HW I FOR MATH 6210 DUE MONDAY SEPTEMBER 04

1) Let $X = \mathbb{Z}$, the ring of integers, and fix a prime p. For every $x \in \mathbb{Z}$ and integer $n \geq 0$, let $B_{x,n} = \{y \in \mathbb{Z} \mid y \equiv x \pmod{p^n}\}.$

Let $\mathcal{E} \subset \mathcal{P}(X)$ consist of all disjoint unions of $B_{x,n}$, including the empty set. Prove that \mathcal{E} is an algebra, and that $\mu(B_{x,n}) = 1/p^n$ defines a finitely additive measure on it.

- 2) Let $\mathcal{A} \subseteq \mathcal{P}(X)$ and $\mathcal{B} \subseteq \mathcal{P}(Y)$ be two algebras. Let $\mathcal{C} \subseteq \mathcal{P}(X \times Y)$ consist of all disjoint unions of products $A \times B$, where $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Prove that \mathcal{C} is an algebra.
- 3) Let \mathcal{A} be an algebra of sets, with a finitely additive measure μ . For any two $A, B \in \mathcal{A}$ define $d(A, B) = \mu(A\Delta B)$. Prove that d satisfies the triangle inequality i.e.

$$d(A,C) \le d(A,B) + d(B,C)$$

for any three sets in A.

- 4) Let $X = [0,1) \times [0,1)$, and μ^* the Lebesgue outer measure on X. Let $A \subseteq X$. If for every $\epsilon > 0$ there exists an elementary set E such that $\mu^*(A\Delta E) < \epsilon$, prove that $\mu^*(A) + \mu^*(A^c) = 1$.
- 5) Let μ^* be an outer measure on X. Let $A \subseteq X$ be a measurable set (as defined on page 29 in Folland) $\mu^*(E \cap A) + \mu^*(E \cap A^c) = \mu^*(E)$ for all sets E in X. If B is a subset of A^c prove that $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$.
- 6) Let \mathcal{A} be a σ -algebra and μ a measure on \mathcal{A} . Let $A_1 \supseteq A_2 \supseteq \ldots$ be a sequence of sets in \mathcal{A} such that $\mu(A_1)$ is finite. Let $A = \bigcap_{i=1}^{\infty} A_i$. Prove that $\lim_{i \to \infty} \mu(A_i) = \mu(A)$.
- 7) Let μ be a finite Borel measure on \mathbb{R} . Let $F(x) = \mu(-\infty, x]$. Show that F(x) is continuous at x if and only if $\mu(\{x\}) = 0$.