

ALGEBRA - LECTURE X

1. CHARACTERS

Let G be a group. In order to avoid any confusion with 0 and 1, let e denote the identity of G . A character of G is a homomorphism

$$\chi : G \rightarrow \mathbb{C}^\times.$$

The set of all characters of G is denoted by \hat{G} . This is a group with respect to natural multiplication of characters; If χ_1 and χ_2 are two characters then $\chi_1 \cdot \chi_2$ is defined by

$$(\chi_1 \cdot \chi_2)(g) = \chi_1(g)\chi_2(g)$$

for every g in G . However, the group may not have any non-trivial characters. For example, $G = SL_n(\mathbb{Z})$ is perfect if $n \geq 3$, so \hat{G} is trivial.

The theory of characters is particularly rich when G is commutative. Henceforth we shall assume that G is commutative and finite. Since $g^{|G|} = e$ by the theorem of Lagrange,

$$1 = \chi(e) = \chi(g^{|G|}) = \chi(g)^{|G|}$$

and it follows that $\chi(g)$ is a root of 1. Consider now $G = \mathbb{Z}/n\mathbb{Z}$. Here $e = 0$ and the group is generated by 1. Hence any character χ is determined by its value $\chi(1)$ and this value is an n -th root of 1, not necessarily primitive. If we denote the group of all complex n -th roots of 1 by μ_n , then $\chi \mapsto \chi(1)$ defines an isomorphism

$$\widehat{(\mathbb{Z}/n\mathbb{Z})} \cong \mu_n.$$

By the theory of elementary divisors any finite abelian group G is isomorphic to

$$G \cong \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_k\mathbb{Z}$$

for some positive integers $d_1 | \cdots | d_k$. It is clear that $\widehat{G_1 \times G_2} \cong \widehat{G_1} \times \widehat{G_2}$. Thus, we have shown:

Proposition 1.1. *Let G any finite abelian group. With notations as above, we have*

$$\widehat{G} \cong \mu_{d_1} \oplus \cdots \oplus \mu_{d_k}.$$

Since μ_n is generated by a primitive n -th root of 1, it is cyclic and therefore isomorphic to $\mathbb{Z}/n\mathbb{Z}$. This shows that

$$G \cong \widehat{G}$$

however, this isomorphism is not canonical.

Every g in G defines a character i_g of \widehat{G} by

$$i_g(\chi) = \chi(g)$$

for every χ in \widehat{G} . The map $g \mapsto i_g$ defines a canonical homomorphism i from G into \widehat{G} .

Proposition 1.2. *The map i is a canonical isomorphism of G and \widehat{G} .*

Proof. Since the two groups have the same order, it suffices to show that i is injective. Let g be in the kernel of i . Then for every character χ

$$1 = i_g(\chi) = \chi(g).$$

This shows that all characters of G factor down to the quotient group $G/\langle g \rangle$. Since the number of characters of a finite abelian group is equal to the order of the group, g must be the identity element. The proposition is proved. \square

2. FOURIER TRANSFORM

In this section we study the space of complex valued functions on a finite abelian group G . There are two natural choices of L^2 -norms here:

$$\langle f, g \rangle = \frac{1}{|G|} \sum_{x \in G} f(x) \bar{g}(x)$$

and

$$\langle f, g \rangle' = \sum_{x \in G} f(x) \bar{g}(x)$$

where f and g are any two functions on G . The corresponding Hilbert spaces will be denoted by $L^2(G)$ and $L^2(G)'$.

Proposition 2.1. *Let χ and χ' be any two characters of G . Then*

$$\langle \chi, \chi' \rangle = \delta_{\chi, \chi'}.$$

In particular, the characters form an orthonormal basis of $L^2(G)$.

Proof. In the following identities we use that the complex conjugate of $\chi'(x)$ is equal to $\chi'(x^{-1})$. If $\chi = \chi'$ then

$$\langle \chi, \chi \rangle = \frac{1}{|G|} \sum_{x \in G} \chi(x) \chi(x^{-1}) = \frac{1}{|G|} \sum_{x \in G} 1 = 1.$$

If $\chi \neq \chi'$ then there exists y in G such that $\chi(y) \neq \chi'(y)$. As x runs through all elements in G so does xy . It follows that

$$\langle \chi, \chi' \rangle = \frac{1}{|G|} \sum_{x \in G} \chi(xy) \chi'(y^{-1}x^{-1}) = \chi(y) \chi'(y^{-1}) \langle \chi, \chi' \rangle.$$

Since $\chi(y) \chi'(y^{-1}) \neq 1$ this identity is possible only if $\langle \chi, \chi' \rangle = 0$. The proposition is proved. \square

For any f in $L^2(G)$ define \hat{f} in $L^2(\hat{G})'$ by

$$\hat{f}(\chi) = \langle f, \chi \rangle = \frac{1}{|G|} \sum_{x \in G} f(x) \chi(x^{-1}).$$

Here we used that $\bar{\chi}(x) = \chi(x^{-1})$ for any character χ of G . The map $f \mapsto \hat{f}$ is the Fourier transform on the group G . As an example, let us calculate the Fourier transform of the delta function δ_e of the identity element e of G .

$$\hat{\delta}_e(\chi) = \frac{1}{|G|} \sum_{x \in G} \delta_e(x) \chi(x^{-1}) = \frac{1}{|G|}.$$

This shows that the Fourier transform is the constant function $\frac{1}{|G|}$.

Theorem 2.2. *The Fourier transform is an isometry between $L^2(G)$ and $L^2(\hat{G})'$.*

Proof. Clearly, the Fourier transform is linear. We know that the characters form an orthonormal basis of $L^2(G)$. The Fourier transform of a character χ is, by definition,

$$\hat{\chi}(\chi') = \langle \chi, \chi' \rangle.$$

It follows that $\hat{\chi}$ is the delta function δ_χ . Since delta functions of individual characters form an orthonormal basis of $L^2(\hat{G})'$ we are done. \square

Corollary 2.3. *(Plancherel formula) For any function f on G we have*

$$f(e) = \sum_{\chi \in \hat{G}} \hat{f}(\chi).$$

Proof. Note that $f(e) = |G| \cdot \langle f, \delta_e \rangle$. By the theorem, we have

$$\langle f, \delta_e \rangle = \langle \hat{f}, \hat{\delta}_e \rangle'.$$

As we have calculated above, the Fourier transform of δ_e is the constant function $\frac{1}{|G|}$. This completes the proof. \square

3. REPRESENTATION THEORY

In this section V is a finite dimensional vector space over \mathbb{C} . Let G be a group (no condition on it, yet). A representation of G is a pair (π, V) where π is a homomorphism

$$\pi : G \rightarrow GL(V).$$

In particular, representations are generalizations of characters. Characters are simply one dimensional representations.

A basic example is $G = S_n$, the symmetric group, $V = \mathbb{C}^n$, and the action of S_n is by permuting coordinates of \mathbb{C}^n . In particular, $\pi(g)$ is an $n \times n$ permutation matrix.

Let (π, V) be a representation of G . A subspace $U \subseteq V$ is an invariant subspace of V if

$$\pi(g)U \subseteq U$$

for all g in G . We also say that U is a subrepresentation of V . A representation V is irreducible if 0 and V are only invariant subspaces of V .

For example, S_n has two obvious invariant subspaces in \mathbb{C}^n . The first one is the line ℓ consisting of all n -tuples (x, x, \dots, x) . The other one is the hyperplane H consisting of all n -tuples (x_1, x_2, \dots, x_n) such that

$$x_1 + x_2 + \dots + x_n = 0.$$

The space H can be visualised in the case $n = 3$ as follows. The hyperplane H is spanned by the following three linearly dependent vectors:

$$v_1 = (2, -1, -1), v_2 = (-1, 2, -1) \text{ and } v_3 = (-1, -1, 2).$$

Note that $v_1 + v_2 + v_3 = 0$. The three vectors have the same length and it is easy to check that the angle between any two of them is 120° . In particular, the three vectors represent vertices of a regular triangle. With this notation, S_3 acts on the triangle as a group of isometries.

Using v_1 and v_2 as a basis we can write $\pi(g)$ - the action of g on H - as a 2 by 2 matrix, for every g in S_3 . For example, let g be the cyclic permutation (123) . Then

$$\pi(g)v_1 = v_2 \text{ and } \pi(g)v_2 = v_3 = -v_1 - v_2.$$

Thus, with respect to the basis v_1, v_2 , the matrix $\pi(g)$ is

$$\pi(g) = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}.$$

Let (π, V) and (ρ, U) be two representations of G . A linear map $T : V \rightarrow U$ is called an intertwining map if it commutes with the action of G . This means that for every g in G

$$T(\pi(g)(v)) = \rho(g)(T(v))$$

for every v in V . Note that $\ker(T)$ and $\text{im}(T)$ are invariant subspaces of V and U , respectively. In particular, if V and U are irreducible then either $T = 0$ or T is a bijection. In this case (π, V) and (ρ, U) are said to be isomorphic.

Proposition 3.1. *(Schur's lemma) Let (π, V) be an irreducible representation of G . Let $T : V \rightarrow V$ be an intertwining map. Then $T = \lambda \cdot 1_V$ for some complex number λ .*

Proof. Let λ be an eigenvalue of T . Then $T_\lambda = T - \lambda \cdot 1_V$ is an intertwining map with a non-trivial kernel. Since V is irreducible, the kernel of T_λ must be equal to V . This shows that $T = \lambda \cdot 1_V$, as claimed. \square

Let V be a representation of G . We say that V is semi-simple if for every invariant subspace U of V , there exists a complementary invariant subspace U' . This means that that

$$V \cong U \oplus U'.$$

For example, if $G = S_n$ and $V = \mathbb{C}^n$, then ℓ is an invariant subspace and H its invariant complement. However, not every representation is semi-simple. As an example, consider $G = \mathbb{Z}$ and let (π, V) be a representation of \mathbb{Z} defined as follows. Let $V = \mathbb{C}^2$, which we think of as the set of all 2 by 1 matrices. For every z in \mathbb{Z} let

$$\pi(z) = \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}.$$

The line through $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is the unique proper invariant subspace of V . In particular, it has no complement. Thus this representation is not semi-simple. However, if G is finite then every representation is semi-simple (or one says that it decomposes completely):

Proposition 3.2. *Let (π, V) be a representation of a finite group G . Let U be an invariant subspace of V . Then there exists a complementary invariant subspace U' :*

$$V \cong U \oplus U'.$$

Proof. Let $P : V \rightarrow U$ be a projector onto U . If P intertwines the action of G then $U' = \ker(P)$ does the job. Otherwise, define

$$P' = \frac{1}{|G|} \sum_{x \in G} \pi(x^{-1})P\pi(x).$$

We shall show that P' is a projector onto U which intertwines the action of G . First of all, for every x in G ,

$$\pi(x^{-1})P\pi(x)(U) \subseteq U$$

since U is invariant by $\pi(x)$. This shows that $P'(U) \subseteq U$. Moreover, for every v in U we have

$$P'(v) = \frac{1}{|G|} \sum_{x \in G} \pi(x^{-1})P\pi(x)(v) = \frac{1}{|G|} \sum_{x \in G} \pi(x^{-1})\pi(x)(v) = v.$$

This shows that P' is a projection onto U . It remains to show that P' intertwines the action of G . Let y be in G . Then

$$P' \circ \pi(y) = \frac{1}{|G|} \sum_{x \in G} \pi(x^{-1})P\pi(xy).$$

Now, as x runs through all elements of G , so does $z = xy$. Since $x^{-1} = yz^{-1}$, it follows that

$$P' \circ \pi(y) = \frac{1}{|G|} \sum_{z \in G} \pi(yz^{-1})P\pi(z) = \pi(y) \circ P'.$$

This shows that P' is an intertwining projector. The proposition is proved. \square

4. ORTHOGONALITY OF MATRIX COEFFICIENTS

Let (π, V) be a representation of G , not necessarily irreducible. Matrix coefficient of V is a function on G defined by

$$c_{v,v^*}(g) = v^*(\pi(g)v)$$

where v is in V and v^* in V^* , the space of linear functionals on V . The name matrix coefficient comes from the following. Let v_1, \dots, v_n be a basis of V and v_1^*, \dots, v_n^* the dual basis in V^* . This means that $v_j^*(v_i) = \delta_{ij}$. In terms of the basis v_1, \dots, v_n every operator $\pi(g)$ can be written as an $n \times n$ matrix. The entry on the intersection of the i 'th column and j 'th row is $c_{v_i, v_j^*}(g)$ or $c_{i,j}(g)$, abbreviated. Note that matrix coefficients of V form a subspace of $\mathbb{C}[G]$, the space of functions on G . Moreover, any matrix coefficient of V is a linear combination of the coefficients $c_{i,j}(g)$. In fact, since the map $(v, v^*) \mapsto c_{v,v^*}$ is bilinear in both variables, we have a natural map

$$C_V : V \otimes V^* \rightarrow \mathbb{C}[G].$$

Assume now that (π, V) is irreducible. The main result of this section is that the matrix coefficients $c_{ij}(g)$ are linearly independent functions on G . Thus, the space of matrix coefficients of V has dimension n^2 and the map C_V is injective.

The approach to proving this result is based on the following simple lemma:

Lemma 4.1. *Let E be a vector space and $(-, -)$ a bilinear form on E . Let e_1, \dots, e_m and e_1^*, \dots, e_m^* be two collections of vectors in E such that $(e_i, e_j^*) = \delta_{ij}$. Then e_1, \dots, e_m are linearly independent.*

We apply this lemma to $E = \mathbb{C}[G]$ and

$$(f, h) = \frac{1}{|G|} \sum_{g \in G} f(g)h(g^{-1}).$$

Proposition 4.2. *Let (π, V) and (ρ, U) be two irreducible and non isomorphic representations of G . Then*

$$(c_{v,v^*}, c_{u,u^*}) = 0.$$

Proof. Fix v^* in V and u in U . Define a map $P : V \rightarrow U$ by

$$P(v) = v^*(v) \cdot u.$$

Then

$$P' = \frac{1}{|G|} \sum_{g \in G} \rho(g^{-1}) P \pi(g)$$

is an intertwining map from V to U . Since V and U are not isomorphic, P' must be 0. This implies that for every v in V and u^* in U we have $P'(v) = 0$ and, therefore, $u^*(P'(v)) = 0$. But this is essentially what we wanted to prove. Indeed, note that

$$\rho(g^{-1})[P \pi(g)(v)] = \rho(g^{-1})[v^*(\pi(g)v) \cdot u] = v^*(\pi(g)v) \cdot \rho(g^{-1})u.$$

Evaluating at u^* and summing up over all g in G gives the desired identity. The proposition is proved. \square

If $V = U$ we have a similar result.

Proposition 4.3. *Let (π, V) be an irreducible representation. Let v_1, \dots, v_n be a basis of V and v_1^*, \dots, v_n^* the dual basis of V^* . Let $c_{i,j}(g)$ be the matrix coefficient corresponding to v_i and v_j^* . Then*

$$(c_{i,j}, c_{k,l}) = \delta_{kj} \delta_{il} \cdot \frac{1}{n}.$$

Proof. Define a map $P_{jk} : V \rightarrow V$ by

$$P(v) = v_j^*(v) \cdot v_k.$$

Then P is an elementary matrix, with 1 at the intersection of j -th column and k 'th row. In particular

$$\text{trace}(P_{jk}) = \delta_{jk}.$$

Define

$$P'_{jk} = \frac{1}{|G|} \sum_{g \in G} \pi(g^{-1}) P_{jk} \pi(g).$$

It is an intertwining map on V . By Schur's lemma it is equal to $\lambda 1_V$. Note that

$$\lambda = \frac{1}{n} \text{trace}(P'_{jk}).$$

Since the trace of P_{jk} is equal to the trace of a conjugate of P_{jk} , and P'_{jk} is a sum of conjugates of P_{jk} , it follows that the trace of P'_{jk} is equal to the trace of P_{jk} . This determines λ . It follows that

$$P'_{jk} v_i = \frac{1}{n} \delta_{jk} v_i$$

and

$$v_l^* [P'_{jk}(v_i)] = \frac{1}{n} \delta_{jk} \delta_{il}.$$

\square

This shows that c_{ij} are dual to c_{ji} with respect to the pairing (\cdot, \cdot) . In particular:

Corollary 4.4. *Let V_1, \dots, V_r be irreducible, mutually non-isomorphic representations of G of dimensions n_1, \dots, n_r . Then*

$$|G| \leq \sum_{i=1}^r n_i^2.$$

In particular, the number of irreducible representations of G is finite.

5. CHARACTERS

Let (π, V) be a representation of G . The character χ of π is defined by

$$\chi(g) = \text{trace}(\pi(g)).$$

With respect to a basis v_1, \dots, v_n of V we clearly have

$$\chi(g) = \sum_{i=1}^n c_{ii}(g).$$

Since g has finite order any eigenvalue of $\pi(g)$ is a root of 1. Since the trace of $\pi(g)$ is the sum of its eigenvalues, it follows that

$$\chi(g^{-1}) = \overline{\chi(g)}$$

where $\overline{\chi(g)}$ denotes the complex conjugate of $\chi(g)$. The orthogonality relations between matrix coefficients proved in the last section imply the orthogonality relations between characters of irreducible representations:

Proposition 5.1. *Let V_1, \dots, V_r be irreducible mutually non-isomorphic representations of G . Then*

$$\langle \chi_i, \chi_j \rangle = \delta_{ij}.$$

If V is not irreducible, then we can decompose it into irreducible summands:

$$V = n_1 V_1 \oplus \dots \oplus n_r V_r$$

where n_i is a non-negative integer, called the multiplicity of the irreducible representation V_i in V . Since the trace of a block diagonal matrix is a sum of traces of the blocks, it follows that

$$\chi = m_1 \chi_1 + \dots + m_r \chi_r.$$

Orthogonality relations of characters imply that

$$\langle \chi, \chi \rangle = m_1^2 + \dots + m_r^2 \text{ and } m_i = \langle \chi, \chi_i \rangle.$$

In particular, a representation (π, V) is irreducible if and only if $\langle \chi, \chi \rangle = 1$. As an example, consider our 2-dimensional representation of S_3 . The trace function is constant on conjugacy classes, so it is easy to tabulate:

g	$\chi(g)$
1	2
$(12), (23), (13)$	0
$(123), (132)$	-1

It follows that $\langle \chi, \chi \rangle = \frac{1}{6}(2^2 + (-1)^2 + (-1)^2) = 1$ and π is irreducible.

Right and left regular representations of G are defined on the space of functions $\mathbb{C}[G]$ by

$$[R(g)f](x) = f(xg) \text{ and } [L(g)f](x) = f(g^{-1}x)$$

for every f in $\mathbb{C}[G]$. In order to decompose the right regular representation we need to compute its trace. But this is easy! Indeed, the space $\mathbb{C}[G]$ is spanned by delta functions δ_y for all y in G . Note that

$$R(g)(\delta_y) = \delta_{yg^{-1}}$$

This shows that in terms of the basis δ_y the trace of $R(g)$ is given by

$$\chi_R(g) = \begin{cases} |G| & \text{if } g = 1 \\ 0 & \text{if } g \neq 1. \end{cases}$$

Let V_i be an irreducible representation of dimension n_i . Then $\chi_i(1) = n_i$ and

$$\langle \chi_R, \chi_i \rangle = n_i$$

since the sum reduces to $g = 1$.

Theorem 5.2. *Let G be a finite group and V_1, \dots, V_r all its irreducible representations. Then*

$$\mathbb{C}[G] = n_1 V_1 \oplus \dots \oplus n_r V_r.$$

In particular $|G| = n_1^2 + \dots + n_r^2$.

The above theorem can be used to show that a list of representations of a group is complete. For example, S_3 has two one dimensional representations, the trivial and the sign character, and the 2 dimensional irreducible representation given by symmetries of an equilateral triangle. The sum of squares of their dimensions adds up to 6 the order of the group. In particular the three representations exhaust all irreducible representations of S_3 .

HW problems

- 1) Let D_8 be the group of symmetries of a squares. Show that the 2 dimensional representation (as symmetries of the square) is irreducible by calculating the character table.
- 2) Write down the character table of all 1-dimensional representations of D_8 . Hint: let -1 in D_8 be the symmetry of the square given by multiplication by the real number -1 (the rotation by 180°). Consider the characters of the quotient of D_8 by $\{1, -1\}$.
- 3) Let V be an irreducible subspace of the right regular representation of G on $\mathbb{C}[G]$. Show that V is contained in the space of its matrix coefficients. Hint: pick v^* to be the functional given by evaluating a function at 1.