ALGEBRA - LECTURE X

1. CHARACTERS

Let G be a group. In order to avoid any confusion with 0 and 1, let e denote the identity
of G. A character of G is a homomorphism
x:G — C*.

The set of all characters of G is denoted by G. This is a group with respect to natural
multiplication of characters; If x1 and x9 are two characters then y; - x2 is defined by

(x1 - x2)(9) = x1(9)x2(9)
for every g in G. However, the group may not have any non-trivial characters. For example,
G = SLy,(Z) is perfect if n > 3, so G is trivial.
The theory of characters is particularly rich when G is commutative. Henceforth we shall
assume that G is commutative and finite. Since ¢/ = e by the theorem of Lagrange,

1= x(e) = x(g') = x(9)'
and it follows that x(g) is a root of 1. Consider now G = Z/nZ. Here e = 0 and the group is
generated by 1. Hence any character x is determined by its value x(1) and this value is an
n-th root of 1, not necessarily primitive. If we denote the group of all complex n-th roots of
1 by pin, then x +— x(1) defines an isomorphism

(Z)nZ) = pup,.
By the theory of elementary divisors any finite abelian group G is isomorphic to
G2Z/AZ & DL)/dpZ

for some positive integers dy|...|d;. It is clear that G;<\Gg ~ (@, x Go. Thus, we have
shown:

Proposition 1.1. Let G any finite abelian group. With notations as above, we have
G g, ® D pa,.
Since p, is generated by a primitive n-th root of 1, it is cyclic and therefore isomorphic to
Z/nZ. This shows that

G=q
however, this isomorphism is not canonical.
Every g in G defines a character i, of G by
ig(x) = x(9)

for every x in G. The map g — iy defines a canonical homomorphism i from G into G.

Proposition 1.2. The map i is a canonical isomorphism of G and G.
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Proof. Since the two groups have the same order, it suffices to show that ¢ is injective. Let
g be in the kernel of i. Then for every character y

1 =1i4(x) = x(9)-
This shows that all characters of G factor down to the quotient group G/(g). Since the
number of characters of a finite abelian group is equal to the order of the group, g must be
the identity element. The proposition is proved. O

2. FOURIER TRANSFORM

In this section we study the space of complex valued functions on a finite abelian group
G. There are two natural choices of L?- norms here:

ng

xGG

= f@)g(x)
zeCG
where f and g are any two functions on G. The corresponding Hilbert spaces will be denoted

by L?*(G) and L*(G)'.
Proposition 2.1. Let x and X' be any two characters of G. Then
(6 x > 5x X'

In particular, the characters form an orthonormal basis of L*(G).

and

Proof. In the following identities we use that the complex conjugate of x/(z) is equal to
X' (z71). If x = X’ then
(6 x) x(z I=1
rG\ 2 xle - 2

If x # x’ then there exists y in G such that x(y) # X'(y). As z runs through all elements in
G so does zy. It follows that
(¢ x) K?IZE: (@)X (v 27" = xW)X' ()6 X)-
zeG
Since x(y)x'(y~') # 1 this identity is possible only if {x, x’) = 0. The proposition is proved.
]

For any f in L2(G) define f in LQ(G)’ by
FO) =(fix) = Z fla
xeG

Here we used that y(z) = x(z~!) for any character y of G. The map f + f is the Fourier
transform on the group GG. As an example, let us calculate the Fourier transform of the delta
function é. of the identity element e of G.

1
eX e ( —.
IQE: e

z€G
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This shows that the Fourier transform is the constant function ‘—g;'

Theorem 2.2. The Fourier transform is an isometry between L*(G) and L*(G)'.

Proof. Clearly, the Fourier transform is linear. We know that the characters form an or-
thonormal basis of L?(G). The Fourier transform of a character x is, by definition,

X(X) = 06 x)-
It follows that x is the delta function ¢,. Since delta functions of individual characters form
an orthonormal basis of L?(G)’ we are done. O

Corollary 2.3. (Plancherel formula) For any function f on G we have
fley=>f.
xe@

Proof. Note that f(e) = |G| - (f,de). By the theorem, we have
(£,00) = (£.8c)"
1

As we have calculated above, the Fourier transform of . is the constant function el This
completes the proof. O

3. REPRESENTATION THEORY

In this section V is a finite dimensional vector space over C. Let G be a group (no condition
on it, yet). A representation of G is a pair (m, V') where 7 is a homomorphism

m:G— GL(V).

In particular, representations are generalizations of characters. Characters are simply one
dimensional representations.

A basic example is G = 5,,, the symmetric group, V = C", and the action of S, is by
permuting coordinates of C". In particular, 7(g) is an n X n permutation matrix.
Let (m,V') be a representation of G. A subspace U C V is an invariant subspace of V' if

m(g)U C U

for all g in G. We also say that U is a subrepresentation of V. A representation V is
irreducible if 0 and V' are only invariant subspaces of V.

For example, S, has two obvious invariant subspaces in C". The first one is the line ¢
consisting of all n-tuples (z,z,...,x). The other one is the hyperplane H consisting of all
n-tuples (x1,x2,...,x,) such that

Ty +x2+ -+, =0.

The space H can be visualised in the case n = 3 as follows. The hyperplane H is spanned
by the following three linearly dependent vectors:

v =(2,—-1,-1),v3 = (-1,2,—1) and v3 = (—1,—1,2).
Note that v1 +v9+v3 = 0. The three vectors have the same length and it is easy to check that

the angle between any two of them is 120°. In particular, the three vectors represent vertices
of a regular triangle. With this notation, S5 acts on the triangle as a group of isometries.
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Using v; and v as a basis we can write m(g) - the action of g on H - as a 2 by 2 matrix, for
every g in S3. For example, let g be the cyclic permutation (123). Then
m(g)v1 = vg and 7(g)vy = v3 = —v1 — Va.

Thus, with respect to the basis v1, va, the matrix 7(g) is

wo=(1 1)

Let (m,V) and (p,U) be two representations of G. A linear map T : V — U is called an
intertwining map if it commutes with the action of G. This means that for every g in G

T(m(g)(v)) = p(g)(T(v))
for every v in V. Note that ker(T") and ¢m(T') are invariant subspaces of V' and U, respectively.

In particular, if V and U are irreducible then either 7" = 0 or T is a bijection. In this case
(m, V) and (p,U) are said to be isomorphic.

Proposition 3.1. (Schur’s lemma) Let (w, V) be an irreducible representation of G. Let
T:V —V be an intertwining map. Then T = X\ - 1y for some complex number A.

Proof. Let A be an eigenvalue of T. Then T\ = T — A - 1y is an intertwining map with a
non-trivial kernel. Since V is irreducible, the kernel of T must be equal to V. This shows
that T'= A - 1y, as claimed. O

Let V be a representation of G. We say that V' is semi-simple if for every invariant subspace
U of V, there exists a complementary invariant subspace U’. This means that that

VeUeaU.

For example, if G = 5,, and V = C", then / is an invariant subspace and H its invariant
complement. However, not every representation is semi-simple. As an example, consider
G = Z and let (7, V) be a representation of Z defined as follows. Let V = C?, which we think
of as the set of all 2 by 1 matrices. For every z in Z let

7r(z):<(1) f)

The line through is the unique proper invariant subspace of V. In particular, it has

1
0
no complement. Thus this representation is not semi-simple. However, if G is finite then
every representation is semi-simple (or one says that it decomposes completely):

Proposition 3.2. Let (7, V) be a representation of a finite group G. Let U be an invariant
subspace of V. Then there exists a complemantary invariant subspace U':

VUagU.

Proof. Let P : V — U be a projector onto U. If P intertwines the action of G then U’ =
ker(U) does the job. Otherwise, define

|G]Z z ! )Pm(x

zeG
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We shall show that P’ is a projector onto U which intertwines the action of G. First of all,
for every z in G,

m(z ") Pr(2)(U) CU
since U is invariant by w(z). This shows that P'(U) C

have
'(v) G Z 2 N Pr(z)(v) = el > wlaw(z)(v) = v.
6] & G
This shows that P’ is a projection onto U. It remains to show that P’ intertwines the action
of G. Let y be in G. Then

U. Moreover, for every v in U we

P on(y) G Z YPr(zy).
| ‘ zelG
Now, as x runs through all elements of G, so does z = xy. Since 2! = yz~1, it follows that
P'on(y) Z (2) =m(y) o P
‘G’ zeG
This shows that P’ is an intertwining projector. The proposition is proved. O

4. ORTHOGONALITY OF MATRIX COEFFICIENTS

Let (m,V') be a representation of G, not necessarily irreducible. Matrix coefficient of V' is
a function on G defined by
Cyv* (g) =" (W(g)v)
where v isin V' and v* in V*, the space of linear functionals on V. The name matrix coefficient
comes from the following. Let v1,...,v, be a basis of V and v7, ..., v}, the dual basis in V*.
This means that v}(v;) = d;;. In terms of the basis v1,...,v, every operator 7(g) can be
written as an n X n matrix. The entry on the intersection of the ¢’th column and j’th row is
Co, 7 (g) or ¢; ;(g), abbreviated. Note that matrix coefficients of V' form a subspace of C[G],
the space of functions on G. Moreover, any matrix coefficient of V' is a linear combination of
the coefficients ¢; j(g). In fact, since the map (v, v*) — ¢, 4+ is bilinear in both variables, we
have a natural map
Cy:VeV*—C[G].
Assume now that (7, V') is irreducible. The main result of this section is that the matrix coef-
ficients c;j(g) are linearly independent functions on G. Thus, the space of matrix coefficients
of V has dimension n? and the map Cy, is injective.
The approach to proving this result is based on the following simple lemma:

Lemma 4.1. Let E be a vector space and (—,—) a bilinear form on E. Let ey,...,en and
ey,...,en be two collections of vectors in E such that (e;,e ) = 0ij. Then e1,...,en are
linearly independent.

We apply this lemma to F = C[G] and

)= g /0

geG
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Proposition 4.2. Let (7,V) and (p,U) be two irreducible and non isomorphic representa-
tions of G. Then

(Cv,v* ) Cu,u*) =0.
Proof. Fix v* in V and v in U. Define a map P : V — U by
P(v) =v*(v) - u.

= a7 Loty

geG

Then

is an intertwining map from V to U. Since V and U are not isomorphic, P’ must be 0. This
implies that for every v in V and «* in U we have P'(v) = 0 and, therefore, u*(P’(v)) = 0.
But this is essentially what we wanted to prove. Indeed, note that

(g™ HIPT(9)(v)] = plg™H)[v* (x(g)v) - u] = v*(w(g)v) - p(g™ " u.
Evaluating at u* and summing up over all g in G gives the desired identity. The proposition
is proved. O

If V = U we have a similar result.

Proposition 4.3. Let (m,V) be an irreducible representation. Let vy, ... vy, be a basis of V
and vy, ..., vy the dual basis of V*. Let ¢; j(g) be the matriz coefficient corresponding to v;
and v;. Then
1
(CijsChi) = Okjlir - -
Proof. Define a map Pj, : V — V by
P(v) = v} (v) - vg.

Then P is an elementary matrix, with 1 at the intersection of j-th column and k’th row. In
particular
trace(Pj) = 0.

jk |G‘ Z Jkﬂ 9)-

geG
It is an intertwining map on V. By Schur’s lemma it is equal to Aly. Note that

Define

1
A= ftrace(P]{k).

Since the trace of Pjj, is equal to the trace of a conjugate of Pjj, and P ik 18 a sum of conjugates
of Pji, it follows that the trace of P]’k is equal to the trace of Pj;). This determines A. It
follows that 1

P‘]/k;/u’b) = E(Sjk?}i
and

. 1
of [Py, (vi)] = E(Sjkdil-
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This shows that ¢;; are dual to c¢;; with respect to the pairing (-,-). In particular:

Corollary 4.4. Let Vi,..., V. be irreducible, mutually non-isomorphic representations of G
of dimensions ny,...,n,.. Then
-
Gl <> ni.
i=1

In particular, the number of irredcible representations of G is finite.

5. CHARACTERS
Let (7, V) be a representation of G. The character x of 7 is defined by
x(g) = trace(n(g)).

With respect to a basis vy, ...,v, of V we clearly have

n

x(9) = ciilg)-

i=1
Since ¢ has finite order any eigenvalue of 7(g) is a root of 1. Since the trace of 7(g) is the
sum of its eigenvalues, it follows that

x(g7") =x(9)

where x(g) denotes the complex conjugate of x(g). The orthogonality relations between ma-
trix coefficients proved in the last section imply the orthogonality relations between characters
of irreducible representations:

Proposition 5.1. Let Vi,..., V. be irreducible mutually non-isomorphic representations of
G. Then
(Xi» Xj) = 0ij-
If V is not irreducible, then we can decompose it into irreducible summands:
V=mVi®& - &nV;

where n; is a non-negative integer, called the muliplicity of the irreducible representation V;
in V. Since the trace of a block diagonal matrix is a sum of traces of the blocks, it follows
that

X =MmMixX1+ -+ MpXr.
Orthogonality relations of characters imply that

(X;x) =mi + -+ +mg and m; = (x, xi)-

In particular, a representation (7, V) is irreducible if and only if (x,x) = 1. As an example,
consider our 2-dimensional representation of S3. The trace function is constant on conjugacy
classes, so it is easy to tabulate:

1
(12), (23), (13)
(123), (132)

! g [ x(9) |
2
0
1
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It follows that (x, x) = £(2% + (—1)? + (=1)%) = 1 and 7 is irreducible.
Right and left regular representations of G are defined on the space of functions C[G] by

[R(9)f)(x) = f(zg) and [L(g)f](x) = f(g~ @)
for every f in C[G]. In order to decompose the right regular representation we need to
compute its trace. Bu this is easy! Indeed, the space C[G] is spanned by delta functions 9,
for all y in G. Note that

R(9)<5y) = 5yg*1
This shows that in terms of the basis ¢, the trace of R(g) is given by

(g) = |IGlifg=1
X =0t g # 1.

Let V; be an irreducible representation of dimension n;. Then x;(1) = n; and

(XR,Xi) =N
since the sum reduces to g = 1.

Theorem 5.2. Let G be a finite group and Vi, ..., V, all its irreducible representations. Then
C[Gl=mWV & @&n,V,.
In particular |G| = n? + - - + n2.

The above theorem can be used to show that a list of representations of a group is complete.
For example, S3 has two one dimensional representations, the trivial and the sign character,
and the 2 dimensional irreducible representation given by symmetries of an equilateral trian-
gle. The sum of squares of their dimensions ads up to 6 the order of the group. In particular
the three representations exhaust all irreducible representations of Sj3.

HW problems

1) Let Dg be the group of symmetries of a squares. Show that the 2 dimensional representation
(as symmetries of the square) is irreducible by calculating the character table.

2) Write down the character table of all 1-dimensional representations of Dg. Hint: let —1
in Dg be the symmetry of the square given by multiplication by the real number —1 (the
rotation by 180°). Consider the characters of the quotient of Dg by {1, —1}.

3) Let V' be an irreducible subspace of the right regular representation of G on C[G]. Show
that V' is contained in the space of its matrix coefficients. Hint: pick v* to be the functional
given by evaluating a function at 1.



