HW III FOR MATH 6210

1) Let V be a normed space and U a closed subspace. For every $x \in V$, let

$$||x+U|| = \inf\{||x+y|| \mid y \in U\}.$$

- (1) Prove that ||x + U|| is a norm on V/U.
- (2) For every $\epsilon > 0$ there exists $x \in V$ such that ||x|| = 1 and $||x + U|| \ge 1 \epsilon$.
- (3) If V is complete, so is V/U.
- (4) Let $P: V \to V/U$ be P(x) = x + U. Prove that P has norm 1.
- 2) Let $T: V \to W$ be a bounded map. Let U be the kernel of T.
 - (1) Prove that U is closed.
 - (2) Prove that ||S|| = ||T|| where $S: V/U \to W$ such that S(x+U) = T(x), for all $x \in V$.
- 3) Let $T: V \to W$ be a map between two normed spaces, where W is finite dimensional. Let U be the kernel of T. Prove that T is bounded if U is closed.
- 4) Let (X, \mathcal{M}, μ) be a measure space, and $E \in \mathcal{M}$ of finite and positive measure. Let $T: L^1(X) \to \mathbb{R}$ be defined by $T(f) = \int_E f$. Prove that T is a bounded functional, and compute its norm.
- 5) Let $T: V \to U$ be a bounded map between two normed spaces. Let $T^*: U^* \to V^*$ be defined by $T^*(f) = f \circ T$ for all $f \in U^*$ (the adjoint map).
 - (1) Prove that $||T^*|| = ||T||$.
 - (2) If we identify V and U with their canonical images in V^{**} and U^{**} prove that the restriction of T^{**} to V coincides with T.
- 6) Let V = C([0,1]) be the space of continuous functions equipped with the sup norm. Let $U = C^1([0,1])$ be the subspace of continuously differentiable functions. Let $T: U \to V$ be defined by T(f) = f'. Prove that the graph of T is closed, and that T is not bounded.
- 7) Let $T: V \to U$ be a linear map between two Banach spaces such that if f is a continuous functional on U, then $f \circ T$ is a continuous functional on V. Prove that T is bounded. Hint: prove that the graph of T is closed, to that end use Theorem 5.8 c on page 159.