cases.

(1) i is even. Write i = 2j. Then ψi defines a character of Kj/Ki. Extend ψi to S0Kj

by ψi|S0
= 1. Then

Vi = indK
S0Kj

ψi.

(2) i is odd. Write i = 2j + 1. Then ψi defines a character of Kj+1/Ki. Extend ψi

to S1Kj+1 by ψi|S1
= 1. Then S1Kj/ kerψi is a Heisenberg group. Let ρi be the

corresponding irreducible representation such that the center acts via the character
ψi. It extends to S0 via the usual Weil representation argument. Then

Vi = indK
S0Kj

ρi.

We conclude this paper by giving some explicit data. Recall that the extended Dynkin
diagram for G is a graph obtained from the set of roots ∆̄ by connecting αi and αj if and
only if < αi, αj >= −1:

The black vertex in each diagram corresponds to the root α0.
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Recall that α1 is the unique simple root such that < α0, α1 >= −1. Since S is a semi-
direct product of a Heisenberg group of order q2d−1, and a semi-simple, simply connected
group with the Dynkin diagram obtained by removing α1 from the Dynkin diagram of G ,
one can compute g = #G /S using formulas in [2], page 75. The answers are:

Dn
(qn − 1)(q2n−4 − 1)(q2n−2 − 1)

(q2 − 1)(qn−2 − 1)

E6
(q8 − 1)(q9 − 1)(q12 − 1)

(q3 − 1)(q4 − 1)

E7
(q12 − 1)(q14 − 1)(q18 − 1)

(q4 − 1)(q6 − 1)

E8
(q20 − 1)(q24 − 1)(q30 − 1)

(q6 − 1)(q10 − 1)

Finally, we note that
dimVmin = gq/(qd+1 − 1)

d = 1/2 dimOmin, and it is 2n− 3, 11, 17 and 29 respectively.
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