HW IV FOR MATH 6210

- 1) Let H be a Hilbert space and $P: H \to H$ a continuous operator such that $P^2 = P$ and $P^* = P$. Prove that the image of P is closed and that H is isomorphic to the direct sum of the kernel of P and the image of P.
- 2) Let H be a Hilbert space and e_1, e_2, \ldots and an orthonormal basis. Prove that 0 is a weak limit of the sequence e_n . Prove that the unit ball $B, ||x|| \leq 1$, is closed in the weak topology. Prove that the unit sphere S, ||x|| = 1, is dense in B in the weak topology.
- 3) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be two σ -finite measure spaces. If functions $e_1, e_2 \ldots$ are a Hilbert space basis of $L^2(X)$ and functions f_1, f_2, \ldots are a Hilbert space basis of $L^2(Y)$, prove that $e_i \cdot f_j$ is a basis of $L^2(X \times Y)$. (Here $e_i \cdot f_j$ is a function on $X \times Y$ such that its value at $(x, y) \in X \times Y$ is $e_i(x) \cdot f_j(y)$.)
- 4) Let X = [0, 1] with the usual measure. Let $p \ge 1$. For n = 1, 2, ..., let $f_n = n^{1/p} \cdot \chi_{[0, 1/n]}$. Prove that the sequence f_n converges weakly to 0 in $L^p([0, 1)]$ if and only if p > 1. (Use that $L^p([0, 1)]^* \cong L^q([0, 1)]$.)
- 5) Let $1 . Then <math>L^p$ is not contained in L^q iff X contains sets of arbitrarily small positive measure, and L^q is not contained in L^p iff X contains sets of arbitrarily large finite measure. This is exercise 5, page 187, see the hints there.
- 6) Exercise 18 on page 191. Follow the hints there to prove the Radon-Nikodym Theorem for a finite measure space (X, \mathcal{M}, μ) , using $L^2(X)^* \cong L^2(X)$ which is a part of the Hilbert space theory. (As usually, for simplicity assume we deal with real valued functions.)