Let V be a Euclidean vector space, that is, a vector space over \mathbb{R} with a scalar product (x, y). Then V is a normed space with the norm $||x||^2 = (x, x)$. We shall need the following continuity of the dot product.

Exercise. Let $x, y \in V$ and (x_n) a sequence in V converging to x. Then

$$\lim_{n} (x_n, y) = (x, y).$$

Hint: Use Cauchy Schwarz inequality.

Solution. (x_n) converging to x means $\lim_{n} ||x_n - x|| = 0$.

$$||x_n - x|| \cdot ||y|| \geq |(x_n, y) - (x, y)| = |(x_n - x, y)| \leq ||x_n - x|| \cdot ||y||$$

hence (x_n, y) converges to (x, y).

Now assume that V is a Hilbert space, i.e. a separable and complete Euclidean space. Let e_1, e_2, \ldots its orthonormal basis, see the previous lecture. In particular, the subspace U spanned by e_1, e_2, \ldots is a dense subset.

Lemma 0.1. Bessel's inequality. For every $v \in V$, and every $n \in \mathbb{N}$,

$$(v, e_1)^2 + \ldots + (v, e_n)^2 \leq ||v||^2.$$

Proof. Let

$$v_n = (v, e_1)e_1 + \ldots + (v, e_n)e_n.$$

Then, for every $i \leq n$,

$$(v - v_n, e_i) = (v, e_i) - (v_n, e_i) = 0.$$

Since v_n is a linear combination of e_i for $i \leq n$, it follows that v_n and $v - v_n$ are perpendicular. By the Pythagorean equality,

$$||v_n||^2 \leq ||v||^2 + ||v - v_n||^2 = ||v||^2.$$

The lemma follows since $||v_n||^2 = (v, e_1)^2 + \ldots + (v, e_n)^2$.

Now we can prove the main result in the theory of (infinite dimensional) Hilbert spaces.

Theorem 0.2. (Riesz-Fischer) Let V be a Hilbert space, and e_1, e_2, \ldots its orthonormal basis. Then
(1) **Fourier series.** For every \(v \in V \),
\[
v = (v,e_1)e_1 + (v,e_2)e_2 + \ldots
\]
i.e. the series is absolutely convergent and it converges to \(v \).

(2) **Parsevals’ identity.** For every \(v \in V \),
\[
||v||^2 = (v,e_1)^2 + (v,e_2)^2 + \ldots
\]
(3) If \((x_1, x_2, \ldots)\) is a sequence of real numbers such that
\[
x_1^2 + x_2^2 + \ldots < \infty
\]
then the series
\[
x_1e_1 + x_2e_2 + \ldots
\]
is absolutely convergent and it converges to an element in \(V \).

Proof.

(1) Let \(v_n = (v,e_1)e_1 + \ldots + (v,e_n)e_n \), for \(n \in \mathbb{N} \). We need to show that this sequence converges to \(v \). By the Bessel’s inequality, the series \(\sum_{n=0}^{\infty} (v,e_n)^2 \) is convergent. Thus, for every \(\epsilon > 0 \) there exists \(N \) such that
\[
\sum_{n>N} (v,e_n)^2 < \epsilon.
\]

If \(m > n > N \) then
\[
||v_m - v_n||^2 = (v,e_{n+1})^2 + \ldots + (v,e_m)^2 < \epsilon.
\]
This shows that the sequence \((v_n) \) is Cauchy. Since \(V \) is complete, it has a limit \(\lim_{n} v_n = w \in V \). It remains to show that \(v = w \). Observe that, using the exercise,
\[
(v,e_i) = (\lim_{n} v_n,e_i) = \lim_{n} (v_n,e_i) = (v,e_i).
\]
Hence \(w - v \) is perpendicular to all \(e_i \) and to the linear span \(U \) of \(e_i \). But this space is dense, hence \(w - v = 0 \), as we proved in the last lecture.

(2) follows form
\[
||v||^2 = \lim_n ||v_n||^2,
\]
since \(v = \lim_n v_n \), and \(||v_n||^2 = (v,e_1)^2 + \ldots + (v,e_n)^2 \).

(3) Let \(v_n = x_1e_1 + \ldots + x_n e_n \). Then \((v_n) \) is Cauchy by the same argument as in (1) thus the series is converging to an element in \(V \) since \(V \) is complete.

\[\square\]

Corollary 0.3. Any Hilbert space \(V \) is isomorphic to \(\ell^2(\mathbb{N}) \).

Proof. Indeed, by the map
\[
v \mapsto ((v,e_1),(v,e_2),\ldots),
\]
for every \(v \in V \), is a norm-preserving isomorphism from \(V \) onto \(\ell^2(\mathbb{N}) \).

\[\square\]

This is a great result, for it gives a classification of Hilbert spaces. There is only one, up to an isomorphism.