
ALGEBRA - LECTURE X

1. Characters

Let G be a group. In order to avoid any confusion with 0 and 1, let e denote the identity
of G. A character of G is a homomorphism

χ : G → C×.

The set of all characters of G is denoted by Ĝ. This is a group with respect to natural
multiplication of characters; If χ1 and χ2 are two characters then χ1 · χ2 is defined by

(χ1 · χ2)(g) = χ1(g)χ2(g)

for every g in G. However, the group may not have any non-trivial characters. For example,
G = SLn(Z) is perfect if n ≥ 3, so Ĝ is trivial.

The theory of characters is particularly rich when G is commutative. Henceforth we shall
assume that G is commutative and finite. Since g|G| = e by the theorem of Lagrange,

1 = χ(e) = χ(g|G|) = χ(g)|G|

and it follows that χ(g) is a root of 1. Consider now G = Z/nZ. Here e = 0 and the group is
generated by 1. Hence any character χ is determined by its value χ(1) and this value is an
n-th root of 1, not necessarily primitive. If we denote the group of all complex n-th roots of
1 by µn, then χ 7→ χ(1) defines an isomorphism

̂(Z/nZ) ∼= µn.

By the theory of elementary divisors any finite abelian group G is isomorphic to

G ∼= Z/d1Z⊕ · · · ⊕ Z/dkZ

for some positive integers d1| . . . |dk. It is clear that Ĝ1 ×G2
∼= Ĝ1 × Ĝ2. Thus, we have

shown:

Proposition 1.1. Let G any finite abelian group. With notations as above, we have

Ĝ ∼= µd1 ⊕ · · · ⊕ µdk
.

Since µn is generated by a primitive n-th root of 1, it is cyclic and therefore isomorphic to
Z/nZ. This shows that

G ∼= Ĝ

however, this isomorphism is not canonical.
Every g in G defines a character ig of Ĝ by

ig(χ) = χ(g)

for every χ in Ĝ. The map g 7→ ig defines a canonical homomorphism i from G into ˆ̂
G.

Proposition 1.2. The map i is a canonical isomorphism of G and ˆ̂
G.
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Proof. Since the two groups have the same order, it suffices to show that i is injective. Let
g be in the kernel of i. Then for every character χ

1 = ig(χ) = χ(g).

This shows that all characters of G factor down to the quotient group G/〈g〉. Since the
number of characters of a finite abelian group is equal to the order of the group, g must be
the identity element. The proposition is proved. �

2. Fourier Transform

In this section we study the space of complex valued functions on a finite abelian group
G. There are two natural choices of L2-norms here:

〈f, g〉 =
1
|G|

∑
x∈G

f(x)ḡ(x)

and
〈f, g〉′ =

∑
x∈G

f(x)ḡ(x)

where f and g are any two functions on G. The corresponding Hilbert spaces will be denoted
by L2(G) and L2(G)′.

Proposition 2.1. Let χ and χ′ be any two characters of G. Then

〈χ, χ′〉 = δχ,χ′ .

In particular, the characters form an orthonormal basis of L2(G).

Proof. In the following identities we use that the complex conjugate of χ′(x) is equal to
χ′(x−1). If χ = χ′ then

〈χ, χ〉 =
1
|G|

∑
x∈G

χ(x)χ(x−1) =
1
|G|

∑
x∈G

1 = 1.

If χ 6= χ′ then there exists y in G such that χ(y) 6= χ′(y). As x runs through all elements in
G so does xy. It follows that

〈χ, χ′〉 =
1
|G|

∑
x∈G

χ(xy)χ′(y−1x−1) = χ(y)χ′(y−1)〈χ, χ′〉.

Since χ(y)χ′(y−1) 6= 1 this identity is possible only if 〈χ, χ′〉 = 0. The proposition is proved.
�

For any f in L2(G) define f̂ in L2(Ĝ)′ by

f̂(χ) = 〈f, χ〉 =
1
|G|

∑
x∈G

f(x)χ(x−1).

Here we used that χ̄(x) = χ(x−1) for any character χ of G. The map f 7→ f̂ is the Fourier
transform on the group G. As an example, let us calculate the Fourier transform of the delta
function δe of the identity element e of G.

δ̂e(χ) =
1
|G|

∑
x∈G

δe(x)χ(x−1) =
1
|G|

.
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This shows that the Fourier transform is the constant function 1
|G| .

Theorem 2.2. The Fourier transform is an isometry between L2(G) and L2(Ĝ)′.

Proof. Clearly, the Fourier transform is linear. We know that the characters form an or-
thonormal basis of L2(G). The Fourier transform of a character χ is, by definition,

χ̂(χ′) = 〈χ, χ′〉.
It follows that χ̂ is the delta function δχ. Since delta functions of individual characters form
an orthonormal basis of L2(Ĝ)′ we are done. �

Corollary 2.3. (Plancherel formula) For any function f on G we have

f(e) =
∑
χ∈Ĝ

f̂(χ).

Proof. Note that f(e) = |G| · 〈f, δe〉. By the theorem, we have

〈f, δe〉 = 〈f̂ , δ̂e〉′.
As we have calculated above, the Fourier transform of δe is the constant function 1

|G| . This
completes the proof. �

3. Representation Theory

In this section V is a finite dimensional vector space over C. Let G be a group (no condition
on it, yet). A representation of G is a pair (π, V ) where π is a homomorphism

π : G → GL(V ).

In particular, representations are generalizations of characters. Characters are simply one
dimensional representations.

A basic example is G = Sn, the symmetric group, V = Cn, and the action of Sn is by
permuting coordinates of Cn. In particular, π(g) is an n× n permutation matrix.

Let (π, V ) be a representation of G. A subspace U ⊆ V is an invariant subspace of V if

π(g)U ⊆ U

for all g in G. We also say that U is a subrepresentation of V . A representation V is
irreducible if 0 and V are only invariant subspaces of V .

For example, Sn has two obvious invariant subspaces in Cn. The first one is the line `
consisting of all n-tuples (x, x, . . . , x). The other one is the hyperplane H consisting of all
n-tuples (x1, x2, . . . , xn) such that

x1 + x2 + · · ·+ xn = 0.

The space H can be visualised in the case n = 3 as follows. The hyperplane H is spanned
by the following three linearly dependent vectors:

v1 = (2,−1,−1), v2 = (−1, 2,−1) and v3 = (−1,−1, 2).

Note that v1+v2+v3 = 0. The three vectors have the same length and it is easy to check that
the angle between any two of them is 120◦. In particular, the three vectors represent vertices
of a regular triangle. With this notation, S3 acts on the triangle as a group of isometries.
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Using v1 and v2 as a basis we can write π(g) - the action of g on H - as a 2 by 2 matrix, for
every g in S3. For example, let g be the cyclic permutation (123). Then

π(g)v1 = v2 and π(g)v2 = v3 = −v1 − v2.

Thus, with respect to the basis v1, v2, the matrix π(g) is

π(g) =
(

0 −1
1 −1

)
.

Let (π, V ) and (ρ, U) be two representations of G. A linear map T : V → U is called an
intertwining map if it commutes with the action of G. This means that for every g in G

T (π(g)(v)) = ρ(g)(T (v))

for every v in V . Note that ker(T ) and im(T ) are invariant subspaces of V and U , respectively.
In particular, if V and U are irreducible then either T = 0 or T is a bijection. In this case
(π, V ) and (ρ, U) are said to be isomorphic.

Proposition 3.1. (Schur’s lemma) Let (π, V ) be an irreducible representation of G. Let
T : V → V be an intertwining map. Then T = λ · 1V for some complex number λ.

Proof. Let λ be an eigenvalue of T . Then Tλ = T − λ · 1V is an intertwining map with a
non-trivial kernel. Since V is irreducible, the kernel of Tλ must be equal to V . This shows
that T = λ · 1V , as claimed. �

Let V be a representation of G. We say that V is semi-simple if for every invariant subspace
U of V , there exists a complementary invariant subspace U ′. This means that that

V ∼= U ⊕ U ′.

For example, if G = Sn and V = Cn, then ` is an invariant subspace and H its invariant
complement. However, not every representation is semi-simple. As an example, consider
G = Z and let (π, V ) be a representation of Z defined as follows. Let V = C2, which we think
of as the set of all 2 by 1 matrices. For every z in Z let

π(z) =
(

1 z
0 1

)
.

The line through
(

1
0

)
is the unique proper invariant subspace of V . In particular, it has

no complement. Thus this representation is not semi-simple. However, if G is finite then
every representation is semi-simple (or one says that it decomposes completely):

Proposition 3.2. Let (π, V ) be a representation of a finite group G. Let U be an invariant
subspace of V . Then there exists a complemantary invariant subspace U ′:

V ∼= U ⊕ U ′.

Proof. Let P : V → U be a projector onto U . If P intertwines the action of G then U ′ =
ker(U) does the job. Otherwise, define

P ′ =
1
|G|

∑
x∈G

π(x−1)Pπ(x).
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We shall show that P ′ is a projector onto U which intertwines the action of G. First of all,
for every x in G,

π(x−1)Pπ(x)(U) ⊆ U

since U is invariant by π(x). This shows that P ′(U) ⊆ U . Moreover, for every v in U we
have

P ′(v) =
1
|G|

∑
x∈G

π(x−1)Pπ(x)(v) =
1
|G|

∑
x∈G

π(x−1)π(x)(v) = v.

This shows that P ′ is a projection onto U . It remains to show that P ′ intertwines the action
of G. Let y be in G. Then

P ′ ◦ π(y) =
1
|G|

∑
x∈G

π(x−1)Pπ(xy).

Now, as x runs through all elements of G, so does z = xy. Since x−1 = yz−1, it follows that

P ′ ◦ π(y) =
1
|G|

∑
z∈G

π(yz−1)Pπ(z) = π(y) ◦ P ′.

This shows that P ′ is an intertwining projector. The proposition is proved. �

4. Orthogonality of matrix coefficients

Let (π, V ) be a representation of G, not necessarily irreducible. Matrix coefficient of V is
a function on G defined by

cv,v∗(g) = v∗(π(g)v)
where v is in V and v∗ in V ∗, the space of linear functionals on V . The name matrix coefficient
comes from the following. Let v1, . . . , vn be a basis of V and v∗1, . . . , v

∗
n the dual basis in V ∗.

This means that v∗j (vi) = δij . In terms of the basis v1, . . . , vn every operator π(g) can be
written as an n× n matrix. The entry on the intersection of the i’th column and j’th row is
cvi,v∗j

(g) or ci,j(g), abbreviated. Note that matrix coefficients of V form a subspace of C[G],
the space of functions on G. Moreover, any matrix coefficient of V is a linear combination of
the coefficients ci,j(g). In fact, since the map (v, v∗) 7→ cv,v∗ is bilinear in both variables, we
have a natural map

CV : V ⊗ V ∗ → C[G].
Assume now that (π, V ) is irreducible. The main result of this section is that the matrix coef-
ficients cij(g) are linearly independent functions on G. Thus, the space of matrix coefficients
of V has dimension n2 and the map CV is injective.

The approach to proving this result is based on the following simple lemma:

Lemma 4.1. Let E be a vector space and (−,−) a bilinear form on E. Let e1, . . . , em and
e∗1, . . . , e

∗
m be two collections of vectors in E such that (ei, e

∗
j ) = δij. Then e1, . . . , em are

linearly independent.

We apply this lemma to E = C[G] and

(f, h) =
1
|G|

∑
g∈G

f(g)h(g−1).
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Proposition 4.2. Let (π, V ) and (ρ, U) be two irreducible and non isomorphic representa-
tions of G. Then

(cv,v∗ , cu,u∗) = 0.

Proof. Fix v∗ in V and u in U . Define a map P : V → U by

P (v) = v∗(v) · u.

Then
P ′ =

1
|G|

∑
g∈G

ρ(g−1)Pπ(g)

is an intertwining map from V to U . Since V and U are not isomorphic, P ′ must be 0. This
implies that for every v in V and u∗ in U we have P ′(v) = 0 and, therefore, u∗(P ′(v)) = 0.
But this is essentially what we wanted to prove. Indeed, note that

ρ(g−1)[Pπ(g)(v)] = ρ(g−1)[v∗(π(g)v) · u] = v∗(π(g)v) · ρ(g−1)u.

Evaluating at u∗ and summing up over all g in G gives the desired identity. The proposition
is proved. �

If V = U we have a similar result.

Proposition 4.3. Let (π, V ) be an irreducible representation. Let v1, . . . , vn be a basis of V
and v∗1, . . . , v

∗
n the dual basis of V ∗. Let ci,j(g) be the matrix coefficient corresponding to vi

and v∗j . Then

(ci,j , ck,l) = δkjδil ·
1
n

.

Proof. Define a map Pjk : V → V by

P (v) = v∗j (v) · vk.

Then P is an elementary matrix, with 1 at the intersection of j-th column and k’th row. In
particular

trace(Pjk) = δjk.

Define
P ′

jk =
1
|G|

∑
g∈G

π(g−1)Pjkπ(g).

It is an intertwining map on V . By Schur’s lemma it is equal to λ1V . Note that

λ =
1
n

trace(P ′
jk).

Since the trace of Pjk is equal to the trace of a conjugate of Pjk, and P ′
jk is a sum of conjugates

of Pjk, it follows that the trace of P ′
jk is equal to the trace of Pjk). This determines λ. It

follows that
P ′

jkvi) =
1
n

δjkvi

and
v∗l [P

′
jk(vi)] =

1
n

δjkδil.

�
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This shows that cij are dual to cji with respect to the pairing (·, ·). In particular:

Corollary 4.4. Let V1, . . . , Vr be irreducible, mutually non-isomorphic representations of G
of dimensions n1, . . . , nr. Then

|G| ≤
r∑

i=1

n2
i .

In particular, the number of irredcible representations of G is finite.

5. Characters

Let (π, V ) be a representation of G. The character χ of π is defined by

χ(g) = trace(π(g)).

With respect to a basis v1, . . . , vn of V we clearly have

χ(g) =
n∑

i=1

cii(g).

Since g has finite order any eigenvalue of π(g) is a root of 1. Since the trace of π(g) is the
sum of its eigenvalues, it follows that

χ(g−1) = χ(g)

where χ(g) denotes the complex conjugate of χ(g). The orthogonality relations between ma-
trix coefficients proved in the last section imply the orthogonality relations between characters
of irreducible representations:

Proposition 5.1. Let V1, . . . , Vr be irreducible mutually non-isomorphic representations of
G. Then

〈χi, χj〉 = δij .

If V is not irreducible, then we can decompose it into irreducible summands:

V = n1V1 ⊕ · · · ⊕ nrVr

where ni is a non-negative integer, called the muliplicity of the irreducible representation Vi

in V . Since the trace of a block diagonal matrix is a sum of traces of the blocks, it follows
that

χ = m1χ1 + · · ·+ mrχr.

Orthogonality relations of characters imply that

〈χ, χ〉 = m2
1 + · · ·+ m2

r and mi = 〈χ, χi〉.
In particular, a representation (π, V ) is irreducible if and only if 〈χ, χ〉 = 1. As an example,
consider our 2-dimensional representation of S3. The trace function is constant on conjugacy
classes, so it is easy to tabulate:

g χ(g)
1 2

(12), (23), (13) 0
(123), (132) −1
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It follows that 〈χ, χ〉 = 1
6(22 + (−1)2 + (−1)2) = 1 and π is irreducible.

Right and left regular representations of G are defined on the space of functions C[G] by

[R(g)f ](x) = f(xg) and [L(g)f ](x) = f(g−1x)

for every f in C[G]. In order to decompose the right regular representation we need to
compute its trace. Bu this is easy! Indeed, the space C[G] is spanned by delta functions δy

for all y in G. Note that
R(g)(δy) = δyg−1

This shows that in terms of the basis δy the trace of R(g) is given by

χR(g) =

{
|G| if g = 1
0 if g 6= 1.

Let Vi be an irreducible representation of dimension ni. Then χi(1) = ni and

〈χR, χi〉 = ni

since the sum reduces to g = 1.

Theorem 5.2. Let G be a finite group and V1, . . . , Vr all its irreducible representations. Then

C[G] = n1V1 ⊕ · · · ⊕ nrVr.

In particular |G| = n2
1 + · · ·+ n2

r.

The above theorem can be used to show that a list of representations of a group is complete.
For example, S3 has two one dimensional representations, the trivial and the sign character,
and the 2 dimensional irreducible representation given by symmetries of an equilateral trian-
gle. The sum of squares of their dimensions ads up to 6 the order of the group. In particular
the three representations exhaust all irreducible representations of S3.

HW problems

1) Let D8 be the group of symmetries of a squares. Show that the 2 dimensional representation
(as symmetries of the square) is irreducible by calculating the character table.

2) Write down the character table of all 1-dimensional representations of D8. Hint: let −1
in D8 be the symmetry of the square given by multiplication by the real number −1 (the
rotation by 180◦). Consider the characters of the quotient of D8 by {1,−1}.
3) Let V be an irreducible subspace of the right regular representation of G on C[G]. Show
that V is contained in the space of its matrix coefficients. Hint: pick v∗ to be the functional
given by evaluating a function at 1.


