
THE ROOT CLOSURE OF A RING OF MIXEDCHARACTERISTICPAUL C. ROBERTSAbstract. We de�ne a closure operation for rings of mixed characteristic andverify that the closure is a ring. We then show that this closure produces a ringwith good properties with respect to its Fontaine ring and give an example toshow that rings that are not closed in this sense do not satisfy these properties.1. IntroductionThe results in this paper are part of a program to understand rings of mixedcharacteristic by studying their associated Fontaine rings. We will de�ne Fontainerings and outline the main properties that we use in Section 3; we mention herethat they give a ring of positive characteristic from which, under certain conditions,the original ring can be reconstructed up to p-adic completion. The di�culty comesfrom the \certain conditions" that have to apply; essentially what is necessary isthat there are enough pth roots in the ring. For absolutely integrally closed rings,for example, this works well, but for Noetherian rings it does not work at all, andadjoining pth roots of all elements produces a huge extension that is di�cult to dealwith. In this paper we describe a much smaller extension, which we call the rootclosure, that makes the reconstruction of the p-adic completion from the Fontainering work correctly.In section 2 we give the basic de�nitions and elementary properties of the rootclosure. In section 3 we desribe the connection with Fontaine rings, and in section4 we give an example to show how this works in practice.2. Basic DefinitionsLet p be a prime number, and let R be a commutative ring (with 1) of mixedcharacteristic p. The only assumption we make is that p is not a zero divisor inR; in most cases of interest R is a quasi-local domain and p is a nonzero elementof its maximal ideal. However, we do not even exclude the case where p is a unit,although the ring does not actually have mixed characteristic and the constructionis not interesting in that case. We do not assume that R is Noetherian.Let Rp denote the localization of R obtained by inverting p; our assumptionimplies that R � Rp.De�nition 1. The root closure of R, denoted C(R), is the set of all x 2 Rp suchthat xpn is in R for some integer n � 0.We note that if xpn 2 R, then xpm 2 R for all m � n, and in fact we also havethat xkpn 2 R for all positive integers k.The author was supported by NSF grant 0500588.1



2 PAUL C. ROBERTSProposition 1. If R is a ring such that p is not a zero divisor on R, then C(R)is a subring of Rp.Proof. We note �rst that if we have a �nite number of elements si in C(R) wecan assume that there a common n such that spni is in R for all i. Since C(R) isby de�nition contained in Rp, we can also assume that there is a common integerk such that pksi 2 R for all i.It is clear that R � C(R) (so in particular 1 2 C(R)), and that if s and t are inC(R), with spn and tpn in R, then (st)pn = spntpn 2 R, so st 2 C(R). It is alsoclear that if s 2 C(R), then �s 2 C(R).We must now show that if s and t are in C(R), then (s + t)pN 2 R for someinteger N . Let n be a positive integer such that spn and tpn are in R and let k bea positive integer such that pks and pkt are in R.We �rst prove an elementary lemma on binomial coe�cients. We use the notationpr k m to mean that pr is the highest power of p that divides m.Lemma 1. Let m be a positive integer, and let i be an integer with 1 � i � pm. Ifpr k i, then pm�r k �pmi �.Proof. We use induction on i. For i = 1, �pmi � = pm, r = 0, and pm�r = pm kpm, so the result is correct.We now assume that 2 � i � pm and assume the result is true for i� 1. Since�pmi � = � pmi� 1��pm � i+ 1i � ;the only time the power of p that divides i or �pmi � will change is if pji or pj(pm�i+1),which means that pji� 1.If pji, then p 6 ji� 1, so the induction hypothesis implies that pm k �pmi�1�. Thenif pr k i, to obtain �pmi � from �pmi�1� we multiply by a number prime to p and divideby i, so we conclude that pm�r k p.If pji � 1, and if pr k i � 1, then by induction pm�r k �pmi�1�, and a similarcomputation shows that pm k �pmi �; since p 6 ji in this case, this proves the result.
˜ We now return to the proof of the theorem. As above, let spn , tpn , pks, and pktbe in R. We claim that if N > 2kpn + n, then (s+ t)pN 2 R.We have (s+ t)pN = pNXi=0 �pNi �sitpN�i:We claim that every term in the sum on the left hand side is in R. First, if pndivides i, then pn divides pN � i, and both si and tpN�i are in R. On the otherhand, if pn does not divide i, then the above lemma implies that pN�n divides �pNi �.By our choice of N , this implies that p2kpn divides �pNi �.Write i = apn + u and pN � i = bpn + v, with u and v integers such that1 � u; v < pn. We have si = sapn+u = sapnsu: As noted above, sapn 2 R. Sincepks 2 R, we have pkusu 2 R, so, since u < pn, pkpnsu 2 R. Thus pkpnsi 2 R.Similarly, pkpn tpN�i 2 R. Thus p2kpnsitpN�i 2 R, so, since p2kpn divides �pNi �,



THE ROOT CLOSURE OF A RING OF MIXED CHARACTERISTIC 3�pNi �sitpN�i 2 R. Thus we have shown that every term in the sum is in R, so(s+ t)pN 2 R and s+ t 2 C(R). Thus C(R) is a ring.If R = C(R), we say that R is root closed. We note that this is a weakerstatement than saying that it is closed under taking pth roots; we also note that ifS is an arbitrary extension of R, it is not true that the set of elements x of S suchthat xpn is in R for some n forms a ring.3. The root closure and Fontaine rings.Let R be a ring of mixed characteristic as above. We de�ne the Fontaine ring ofR, which we denote E(R), by E(R) = lim Rn;where each Rn, de�ned for integers n � 0, is R=pR, and the map from Rn+1 to Rnis the Frobenius map. An element of this ring is thus given by a sequence r0; r1; : : :of elements of R=pR with rpn+1 = rn for all n � 0. We denote this sequence (rn).It is rather clear from the de�nition that if there are not very many elementsthat have pnth roots modulo p, the Fontaine ring will be very small. However, theonly assumption that we make on R is that it contain a pnth root of p for each n.In this case a compatible speci�c choice of pnth root for each n de�nes an element(p1=pn) of E(R); we denote this element P .Fontaine rings have been studied for valuation rings in connection with Galoisrepresentations by Fontaine [3], Wintenberger[5], and others. They have been stud-ied for more general rings by Andreatta [1]. For their basic properties we refer toGabber and Ramero [4] Section 8.2; our notation is taken essentially from thatsource. We note that there are alternative de�nitions for this ring and that thereare other \Fontaine rings" rings de�ned from this one.We recall (see [4]) that E(R) is a perfect ring of characteristic p; in fact, the pthroot of (rn) is simply (sn), where sn = rn+1 for each n.One of the most useful properties of Fontaine rings is that the p-adic completionof R can be reconstructed from E(R) and, for certain rings, this can be done ina simple way. More precisely, there is a map from the ring of Witt vectors onE(R) to the p-adic completion of R. We recall that the p-adic completion of R islim R=pnR, which we denote R̂. We will show that to determine the kernel of thismap it su�ces that R be root closed.Let W (E(R)) denote the ring of Witt vectors on E(R) and let R̂ denote thep-adic completion of R. We refer to Bourbaki [2] for general properties of Wittvectors.We have a map �R from E(R) to W (E(R)); it sends a to (a; 0; 0; : : :). The map�R preserves multiplication but not addition. There is a map uR from W (E(R)) toR̂ such that for an element (rn) of E(R) we haveuR(�R(rn)) = limn!1 rpnn :Finally, uR induces a ring homomorphism uR from E(R)=PE(R) to R̂=pR̂ = R=pRthat coincides with the map de�ned by sending (rn) to r0.Lemma 2. Let F be the Frobenius map on R=pR, where R is as above. If R isroot closed, then the kernel of Fn is generated by p1=pn for all n.



4 PAUL C. ROBERTSSuppose that a 2 R and that apn is a multiple of p, so apn = pb for some b 2 R.Now we have (a=p1=pn)pn = pb=p = b 2 R, so a=p1=pn is in C(R). Since R is rootclosed, a=p1=pn is in R, so a 2 p1=pnR, as was to be shown.We next show that if R is root closed, we can determine the kernel of the mapuR from E(R) to R=pR.Proposition 2. Suppose that R is root closed. Then uR : E(R)=PE(R)! R̂=pR̂ =R=pR is injective.Proof. Let R = (rn) be an element of E(R) that goes to zero in R=pR, whichmeans that r0 = 0 in R=pR. Since rpnn = r0, the above lemma implies that rn 2p1=pnR for all n. Let rn = p1=pnsn for each n.It is clear that letting S = (sn) would give R = PS, but we do not know thatS is an element of E(R); that is, that spn+1 = sn in R=pR for all n � 0. We liftthe sn to elements of R, also denoted sn. In our notation we will henceforth usecongruence modulo pR to denote equality in R=pR.Although we do not know that spn+1 � sn modulo pR, we do know that (p1=pn+1sn+1)p �rpn+1 � rn � p1=pnsn modulo p, which implies that spn+1 � sn modulo p1�1=pnR(since p is not a zero-divisor on R). We claim that if we let tn = (sn+1)p for eachn, then we will have tpn � tn�1 modulo p for each n � 1 and (rn) = P (tn).Since spn+1 � sn modulo p1�1=pnR, there is an element vn of R withspn+1 = sn + p1�1=pnvn:If we raise this equation to the pth power we obtainsp2n+1 � spn + (p1�1=pnvn)p � spnmodulo pR. This says that tpn � tn�1 modulo pR, as was to be shown.It remains to show that rn � p1=pntn modulo pR for each n. In fact, we havern � rpn+1 � (sn+1p1=pn+1)p � tnp1=pn modulo pR:Thus (rn) 2 PE(R):We now come to the main point, which is to describe the kernel of the map uRfrom W (E(R)) to R̂.Theorem 1. Suppose R is root closed. Then the kernel of uR is generated by P�p.Proof. We have a diagram0 ! Ker(uR) ! W (E(R)) uR! R̂# # #0 ! Ker(uR) ! E(R) uR! R=pRThe map from W (E(R)) to E(R) is reduction modulo p.Let x be an element in the kernel of uR. Mapping x down to E(R) we get anelement of the kernel of uR, so by Lemma 2 we obtain a multiple of P , which wewrite eP . Lift e to an element of W (E(R)), say w1; we then have that x�Pw goesto zero in E(R), so x� Pw1 2 pW (E(R)): Thus x� (P � p)w1 is in pW (R), so wecan write x = (P � p)w1 + pv1 (�)for some v1 2 W (E(R)):



THE ROOT CLOSURE OF A RING OF MIXED CHARACTERISTIC 5To complete the proof we use induction on k.Suppose we have k � 1 and wk and vk in W (E(R)) withx = (P � p)wk + pkvk:Equation (�) gives the case k = 1.Since x and P � p are in the kernel of uR, we havepkuR(vk) = uR(pkvk) = uR(x� (P � p)wk) = 0:Thus, since p is a nonzerodivisor in R̂, vk is in the kernel of uR. Using the sameargument that we used above for x, we can writevk = (P � p)y + pvk+1for some y and vk+1 in W (E(R)). We then havex = (P � p)wk + pkvk = (P � p)wk + pk((P � p)y + pvk+1)= (P � p)(wk + pky) + pk+1vk+1:Letting wk+1 = wk + pky we havex = (P � p)wk+1 + pk+1vk+1with wk+1 � wk modulo pk. Since W (E(R)) is complete in the p-adic topology, ifwe let w be the limit of the wk , we have x = (P � p)w. Thus the kernel of uR isgenerated by P � p. 4. An ExampleWe give a simple example to illustrate the constructions described above. Let V0be the ring of p-adic integers for some prime p > 3, and let R0 = V0[[x; y]]=(p3+x3+y3): Let R be the ring obtained by adjoining pnth roots of p; x, and y; speci�cally,we adjoin elements �n; xn; and yn with �0 = p; x0 = x; and y0 = y and such that�pn+1 = �n and similarly for the xn and yn for each n � 1.To describe the ring R, we �rst de�ne a ring S similarly, letting S0 be thepower series ring V0[[x0; y0]] and adjoining pnth roots �0n; x0n; y0n following the sameprocedure as for R. We let S be the union of the Sn = S0[�0n; x0n; y0n]; in this caseeach Sn is a regular local ring. There is a map from S to R that sends �0n to �n,x0n to xn, and y0n to yn.We claim that the kernel of this map is generated by p3 + x03 + y03. To showthis it su�ces to show that p3 + x03 + y03 is prime in Sn for each n. In Sn thispolynomial can be written as a polynomial in y0n as y03pn + (�03pnn + x0n3pn), whichis prime since �03pnn + x03pnn is a product of distinct prime elements of Sn (usingEisenstein's criterion, for example).Let P;X; and Y be the elements (�n); (xn), and (yn) of E(R). Consider theelement � = (rn) = P 3 + X3 + Y 3. Its zeroth component r0 is p3 + x3 + y3 = 0,so � is in the kernel of uR. We claim that � is not in PE(R). If it were, its r1component, p3=p+x3=p+y3=p would have to be in the ideal generated by p1=p, whichmeans that the corresponding power series p3=p+x03=p+y03=p would be in the idealgenerated by p1=p and p3 + x03 + y03. This is clearly not the case, so � 62 PE(R).On the other hand, it is easy to see that the elements (p3=pn+x3pn+y3pn)=p1=pnare in C(R) and that � 2 PE(C(R)).



6 PAUL C. ROBERTSWe remark that it can be shown that E(R) in this example is a completion ofa power series ring over a �eld in three variables, so that an attempt to recover R̂by taking W (E(R))=(P � p) would give a ring of dimension 3 rather than 2, thedimension of R. References[1] F. Andreatta, Generalized ring of norms and generalized (�;�)-modules Ann. Sci. �EcoleNorm. Sup. (4) 39 no. 4 (2006), 599{647.[2] N. Bourbaki, Alg�ebre Commutative, Chapitres 8{9, �El�ements de Math�ematiques, Masson(1983).[3] J.-M. Fontaine,Repr�esentations p-adiques des corps locaux, in: Cartier P., Illusie L., KatzN.M., Laumon G., Manin Y., Ribet K.A. (Eds.), The Grothendieck Festschrift, vol. II, in:Progress in Math., vol. 87, Birkh�auser, Basel, (1991), 249{309.[4] O. Gabber and L. Ramero, Foundations of p-adic Hodge theory, arxiv:math/0409584.[5] J.-P. Wintenberger, Le corps des normes de certaines extensions in�nies de corps locaux,Ann. Sci. �Ecole Norm. Sup. (4) 16 no. 1 (1983), 59{89.E-mail address: roberts@math.utah.eduDepartment of Mathematics, University of Utah, 155 S 1400 E, Salt Lake city, Utah84112-0090


