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Let p be an odd prime p ≡ 3 (mod 4). Then p stays prime in the ring of gaussian integers.
The ray class field attached to the ideal (pn) has the Galois group isomorphic

(Z[i]/pZ[i])×/µ4

which has order
1

4
(p2 − 1)p2(n−1).

This field is obtained by adjoining squares of x-coordinate of points P on the curve y2 = x3−x
such that pn ·P = O. We shall partially prove this by checking that the degree of extension is
correct. To that end we need general polynomials for m·P . Define a sequence of polynomials

ψ1 = 1, ψ2 = 2y, ψ3 = 3x4 − 6x2 − 1, ψ4 = 4y(x6 − 5x4 − 5x2 + 1)

ψ2m+1 = ψm+2ψm − ψm−1ψ
3
m+1

2yψ2m = ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1).

Let

φm = xψ2
m − ψm−1ψm+1

4yωm = ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1.

We now need the following theorem, the first two bullets are easy to check.

Theorem 0.1. Then

• ψm, φm, y
−1ωm, for m odd ,and (2y)−1ψm, φm, ωm, for m even, are polynomials in

Z[x, y2]. Substituting y2 = x3 − x we may consider them as polynomials in Z[x].
• Considering ψ2

m and φm as polynomials in x,

φm = xm
2

+ . . .

ψ2
m = m2xm

2−1 + . . .

• If P is a point on y2 = x3 − x, then

m · P =

(
φm(P )

ψ2
m(P )

,
ωm(P )

ψ3
m(P )

)
.

Thus, for m odd, non-trivial solutions of m ·P = O are found by finding (m2− 1)/2 roots
of ψm(x) each of which will give two points ±P in m-torsion. For m odd, it is easy to check,
by induction on m, that ψm(0) = ±1. Hence

ψm(x) = ±mx(m2−1)/2 + . . .± 1.
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Since solutions of pn−1 · P = O are a subset of solutions of pn · P = O, the polynomial
ψpn−1(x) divides ψpn(x). Using Gauss lemma

Φpn(x) =
ψpn(x)

ψpn−1(x)
= ±px

(p2−1)
2

p2(n−1)

+ . . .± 1 ∈ Z[x].

Lemma 0.2. If p ≡ 3 (mod 4) then Φpn(x) ≡ ±1 (mod p).

Proof. The lemma states that Φpn(x) has no roots mod p, in other words the elliptic curve
considered modulo p has no primitive solutions to pn · P = O. So we need to prove that
the curve has no p-torsion. Reducing ψp modulo p we get a polynomial of degree less than
(p2−1)/2 so the p torsion can only be trivial (what we want) or Z/pZ. How do we eliminate
the latter? If the p-torsion is Z/pZ then the complex multiplication action on the torsion
gives a ring homomorphism

Z[i]→ End(Z/pZ) = Z/pZ,
clearly surjective, since 1 7→ 1. Now i goes to a square root of −1, but there is no such
element in Z/pZ since p ≡ 3 (mod 4). �

We remark that an elliptic curve in a positive characteristic p is called super singular if
it has no p-torsion. Thus we proved that y2 = x3 − x is super singular for p ≡ 3 (mod 4).
Going back to our problem, the polynomial Φpn(x) is irreducible by the Eisenstein’s crite-
rion. Observe that ψm(x) are even polynomials for all odd m. Thus Φpn is an irreducible
polynomial in x2 of degree 1

4
(p2−1)p2(n−1), over Q(i), proving that the degree if the extension

is at least what was stated.

Of corse, we can get even a larger extension of Q(i) by adjoining roots of Φpn(x), instead of
their squares. However, roots of the even polynomial Φpn(x) come in pairs ±α so this poly-
nomial is not separable mod 2. Thus, it seems that the extension generated by coordinates of
pn-torsion points will generate an abelian extension of with the Galois group (Z[i]/pnZ[i])×

but it will be ramified at 2 and p.


