Let \(\ell \) be a prime, and \(a \) an integer prime to \(\ell \). Let \(S \) be the set of primes \(p \equiv a \pmod{\ell} \). We shall apply results from the previous two lectures to prove that \(S \) has Dirichlet density \(1/(\ell - 1) \). Recall that the Dirichlet density is the limit

\[
\delta(S) := \lim_{s \to 1^+} \frac{\sum_{p \in S} \frac{1}{p^s}}{\sum_{p \in X} \frac{1}{p^s}},
\]

if it exists, where \(X \) is the set of all primes. Consider \(a \) as an element of the abelian group \(G = (\mathbb{Z}/\ell\mathbb{Z})^\times \). Let \(\delta_a : G \to \mathbb{C} \) be the characteristic function of \(a \), that is,

\[
\delta_a(b) = \begin{cases}
1 & \text{if } a = b \\
0 & \text{otherwise}.
\end{cases}
\]

We can view \(\delta_a \) as a periodic function on \(\mathbb{Z} \), by defining \(\delta_a(n) = 0 \) for all \(n \) divisible by 0. In this way the above formula can be rewritten as

\[
\delta(S) = \lim_{s \to 1^+} \frac{\sum_{p \in X} \delta_a(p)}{\sum_{p \in X} \frac{1}{p^s}}.
\]

We shall now apply the Fourier transform to express \(\delta_a \) as a linear combination of characters of \(G \). Recall that

\[
\delta_a = \sum_{\chi \in \hat{G}} \hat{\delta}_a(\chi) \cdot \chi
\]

where

\[
\hat{\delta}_a(\chi) = \frac{1}{|G|} \sum_{x \in G} \delta_a(x) \overline{\chi(x)} = \frac{1}{\ell - 1} \overline{\chi(a)}.
\]

Thus

\[
\delta_a = \frac{1}{\ell - 1} \sum_{\chi \in \hat{G}} \chi(a) \cdot \chi
\]

and we can write

\[
\sum_{p \in X} \frac{\delta_a(p)}{p^s} = \frac{1}{\ell - 1} \sum_{\chi \in \hat{G}} \chi(a) \sum_{p \in X} \frac{\chi(p)}{p^s}.
\]

If \(\chi \neq 1 \) then we proved that

\[
\lim_{s \to 1^+} \frac{\sum_{p \in X} \frac{\chi(p)}{p^s}}{\sum_{p \in X} \frac{1}{p^s}} = 0,
\]

hence \(\delta(S) = 1/(\ell - 1) \).
We now discuss relationship with splitting of primes in cyclotomic extensions. Working generally, let F be a Galois extension of \mathbb{Q} of degree n. Let A be the ring of integers. Let p be an unramified prime. Then we have a factorization $Ap = P_1 \cdot \ldots \cdot P_g$, where these primes are mutually different. Let P one of these primes. Then A/P is a degree f extension of $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ where $n = fg$. Recall that the decomposition group $D_P \subset G$ consists of all $\sigma \in G$ such that $\sigma(P) = P$. In particular D_P acts naturally on A/P. In fact we have proved that the natural action gives an isomorphism

$$D_P \cong \text{Gal}(A/P).$$

The Galois group $\text{Gal}(A/P)$ is a cyclic group of order f, generated by the Frobenius element, raising to the p-th power. In view of the isomorphism there exists a unique element $\text{Fr}_P \in D_P$ such that

$$\text{Fr}_P(x) \equiv x^p \pmod{P}$$

for all $x \in A$. Since G acts transitively on the primes P_1, \ldots, P_g,

$$\text{Fr}_p = \{\text{Fr}_{P_1}, \ldots, \text{Fr}_{P_g}\}$$

is a conjugacy class in G, the Frobenius class of p. If G is abelian, every conjugacy class is a singleton, hence we have a proper (Frobenius) element Fr_p in G.

Let’s work this out for the case $F = \mathbb{Q}(\omega)$ where ω is ℓ-th root of 1. Then $G \cong (\mathbb{Z}/\ell\mathbb{Z})^\times$ where $a \in (\mathbb{Z}/\ell\mathbb{Z})^\times$ gives $\sigma_a \in G$ defined by $\sigma_a(\omega) = \omega^a$. All primes $p \neq \ell$ are unramified, and it is clear that $\text{Fr}_p = \sigma_p$. Thus, if we fix σ, which is the same as fixing a, then the set S of primes $p \neq \ell$ such that $\text{Fr}_p = \sigma$ is the same as the set of primes $p \equiv a \pmod{\ell}$. In particular, S has Dirichlet density $1/(\ell - 1)$. This is a special case of the Čebotarev density theorem:

Theorem 0.1. Let F be a Galois extension of \mathbb{Q} with (finite) Galos group G. Fix a conjugacy class $C \subset G$. Let S be the set of unramified primes such that the Frobenius class is C. Then

$$\delta(S) = \frac{|C|}{|G|}.$$