MATH 5210, HW III
SOLUTIONS

1) Let (Y,d) be a complete metric space and X a dense subset of Y. The set X is a also a
metric space with respect to the same metric. Let X* be the completion of X. Recall that X*
is the set of equivalence classes of Cauchy sequences (x,) in X. Since Y is complete, lim,, z,,
exists in Y. Equivalent Cauchy sequences have the same limit, hence f((z,)) = lim, x, is a
well defined map f : X* — Y. Show that f is an isomorphism of metric spaces.

Solution. Here is an example before the proof: Y = [0,1] and X = (0, 1]. Then (x,) = (1/n)
is Cauchy sequence in (0, 1] with the limit 0, thus f((1/n)) = 0. In particular this exercise
proves that the completion of (0,1] is [0, 1].

We show that f is surjective. Let z € Y. Since X is dense in Y there exists a sequence
(zp) in X converging to . Thus f((z,)) = x and f is surjective. To show that f is an
isomorphism of X* and Y it remains to prove that f preserves the distance. (Observe that
any distance preserving function is one to one.) Recall that the distance d* between two
Cauchy sequences (xy,) and (yy,) is

d*((zn), (yn)) = lim d(zn, yn)-

Let z = f((zy)) = lim, x, € Y and y = f(yn)) = lim, y, € Y. Since distance is a continuous
function,

d(l’, y) = lim d($m yn)
This shows that d*((xy), (yn)) = d(x,y) as desired.

2) Let V = C([0, 1]) be the space of continuous functions on [0, 1]. Prove that the set of piece-
wise linear function (i.e. whose graphs are obtained by connecting the dots in the plane) is
dense in V', with respect to the sup norm, that is, for every f € V and every € > 0, there
exists a piece-wise linear function g such that |f(x) — g(z)| < e for all € [0,1]. Hint: use
uniform continuity of f.

Solution. Since f is uniformly continuous, for every € > 0 there exist a natural number n
such that |f(z) — f(y)| < e if |x —y| < 1/n. Let g(x) be a piece-wise linear function whose
graph is the union of n segments connecting the points

(0, £(0)), (1/n, f(1/n)), ... (L, f(1)).
On each segment [(i — 1)/n,i/n|, i = 1,...,n, it is easy to see that |f(z) — g(x)| < € hence
the same holds on [0, 1].

3) Fix K(z,y), a continuous function on [0,1]%. Let f(z) be a continuous function on [0, 1].
Let
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Prove that g(z) is a continuous function on [0, 1]. Hint: K is uniformly continuous, why? Let
V = C([0,1]) be the space of continuous functions on [0,1]. Consider V as a normed space
with the sup norm. Let T': V — V., T(f) = g for every f € V, as above. Prove that T is
bounded.

Solution. Let ||f|| denote the sup norm of f. To prove that g is continuous, consider the
difference

1
o(z) — g(z) = / (K(2,y) — K (=) () dy.

So the goal is to show that, for every € > 0 there exists 6 > 0 such that |g(x) — g(2)| < € if
|x — z| < §. Since K is uniformly continuous, there exists 6 > 0 such that

K (z,y) = K(z, )| < €/[[f]l;

for all y, if |x — z| < §. Using this bound in the above integral and |f(y)| < ||f|| one shows
that |g(z) — g(z)| < e. Thus T is a well defined linear operator T': V' — V. To prove that T
is bounded we shall use that K is a bounded function, since it is a continuous function on a
compact set. Thus there exists C' > 0 such |K(x,y)| < C for all (z,y) € [0,1]?. Then

1
o) < [ - 11fl dy = ClfIL
Hence ||g|| = sup,¢joq17 l9(@)] < C||f]], so T is bounded.

4) Let U be a dense subspace of a normed space V. Let g : U — R be a bounded linear
functional i.e. there exists C > 0 such that

lg(z)| < Cllx|]

for all x € U. Then g can be extended (uniquely) to a linear functional f : V' — R satisfying
the same bound. Hint: any x € V is a limit of a Cauchy sequence (z,) in U.

Solution. Let z € V. Let (z,) be a Cauchy sequence in U such that = = lim,, z,,. The idea is
to define f(x) = lim,, g(x,), to that end, we need to prove that (g(x,)) is a Cauchy sequence
of real numbers. This is not automatic from continuity of g. For example, the continuous
function h : (0,1] = R, g(z) = 1/x sends the Cauchy sequence (1/n) to the sequenece (n) of
natural numbers, which is not Cauchy. And h does not extend to a continuous function on
[0, 1], the completion of (0, 1]. However, since g is linear and bounded,

l9(zn) — g(zm)| = |g(xn — 2m)| < Cl|zn — Tm]|

so (g(xy)) is Cauchy since () is. Thus we have extended g to f on the whole of V. We
need to show that f is linear. If z = limx,, and y = lim, y,,, then = + y = lim,(z, + yn).
Hence

f(@) + f(y) = limg(zs) +lim g(yn) = lim g(zn +yn) = f(z +y)

from the usual properties of limits. A similar argument proves that f(Az) = Af(z) for any
A € Rand z € V. It remains to prove the bound:

|£(@)| = [t g(a,)] = lim |g ()] < lim Clla]| = ]|
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5) Recall the normed space £2(N), the set of all infinite tuples of real numbers z = (z1, x2, . ..)
such that ||z||? = 3252, 22 < oo, with the norm ||z|| so defined. Let S C £2(N) be the subset
of all z with x; € Q and almost all z; = 0. This is a countable set. Prove that S is dense.

Solution. Let € > 0. There exists n such that Y., 2? < €2. Then ||z — z|| < € where

i>n
z=(x1,...,2,,0,0,...).

Let y = (y1,---,Yn,0,0,...) with y; rational. Pick y; close to x; such that ||z —y|| < e. Hence
||z — y|| < 2€¢ by the triangular inequality.

6) Let V be a normed space, and A, B C V two open sets. Prove that
A+B={z+y|zeAyec B}

is open.

Solution. The easiest way to prove this is as follows. Observe that, for every v € V, the
translation map ¢, : V. — V', t,(z) = x+v for all z € V, is an isometry of V. Thus a translate
of a ball is a ball, of an open set is an open set etc. In particular, for every b € B, A+ b is
an open set. Since union of open sets is open,

is open. Observe that we never used that B is open in this argument. Thus the conclusion
is valid if only one of the two sets is open.

7) Perhaps you have seen the formula

5 = L
=n 6
Where does this come from? The purpose of this exercise is to derive this formula as a special
case of the Parseval’s identity. Let X = (—=1/2,1/2]. Let f(z) = = on X. Compute ||f]||?,
the square of L?(X) norm of f. Then Fourier expand f and then compute ||f||* using the
Parseval’s identity. (Be careful, the norm of sin(27nz) is not 1). Deduce the identity.

Solution. Parseval’s idenity: If ui,uo,... is an orthogonal basis of a Hilbert space V', then
for every v € V,

o (v, un)?
lolf? = S S
,; [|un[?
(Note that this must be right, since it is invariant under rescaling of u,,, and for (u,,u,) =1
one gets the simple form of the identity.) Mathematics is the art of substitution, and this
is what we do here, with V = L?(X), v is the function f(z) = z and u,, are trigonometric

functions. Since x is an odd function we only need u,, = sin(27nz). We computed in a lecture
that ||u,|[* = 3. Next, using integration by parts,

1/2 )
(z,un) = / xsin(2mnx) de = —
—1/2 2mn
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1/2 1
Haz|]2:/ 22 de = —.
~1/2

On the other hand,

Substitute to finish.

8) Let M > 0. Let ¢, be a sequence of real numbers such that |c,| < M/n? for all n. Then
the series

ft) = Z cp sin(2mnt)
n=1

converges uniformly, for all £ € R. Hence f is a periodic and continuous function f. Prove
that the series converges to f in L?((—1/2,1/2]) that is

tim ] — full = 0

where f,, is the sequence of partial sums, and ||| the L?-norm. Hint: use Lebesgue dominated
convergence theorem.
Solution. In fact this is much easier than what I suggested. The series > 7, n—f‘é is convergent,

hence given € > 0 there exists IV such that > 2 % < €. Since [sin(27nt)| < 1, it follows
that

() = In(t)] <€

for all ¢t. Hence

1/2
V—MW—/QV—MP<J

9) Let V' be a Hilbert space. Let W C V be a closed subspace. Prove that W contains a
dense countable set, so it is also a Hilbert space. Hint: consider the projection P : V — W.

Solution. Since V is a Hilbert space it contains a dense countable set S. We claim that
P(S) C W is a dense set in W. Let w € W. Since S is dense, there exists a sequence (vy,) in
S converging to w. Since P is continuous,

P(w) = P(liﬁn Up) = liirl P(vy,).

But P(w) = w, hence w is the limit of the sequence (P(v,)). Hence P(S) is dense in W.



