
MATH 3210-4, HW II, SOLUTIONS

1) A complex number z is called algebraic if there exists integers a0, a1, . . . , an, such that
anz

n + · · ·+ a1z + a0 = 0. Prove that the set of algebraic numbers is countable.

Observe that all rational numbers are algebraic numbers, hence the set of algebraic numbers
is certainly not finite. Let the positive integer |a0|+2|a1|+. . .+(n+1)|an| be called the height
of the polynomial anz

n + · · ·+ a1z + a0. Note that there are only finitely many polynomials
of a fixed height, and there are only finitely many algebraic numbers that are their roots.
The exercise follows since a countable union of finite sets is countable.

2) Prove that the following two (X, d) are metric spaces:

(1) X = R2 and d((x1, x2), (y1, y2)) = max(|x1 − y1|, |x2 − y2|).
(2) X = Z and d(x, x) = 0 or d(x, y) = 1

2n , if x 6= y, where 2n is the largest power of 2
dividing x− y.

Solution: Proofs of the triangle inequality in each case. (1) Want to prove d(x, z) ≤ d(x, y) +
d(y, z) where x = (x1, x2), y = (y1, y2) and z = (z1, z2). Let i be such that d(x, z) = |xi− zi|.
Then

d(x, z) = |xi − zi| ≤ |xi − yi|+ |yi − zi| ≤ d(x, y) + d(y, z).

(2) Write x− y = 2nr and y − z = 2ms where r and s are odd. Then x− z = 2nr + 2ms so
x − z is divisible by 2n or 2m (whichever is smaller). Hence d(x, z) is smaller than 1/2n or
1/2m. In ether case d(x, z) is smaller than

d(x, y) + d(y, z) = 1/2n + 1/2m.

3) Let (X, d) be a metric space. The closed ball centered at x and of radius r > 0 is the set
of y ∈ X such that d(x, y) ≤ r. Prove that the complement of the closed ball is an open set
in X.

Solution: Let z be not in the closed ball. Then d(x, z) = s > r. Let ε = s − r. Claim: The
open ball B(z, ε) is contained in the complement of the closed ball. If not, then there is y in
the intersection, hence d(x, y) ≤ r and d(y, z) < ε. By the triangle inequality,

d(x, z) ≤ d(x, y) + d(y, z) < r + ε = s

a contradiction, since d(x, y) = s.

4) Let (X, d) be a metric space. Recall that the closure of E ⊂ X is Ē ⊇ E obtained by
adding limit points to E. Since Ē is larger than E, it seems possible that Ē has additional
limit points, i.e. the closure does not give a closed set. Prove that

Ē = ∩E⊆F,F̄=FF
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i.e. the intersection is taken over all closed sets F containing E. In particular, Ē is closed,
why?

Solution: Generally, in order to prove identity of two sets, we need to prove inclusions in
both directions.
(1) Ē ⊂ ∩E⊆F,F̄=FF . To prove this inclusion, we need to prove that Ē is contained in any
closed set F containing E. That is, we need to prove that any limit point of E is contained
in F . But any limit point of E is also a limit point of F (since F contains E). Since F is
closed, it contains all its limit points, hence Ē ⊂ F .

(2) Ē ⊃ ∩E⊆F,F̄=FF . Let x /∈ Ē. Then there exists a ball B(x, r) disjoint to Ē. Then

Ex := X \ B(x, r) is a closed set containing Ē and not containing x. It is clear that the
intersection of all such Ex is contained in Ē and this proofs the opposite inclusion. (Why?)

As to the last part, the intersection of any collection of closed sets is closed, hence Ē is closed.

Let X be a metric or, more generally, a topological space. A collection of open sets {Vα}
in X is called a base for X if for any open set V and x ∈ V there exists a Vα in the collection
such that Vα is contained in V and it contains x. In particular, any open set can be written
as a union of a subcollection of {Vα}. For example, if X is a metric space, then the collection
of all open balls is a base for X, by the definition of open sets. Topological spaces with a
countable base are called separable.

5) Assume that a metric space X contains a countable subset X0 such that the closure of X0

is X. Prove that the collection of balls centered at x ∈ X0 and rational radii is a countable
base for X.

Solution: The easy part is that the collection of balls B(x0, r) where x0 ∈ X0 and r rational
is countable. Here is a proof that it is a base. So let V be an open set and x ∈ V . We need to
prove that there is a ball B(x0, r) where x0 ∈ X0 and r rational, containing x and contained
in V . Since V is open, there exists a rational number r such that B(x, r) is contained in V .
If x ∈ X0 we are done. If x is not in X0 we better use that x is a limit point of X0, as there
is nothing else given to us. , there exists x0 ∈ X0 in B(x, r/2), since x is a limit point of X0.
Clearly x is contained in B(x0, r/2) by symmetry of the distance function. By the triangle
inequality (make a drawing) the ball B(x0, r/2) is contained in B(x, r), and hence it is in V .

6) Prove that convex sets in R2 are connected, in the sense of definition 2.45.

Solution: A point of this exercise is understand how proofs are built on previous proofs. Let
E be a convex set. Assume that E = A ∪ B where A and B are two non-empty separating
sets. Let a ∈ A and b ∈ B. Let [a, b] be the straight segment connecting a and b. Since E is
convex the whole segment is contained in E. Hence A∩ [a, b] and B∩ [a, b] are separating sets
for [a, b]. (A limit point of A∩ [a, b] is also a limit point of A, hence it is not contained in B,
since Ā ∩ B = ∅, and therefore not in B ∩ [a, b].) But we proved that the straight segments
are connected.

True, we only proved that the segment [0, 1] on the x-axis is connected, but any closed
segment in R2 can be rotated, translated and rescaled onto [0, 1]. Rotations, translations,
and rescaling by a non-zero number clearly permute open balls, hence open and closed sets,
map separating sets to separating sets etc...


