In order to define multiplication of real numbers, it suffices to do so for positive numbers, and here it is convenient to use cuts of positive rational numbers. Thus a positive real number is defined a non-empty, bounded set \(\alpha \subseteq \mathbb{Q}^+ \) such that

- If \(r \in \alpha \) and \(s < r \) is a positive rational number, then \(s \in \alpha \).
- \(\alpha \) has no maximal element.

An example is “the cut of square root of 3”:

\[\sqrt{3} = \{ r \in \mathbb{Q}^+ | r^2 < 3 \} \]

The first bullet is clearly satisfied, for the second, note that the limit of \((r + \frac{1}{n}) \) is \(r^2 \), as the positive integer \(n \) tends to infinity, hence for \(n \) large enough \((r + \frac{1}{n})^2 < 3 \) if \(r^2 < 3 \).

1) For \(i = 0, \ldots, 10 \), construct the greatest rational number in the cut of square root of 3 in the form of a (non-reduced) fraction \(a_i = x_i/2^i \), and the least rational number not in the cut in the same form \(b_i = y_i/2^i \). For example, \(a_0 = 1 \) and \(b_0 = 2 \). Their average is \(3/2 \). Since \((3/2)^2 < 3\), it follows that \(a_1 = 3/2 \) and \(b_1 = 4/2 \) etc... Note: if you had a calculator that “computes” \(\sqrt{3} \) and expresses the answer in binary digits, \(a_i \) would be what you get after chopping off all digits after the \(i \)-th place right of the point.

2) Let \(\alpha \) and \(\beta \) be two cuts of \(\mathbb{Q}^+ \). Let \(\alpha \cdot \beta = \{ rs | r \in \alpha, s \in \beta \} \). Prove that \(\alpha \cdot \beta \) is a cut of \(\mathbb{Q}^+ \).

3) Prove that \(\sqrt{3} \cdot \sqrt{3} = 3^* \), where \(\sqrt{3} \) is the cut defined above.

4) Let \(1^* = \{ r \in \mathbb{Q}^+ | r < 1 \} \). Prove that \(\alpha \cdot 1^* = \alpha \) for any cut \(\alpha \) of \(\mathbb{Q}^+ \).

5) Let \(\alpha \) be a cut of \(\mathbb{Q}^+ \). Construct a cut \(\beta \) such that \(\alpha \cdot \beta = 1^* \).

6) The set of \(2 \times 2 \) matrices with real coefficients is a non-commutative ring with respect to the usual addition and multiplication of matrices. We can use this information to quickly construct complex numbers and prove that it is a field. Let \(\mathbb{C} \) be the set of \(2 \times 2 \) matrices

\[\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \]

where \(a \) and \(b \) are any real numbers. If \(A, B \in \mathbb{C} \), prove that \(A + B \), \(A - B \) and \(AB \) are in \(\mathbb{C} \) and that \(AB = BA \). This implies that \(\mathbb{C} \) is a ring (why?). Finally, for every non-zero \(A \in \mathbb{C} \) find \(B \in \mathbb{C} \) such that \(AB = 1 \) i.e. \(\mathbb{C} \) is a field. What fails if we instead consider \(\mathbb{C}' \), the set of all \(2 \times 2 \) matrices

\[\begin{pmatrix} a & b \\ b & a \end{pmatrix} \]

where \(a \) and \(b \) are any real numbers?