
MATH 5210, HW III

SOLUTIONS

1) Let (Y, d) be a complete metric space and X a dense subset of Y . The set X is a also a
metric space with respect to the same metric. Let X∗ be the completion of X. Recall that X∗

is the set of equivalence classes of Cauchy sequences (xn) in X. Since Y is complete, limn xn
exists in Y . Equivalent Cauchy sequences have the same limit, hence f((xn)) = limn xn is a
well defined map f : X∗ → Y . Show that f is an isomorphism of metric spaces.

Solution. Here is an example before the proof: Y = [0, 1] and X = (0, 1]. Then (xn) = (1/n)
is Cauchy sequence in (0, 1] with the limit 0, thus f((1/n)) = 0. In particular this exercise
proves that the completion of (0, 1] is [0, 1].

We show that f is surjective. Let x ∈ Y . Since X is dense in Y there exists a sequence
(xn) in X converging to x. Thus f((xn)) = x and f is surjective. To show that f is an
isomorphism of X∗ and Y it remains to prove that f preserves the distance. (Observe that
any distance preserving function is one to one.) Recall that the distance d∗ between two
Cauchy sequences (xn) and (yn) is

d∗((xn), (yn)) = lim
n
d(xn, yn).

Let x = f((xn)) = limn xn ∈ Y and y = f(yn)) = limn yn ∈ Y . Since distance is a continuous
function,

d(x, y) = lim
n
d(xn, yn).

This shows that d∗((xn), (yn)) = d(x, y) as desired.

2) Let V = C([0, 1]) be the space of continuous functions on [0, 1]. Prove that the set of piece-
wise linear function (i.e. whose graphs are obtained by connecting the dots in the plane) is
dense in V , with respect to the sup norm, that is, for every f ∈ V and every ε > 0, there
exists a piece-wise linear function g such that |f(x) − g(x)| < ε for all x ∈ [0, 1]. Hint: use
uniform continuity of f .

Solution. Since f is uniformly continuous, for every ε > 0 there exist a natural number n
such that |f(x) − f(y)| < ε if |x − y| < 1/n. Let g(x) be a piece-wise linear function whose
graph is the union of n segments connecting the points

(0, f(0)), (1/n, f(1/n)), . . . (1, f(1)).

On each segment [(i − 1)/n, i/n], i = 1, . . . , n, it is easy to see that |f(x) − g(x)| < ε hence
the same holds on [0, 1].

3) Fix K(x, y), a continuous function on [0, 1]2. Let f(x) be a continuous function on [0, 1].
Let

g(x) =

∫ 1

0
K(x, y)f(y) dy.
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Prove that g(x) is a continuous function on [0, 1]. Hint: K is uniformly continuous, why? Let
V = C([0, 1]) be the space of continuous functions on [0, 1]. Consider V as a normed space
with the sup norm. Let T : V → V , T (f) = g for every f ∈ V , as above. Prove that T is
bounded.

Solution. Let ||f || denote the sup norm of f . To prove that g is continuous, consider the
difference

g(x)− g(z) =

∫ 1

0
(K(x, y)−K(z, y))f(y) dy.

So the goal is to show that, for every ε > 0 there exists δ > 0 such that |g(x) − g(z)| < ε if
|x− z| < δ. Since K is uniformly continuous, there exists δ > 0 such that

|K(x, y)−K(z, y)| < ε/||f ||,

for all y, if |x − z| < δ. Using this bound in the above integral and |f(y)| ≤ ||f || one shows
that |g(x)− g(z)| < ε. Thus T is a well defined linear operator T : V → V . To prove that T
is bounded we shall use that K is a bounded function, since it is a continuous function on a
compact set. Thus there exists C ≥ 0 such |K(x, y)| ≤ C for all (x, y) ∈ [0, 1]2. Then

|g(x)| ≤
∫ 1

0
C · ||f || dy = C||f ||.

Hence ||g|| = supx∈[0,1] |g(x)| ≤ C||f ||, so T is bounded.

4) Let U be a dense subspace of a normed space V . Let g : U → R be a bounded linear
functional i.e. there exists C ≥ 0 such that

|g(x)| ≤ C||x||

for all x ∈ U . Then g can be extended (uniquely) to a linear functional f : V → R satisfying
the same bound. Hint: any x ∈ V is a limit of a Cauchy sequence (xn) in U .

Solution. Let x ∈ V . Let (xn) be a Cauchy sequence in U such that x = limn xn. The idea is
to define f(x) = limn g(xn), to that end, we need to prove that (g(xn)) is a Cauchy sequence
of real numbers. This is not automatic from continuity of g. For example, the continuous
function h : (0, 1]→ R, g(x) = 1/x sends the Cauchy sequence (1/n) to the sequenece (n) of
natural numbers, which is not Cauchy. And h does not extend to a continuous function on
[0, 1], the completion of (0, 1]. However, since g is linear and bounded,

|g(xn)− g(xm)| = |g(xn − xm)| < C||xn − xm||

so (g(xn)) is Cauchy since (xn) is. Thus we have extended g to f on the whole of V . We
need to show that f is linear. If x = limxn and y = limn yn, then x + y = limn(xn + yn).
Hence

f(x) + f(y) = lim
n
g(xn) + lim

n
g(yn) = lim

n
g(xn + yn) = f(x+ y)

from the usual properties of limits. A similar argument proves that f(λx) = λf(x) for any
λ ∈ R and x ∈ V . It remains to prove the bound:

|f(x)| = | lim
n
g(xn)| = lim

n
|g(xn)| ≤ lim

n
C||xn|| = C||x||.
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5) Recall the normed space `2(N), the set of all infinite tuples of real numbers x = (x1, x2, . . .)
such that ||x||2 =

∑∞
i=1 x

2
i <∞, with the norm ||x|| so defined. Let S ⊂ `2(N) be the subset

of all x with xi ∈ Q and almost all xi = 0. This is a countable set. Prove that S is dense.

Solution. Let ε > 0. There exists n such that
∑

i>n x
2
i < ε2. Then ||x− z|| < ε where

z = (x1, . . . , xn, 0, 0, . . .).

Let y = (y1, . . . , yn, 0, 0, . . .) with yi rational. Pick yi close to xi such that ||z−y|| < ε. Hence
||x− y|| < 2ε by the triangular inequality.

6) Let V be a normed space, and A,B ⊂ V two open sets. Prove that

A+B = {x+ y | x ∈ A, y ∈ B}

is open.

Solution. The easiest way to prove this is as follows. Observe that, for every v ∈ V , the
translation map tv : V → V , tv(x) = x+v for all x ∈ V , is an isometry of V . Thus a translate
of a ball is a ball, of an open set is an open set etc. In particular, for every b ∈ B, A + b is
an open set. Since union of open sets is open,

A+B = ∪b∈BA+ b

is open. Observe that we never used that B is open in this argument. Thus the conclusion
is valid if only one of the two sets is open.

7) Perhaps you have seen the formula

∞∑
n=1

1

n2
=
π2

6
.

Where does this come from? The purpose of this exercise is to derive this formula as a special
case of the Parseval’s identity. Let X = (−1/2, 1/2]. Let f(x) = x on X. Compute ||f ||2,
the square of L2(X) norm of f . Then Fourier expand f and then compute ||f ||2 using the
Parseval’s identity. (Be careful, the norm of sin(2πnx) is not 1). Deduce the identity.

Solution. Parseval’s idenity: If u1, u2, . . . is an orthogonal basis of a Hilbert space V , then
for every v ∈ V ,

||v||2 =
∞∑
n=1

(v, un)2

||un||2
.

(Note that this must be right, since it is invariant under rescaling of un, and for (un, un) = 1
one gets the simple form of the identity.) Mathematics is the art of substitution, and this
is what we do here, with V = L2(X), v is the function f(x) = x and un are trigonometric
functions. Since x is an odd function we only need un = sin(2πnx). We computed in a lecture
that ||un||2 = 1

2 . Next, using integration by parts,

(x, un) =

∫ 1/2

−1/2
x sin(2πnx) dx =

1

2πn
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On the other hand,

||x||2 =

∫ 1/2

−1/2
x2 dx =

1

12
.

Substitute to finish.

8) Let M ≥ 0. Let cn be a sequence of real numbers such that |cn| ≤ M/n2 for all n. Then
the series

f(t) =
∞∑
n=1

cn sin(2πnt)

converges uniformly, for all t ∈ R. Hence f is a periodic and continuous function f . Prove
that the series converges to f in L2((−1/2, 1/2]) that is

lim
n
||f − fn|| = 0

where fn is the sequence of partial sums, and ||·|| the L2-norm. Hint: use Lebesgue dominated
convergence theorem.

Solution. In fact this is much easier than what I suggested. The series
∑∞

n=1
M
n2 is convergent,

hence given ε > 0 there exists N such that
∑∞

n>N
M
n2 < ε. Since | sin(2πnt)| ≤ 1, it follows

that
|f(t)− fN (t)| < ε

for all t. Hence

||f − fN ||2 =

∫ 1/2

−1/2
|f − fN |2 < ε2.

9) Let V be a Hilbert space. Let W ⊂ V be a closed subspace. Prove that W contains a
dense countable set, so it is also a Hilbert space. Hint: consider the projection P : V →W .

Solution. Since V is a Hilbert space it contains a dense countable set S. We claim that
P (S) ⊂W is a dense set in W . Let w ∈W . Since S is dense, there exists a sequence (vn) in
S converging to w. Since P is continuous,

P (w) = P (lim
n
vn) = lim

n
P (vn).

But P (w) = w, hence w is the limit of the sequence (P (vn)). Hence P (S) is dense in W .


