THE HOMOLOGICAL CONJECTURES

PAUL ROBERTS

1. INTRODUCTION

The term “Homological Conjectures” is used here to refer to a certain set of related conjectures
about homological properties of commutative rings. While there are numerous conjectures in this
area, the ones discussed here are those collected in a monograph of Mel Hochster in 1975 entitled
“Topics in the homological theory of modules over commutative rings” [24], as well as several
ones that have developed out of them. In this monograph Hochster stated a number of earlier
conjectures, added a few of his own, and solved several of them. Since then new ones have been
added and some of them have been settled. It is the aim of this article to outline this history,
starting at the beginning and ending by giving an idea of the present situation. We will attempt
to give some idea of the methods and concepts behind the various advances, and give references
to more complete accounts.

The article is organized as follows. In each of the first few sections we discuss a set of related
conjectures on Hochster’s diagram and follow their development up to the present. These sec-
tions follow a roughly chronological order as far as the origins of the conjectures are concerned,
beginning with Serre’s multiplicity conjectures which were one of the major influences behind
the whole subject. However, there has been recent progress even on some of the earliest con-
jectures, and we will discuss, for example, recent developments on Serre’s original conjectures
before getting to generalizations of these conjectures which came much earlier. In addition to
the major advances, we will mention many other developments, but there are a lot of them and
we have not attempted to cover them all.

We give Hochster’s 1975 diagram below. The conjectures appearing in the diagram will then
be stated in the following sections. We give a table of contents below, including the numbers
from the diagram that are defined in each section. Those denoted My, M;, and M2 are parts of
(8), the Serre Multiplicity Conjectures, and (9), the Strong Multiplicity Conjectures.

Here is the outline.

1) The Serre Multiplicity Conjectures ((1),(8)).

2) The Peskine-Szpiro Intersection Conjecture ((2),(3),(4),(5)).

3) Generalizations of the Multiplicity Conjectures ((9),(12),(13)).

4) The Monomial, Direct Summand, and Canonical Element Conjectures ((10),(11))
5) Cohen-Macaulay Modules and Algebras ((6),(7)).

6) The Syzygy Conjecture and the Improved New Intersection Conjecture.

7) Tight Closure Theory

8) The Strong Direct Summand Conjecture.

9) Almost Cohen-Macaulay Algebras.

(10) A Summary of Open Questions.

There have been several summaries of progress on these conjectures over the years, including
two in the last decade. Jan Strooker [63] has an book on the state of the Homological Conjectures
in 1990; it also includes a lot of the necessary background in Commutative Algebra. There is
also a set of notes coming from a Minicourse on Classical Questions in Commutative Algebra at
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the University of Utah which covered many aspects of the subject. These notes can be found at
http://www.math.utah.edu/vigre/minicourses/2004.html#b. Hochster also has a summary
from the conference in honor of Phil Griffith which talks about some of the recent developments
[30].

Here is Hochster’s diagram of conjectures from 1975:

W

(1) Rigidity

irect Summand (2) Zero Divisor
(11) Monomial (3) Intersection

(6) Small C-M Modules === (7) Big C-M Modules (5) Bass
(4) Homological Height
(12) Strong Intersection
Mo of (9) + (13) Codimension (M1 = M), regular case

Mo Of (9)

(9) Strong Multiplicitiess =—————==> (8) Serre

2. THE SERRE MULTIPLICITY CONJECTURES

Among the earliest conjectures in this subject were those of Jean-Pierre Serre which arose
from his theory of intersection multiplicities using homological methods. The idea was to extend
the algebraic theory from classical methods that worked, say, for intersections of curves in the
plane, to a more general situation.

We look briefly at the case of the intersection of two curves in the affine plane over an alge-
braically closed field k. In this case each curve is defined by one polynomial in two variables, say
2 and y, so we have polynomials f and ¢ defining the two curves. The condition that a point p in
the plane corresponding to a maximal ideal m of A = k[z, y| is an isolated point of intersection
means that the ideal (f,g) generated by f and ¢ is primary to the maximal ideal of the local
ring An,. The intersection multiplicity is then defined simply to be the length of the quotient
Aw/(f,g), or, equivalently, its dimension over the field k.

There is more than one way to generalize this to an arbitrary dimension d. First, one can take
the intersection of d hyperplanes; in the case of affine space, for example, this can be done in
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the same way as curves in the plane. One can also define the intersection of two subvarieties (or
subschemes). These subvarieties will be defined locally by ideals I and .J at a point of intersection
corresponding to a maximal ideal m. However, in this case, defining the intersection multiplicity
to be the length of A, /(I,.J) does not work; for example, Bézout’s Theorem in projective space
would not hold with this definition. What Serre did was to correct this definition by taking an
Euler characteristic involving higher Tor modules. He defined the intersection multiplicity for
any pair of modules M and N over a regular local ring A such that M ® N has finite length as
follows.

d
X(M,N) => (—1)"length(Tor/ (M, N)).
i=0

The case of subvarieties above is where M = A/l and N = A,/J. In this case, letting
An = R, we have Torl(M,N) = Torl(R/I,R/J) = R/I ® R/J = R/(I,J), a so that the
previous definition appears as the first term in this alternating sum. Serre’s definition has many
nice properties, such as additivity in each variable, but now some conditions which were clear
before, such as the fact that it is nonnegative, are not so clear. Serre stated three conjectures
which are equivalent to the four we give here. The notation M; refers to Hochster’s diagram.

Conjecture 1. (1) (My) dim(M) + dim(N) < dim(R).
(2) (M,: Vanishing) If dim(M) + dim(N) < dim(R), then x(M,N) = 0.
(3) (Nonnegativity) x(M,N) > 0.
(4) (Ms: Positivity) If dim(M) 4+ dim(N) = dim(R), then x(M,N) > 0.

Serre’s original conjectures, as stated in Serre [62], V.B.3 and V.B.4, were nonnegativity, My,
and that dim(M) 4+ dim(N) = dim(R) if and only if x(M, N) > 0. The reason for stating them
the way we did comes from later developments.

Before continuing, it will be good to go over some of the issues that arose in studying these
questions, since they have been part of this subject ever since. First, there are three basic cases.
Since R is a regular local ring it is an integral domain and has a maximal ideal m and residue
field k. The cases are

(1) Characteristic zero: R contains a field of characteristic zero.

(2) Positive characteristic: R contains a field of positive characteristic p for some p.

(3) Mixed characteristic: R has characteristic zero but k£ has positive characteristic p for
some p.

The first two cases are called the equicharacteristic case. The mixed characteristic case can
be further divided into the unramified case, in which the prime p is not in m?, and the ramified
case, in which it is in m2. The most difficult case for these conjectures and many others is the
ramified case in mixed characteristic.

The method of proof used by Serre in the equicharacteristic case, called “reduction to the
diagonal”, goes roughly as follows. First, one shows that the statments hold if one of the
modules, say M, is of the form R/I, where I is an ideal generated by a regular sequence (see
Serre [62], IV.A.3). If R is a complete equicharacteristic regular local ring, the Cohen structure
theorem says that it is a power series ring over a field. If we now have arbitrary modules M
and N over a power series ring k[[X7,..., X]], we think of N as being a module over another
power series ring k[[Y1,...Yy]] and consider the “complete tensor product” M®;,N as a module
over k[[X1,..., X4, Y1,...,Yq]]; notice that the tensor product is taken over the subfield k. Let I
denote the ideal of k[[ X1, ..., X4, Y1, ..., Y]] generated by (X; —Y7,..., Xy—Yy); these elements
form a regular sequence and define the diagonal subscheme in Spec(k[[X;,Y;]]. Then one shows
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that
M ®@p N = (M&N) ®xx,,vay (k[[Xi, Yi]]/T)
and similarly for higher Tors. This reduces the question to one of the form a regular ring modulo
a regular sequence, where it all works. Needless to say there are a lot of details omitted here;
the complete story can be found in Serre [62].
In addition to the equicharacteristic case, Serre proved these results in the case of an unramified
ring of mixed characteristic, and he proved the first statement for general regular local rings.
Serre also stated conjectures about partial Euler characteristics; that is, sums of the form
d
Xi(M,N) =" (~1)’ "length(Tor;(M, N)).
J=t
We note that this gives the alternating sum of lengths of Tor, starting now with Tor;(M, N) with
a positive sign instead of Torg(M,N) = M ®p N. Serre proved that in the equicharacteristic
case, we have x;(M,N) > 0 for all ¢ > 0, and, in fact, if Tor;(M,N) # 0 and i > 0, then
Xi(M,N) > 0. This implies in particular the following for equicharacteristic rings in the case
where M @ N has finite length. In fact, this was a result of Auslander [1] for all pairs of modules
over unramified regular local rings, and it was conjectured to be true in general.

Conjecture 2. (The Rigidity of Tor (1)) Let M and N be finitely generated modules over a
reqular local ring. Then if Tor;(M,N) =0 for some i > 0, then Torj(M,N) =0 for all j > i.

The general case of Rigidity (R is still assumed regular) was proven by Lichtenbaum in [43].
He also extended Serre’s results on partial Euler characteristics to the unramified case for i > 2
or when M and N are torsion-free; Hochster [26] completed the proof in the unramified case.
The conjecture on partial Euler characteristics is still open for ramified regular local rings of
mixed characteristic.

In the remainder of this section we discuss later developments on these conjectures. R is always
assumed to be a regular local ring.

2.1. The Vanishing Conjecture. The first of the multiplicity conjectures to be proven was
the Vanishing Conjecture. This was proven independently in ROberts [51] (see also [53]) and
by Gillet and Soule in [18] (see also [19]). Both of the proofs involved new machinery in either
Algebraic Geometry or K-theory. Before discussing these developments we put them into a more
recent context.

Let A be a local ring, and let M be a module of finite projective dimension. Then M has a
finite free resolution

0O—-F,—F,_1—>--—F—>M-—Q0.

It is often more convenient to replace M with its resolution

0— Fy — Fy—y — -+ — Fy — 0.
This is a perfect complex, which means a bounded complex of finitely generated free modules.
If M and N are both modules of finite projective dimension, and

0=-G =Gy —---—=>Gy— N

is a free resolution of NV, then the tensor product of complexes F, ® G, gives a complex with
homology Tor;(M, N). Since all modules over a regular local ring have finite projective dimension,
this means that Serre’s multiplicity conjectures can be formulated in terms of perfect complexes.

We now let Ky(A) denote the K-group of perfect complexes over a local ring A. Ky(A) is
defined to be the free abelian group with generators isomorphism classes [F,] of perfect complexes
with relations given by
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(1) [F,] = [F}] + [F)] if there is a short exact sequence of complexes
0= F,—F,—F/—0.

(2) [F.] = [G.] if there exists a map of complexes F, — G, that induces an isomorphism on
homology modules.

A map of complexes that induces an isomorphism on homology modules is called a quasi-
tsomorphism.

In addition to its structure as an abelian group, Ky(A) has a product defined by the tensor
product of complexes, which we have already seen is related to intersection multiplicities. We
define the support of a complex to be the union of the supports of its homology modules, or,
equivalently, the set of prime ideals p for which the localization of the complex at p is not exact.
If F, is a perfect complex with support W and G, one with support Z, then it is not hard to
show that the support of F, ® G, is W N Z. Putting this together, we can see that Ky(A) has a
filtration by support and this filtration is compatible with the product structure.

As mentioned above, the Vanishing Conjecture for regular rings was proven around 1985; there
were two independent proofs using different methods. However, in both cases the main idea was
to replace the above filtration by a grading with good properties. Suppose that we could give
Ko(R), for a regular local ring R, a grading by codimension, so that we had Ky(R) = &% ,G;,
where (G; gave the component representing elements with support of codimension 7, and satisfying
the condition that the intersection pairing mapped G; x G to G4 ; @Gyt j41 D -+ . Then if M and
N were modules (or perfect complexes) with dim M +dim N < dim R, they would be represented
by sums of elements of G; and G respectively with ¢ + j > d, so the intersection product would
be zero. This, roughly, is what each of the proofs did.

In the proof be Gillet and Soulé the grading was given by eigenspaces of Adams operations on
Ky(R); see [19] for details.

In Roberts [51] the grading was given by a map to the rational Chow group, which we define
briefly. For a Noetherian ring A, we define the ith graded piece of the rational Chow group,
denoted C'H;(A)g, to be the Q vector space on generators [p], where p is a prime ideal such that
the dimension of A/p is i modulo an equivalence relation called rational equivalence. Rational
equivalence is defined by setting div(q, =) to zero in C'H;(A), where q is a prime ideal such that
A/q has dimension i + 1, = is an element of A not in q, and, letting B = A/q,

div(q,x) = Z length(B,/xB,)[p],

where the sum is over p with dim(A/p) = i. There is then a map 7 from Ky(A) to operators on
CH;(A)g. If A is a regular local ring, we can replace dimension by codimension and obtain a
grading with the properties above. For details see Fulton [16] and Roberts [53] and [56].

These techniques allowed one to prove the Vanishing Conjecture also in the case in which M
and N are modules of finite projective dimension over a complete intersection. We will discuss
other generalizations in a later section.

2.2. Gabber’s proof of the Nonnegativity conjecture. The third of Serre’s conjectures,
Nonnegativity, was proven by Gabber around 1996. Gabber never published the proof, but a
brief summary appears in Berthelot [3], and more extensive versions can be found in Hochster
[27] and Roberts [57]. Again there was a new ingredient; this time it was a theorem of de Jong
on the existence of regular alterations [39]. We give here a special case of this theorem which
applies to this problem.



6 PAUL ROBERTS

Theorem 1. (A. J. de Jong) Let A be a local integral domain which is essentially of finite type
over a discrete valuation ring. Then there exists a scheme X with a projective map X — Spec(A)
such that

(1) X is an integral regular scheme (that is, all the local rings of X are regular).
(2) The field of rational functions k(X) is a finite extension of the field of fractions of A.

There is some work involved in reducing to the case in which A is essentially of finite type over
a discrete valuation ring, and even in this case the proof is quite nontrivial. We mention briefly
where de Jong’s theorem is applied. It suffices to show that x(A/p, A/q) > 0 for prime ideals
p and q such that (p,q) is primary to the maximal ideal. The theorem is applied to one of the
quotients, say A/p. The machinery of intersection theory must be extended to perfect complexes
on schemes and projective morphisms as well as over commutative rings. One curious feature of
the proof is that at one point it is necessary to assume that the original local ring is ramified;
it is easy to reduce to this case but unexpected that it would be useful. The proof also gives a
new proof of the Vanishing Conjecture. We refer to the references above for descriptions of the
proof.

2.3. The Positivity Conjecture. The positivity conjecture remains open. There have been
several approaches to it, and we mention two.

One approach is based on the following. Let M and N be two modules over a regular local
ring R such that dimM + dim/N = dimR. If M is Cohen-Macaulay, its minimal free resolution
has length dimR — dimM, and if N is also Cohen-Macaulay, then the condition on the length
of the resolution of M implies that Tor;(M, N) = 0 for ¢« > 0. Thus x(M, N) is the length of
M ®pr N, which is clearly positive. Hence if we can reduce to the case in which M and N are
Cohen-Macaulay, we are done.

A method for reducing to this case is, first, to reduce to the case where M and N are of the
form A/p by taking filtrations with quotients of this form; since the Vanishing Conjecture holds,
we can reduce to modules of this form. If we could now find an A/p-module of the dimension of
A/p which was Cohen-Macaulay for any p, we could, again using vanishing, reduce to the case in
which M and N are Cohen-Macaulay and complete the proof. The missing fact is the existence
of what are called “small Cohen-Macauly modules”; these will be discussed in a later section.
(What we have just described is the arrow from “Small C-M Modules” to “(M; = Ms), regular
case” in Hochster’s diagram.)

The other, more recent, attempts to prove the Positivity Conjecture use Gabber’s construction.
Kurano and Roberts [42] give a criterion for positivity to hold using this construction. Dutta
[10] gives a formula for intersection multiplicities using the blow-up of the maximal ideal of a
regular local ring, again using Gabber’s ideas. It is not clear whether any of these methods will
lead to a proof of positivity, however, and that conjecture remains open.

3. THE PESKINE-SZPIRO INTERSECTION CONJECTURE

Serre’s introduction of homological methods into intersection theory created much more in-
terest in questions on homological algebra, and, in particular, properties of modules of finite
projective dimension. The Auslander-Buchsbaum-Serre theorem states that every R-module has
finite projective dimension if and only if the ring R is regular, so one point of view is that proper-
ties of modules over regular local rings should extend to properties of modules of finite projective
dimension over arbitrary local rings. One direction was to generalize the multiplicity properties
themselves; this will be considered in the next section. A different direction was started by
Peskine and Szpiro with their “Intersection Theorem”. This was a main theorem of their paper
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Dimension projective finie et cohomologie locale, which was one of the most important papers in
the development of the Homological Conjectures.
The Peskine-Szpiro Intersection Conjecture states:

Conjecture 3. Let A be a local ring, let M be an A-module of finite projective dimension, and
let N be a module such that M ® N has finite length. Then the Krull dimension of N is less
than or equal to the projective dimension of M.

They stated this result as a theorem rather than a conjecture, since it was a theorem for rings
of positive characteristic and rings essentially of finite type over a field of characteristic zero. We
discuss this in more detail below.

In some ways this conjecture is analogous to Serre’s conjectures. By the Auslander-Buchsbaum
Theorem, the depth of a module is related to the projective dimension (if finite) by

projdimM + depthM = depth A.

or
projdimM = depthA — depthM.
Thus the Peskine Szpiro Theorem can be stated that

dimN + depthM < depthA.

This is analogous, but certainly not equivalent, to the Serre theorem. Its interest lies in the
fact that it implies several other conjectures from that time, of which we state two.

Conjecture 4. (Bass). If a ring A has a finitely generated nonzero module of finite injective
dimension, then A is Cohen-Macaulay.

Conjecture 5. (Auslander) Let M be a finitely generated module of finite projective dimension.
If a € A is a nonzerodivisor on M, then a is a nonzerodivisor on A.

We refer to the paper of Peskine and Szpiro [47] for proofs that these conjectures are implied
by the Intersection Conjecture.

A newer version of the Intersection Conjecture was introduced shortly thereafter; it is in the
spirit of generalizing from modules to complexes referred to in the previous section.

Conjecture 6. The New Intersection Conjecture Let A be a local ring of dimension d. If
0—= Fy — Fyy — = Fy—0

is a complex of finitely generated free modules such that H;(F,) has finite length for each i and
Hy(F,) #0, then k > d.

That this implies the original conjecture can be seen by applying the New Intersection Con-
jecture to a projective resolution of M tensored with a suitable module of the form A/p for p a
prime ideal of A in the support of N.

In addition to stating this conjecture and several others, Peskine and Szpiro introduced two
methods that are still very much in use in this area. Perhaps the most important is the use of
the Frobenius map and reduction to positive characteristic. We briefly recall how this works.

Let A be a ring of positive characteristic p. Then the Frobenius map, which we denote F', is
the ring homomorphism defined by F(a) = a?; it is a ring homomorphism since p = 0 on A so
(a+ b)P = aP + b for all A and b in A. The basic idea of using this map to prove conjectures is
to assume that there is a counterexample, and then to take a limit over powers of the Frobenius
map to obtain a contradiction. A simpler method, which works sometimes, is to show that a
high enough power of the Frobenius map produces an example that can be shown not to exist.
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The second step in this process is to reduce the characteristic zero case to the case of positive
characteristic. Peskine and Szpiro introduced this method for this kind of problem, and it was
completed by Hochster.

The procedure is fairly complicated, but one step, reduction from finitely generated over a
field to positive characteristic, goes something like this. Given a counterexample over a ring
that is a finitely generated ring over a field of characteristic zero, one first, using the fact that
there are only finitely many elements to consider, reduces to the case of a ring that is finitely
generated over the rational numbers, and then one reduces further to an example over a ring
finitely generated over the integers. Finally, one shows that for all but finitely many primes p,
the reduction modulo p and gives a counterexample in characteristic p. Peskine and Szpiro used
this method to prove the Intersection Conjecture in the case of a local ring essentially of finite
type over a field of characteristic zero, and they also used the Artin approximation Theorem to
extend this to the case of a ring whose completion was the completion of a ring essentially of
finite type over a field of characteristic zero. Shortly thereafter Hochster was able to extend this
method to the general equicharacteristic case.

3.1. Hochster’s Metatheorem. One of the main results of Hochster [24] was the following.

Theorem 2. Let § be a system of polynomial equations in d + q variables X,,..., Xq4,Y1,...,Y,
over 7., say

FI(XI;---;Xd;}/l;---;Y;]):O

Fi(Xy,..., X, Y,...,Y,) =0.
Suppose that & has a solution in a local ring R which contains a field of characteristic zero
such that dim(R) = d and the values x1,...,xq for Xy,..., Xy is a system of parameters for R.
Then there exists a local ring S containing a field of characteristic p > 0 such that dim(S) = d
and there is a solution of § such that the values x, ..., !, for X1,..., Xq is a system of parameters

for S.

The proof of this theorem used Artin Approximation, and it finished the characteristic zero
case of several of the conjectures, including the Intersection Conjecture and various others that
we will discuss below.

The case of mixed characteristic was proven in Roberts [52]. Like the Serre vanishing theorem,
this used the theory of local Chern characters. Another essential ingredient was a theorem
relating Chern characters in positive characteristic to limits over the Frobenius map. Details of
this and more can be found in Roberts [53].

The other main technique introduced in the paper of Peskine and Szpiro was local cohomology.
As this is a topic that is still extremely important in this area, we will review some of the
important points. For more complete introductions to the subject we refer to Brodman and
Sharp [5] and Twenty-Four Hours of Local Cohomology [38].

Let A be, as usual, a commutative Noetherian ring, and let I be an ideal of A. For any
A-module M, we define the submodule I'; (M) to be the set of m € M that are annihilated by a
power of I. It is easy to see that this is indeed a submodule of M and that I'; defines a left exact
functor from the category of A-modules to itself. The functor is not right exact, however, and the
right derived functors of I'; applied to a module M, denoted H:(M), are the local cohomology
modules of M with support in I.

The most important case as far as the Homological Conjectures are concerned is the case in
which A is local and [ is the maximal ideal m. We note that if I and .J are ideals with the
same support, so that we have J* C I and I™ C .J for some m and n, then it is clear that
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[';/(M) =T;(M) for all modules M, and thus the local cohomology modules with supports in

I and J are the same. If m is the maximal ideal of a local ring A of dimension d, we can thus

replace m by an ideal I generated by a system of parameters (zi,...,24). Now given a set of

generators for I, there are two standard methods for computing the local cohomology modules.
First, we let C'* denote the complex

0—A— HAM — HAWJ. — = Apggeny, — 0,
i i<j

where the A at the left has degree zero and the A, ,,..,, at the right has degree d. The maps
are given be the inclusions with appropriate signs. Then it can be shown that

Hj(M) = H'(M ®4C*)

for any A-module M.

The second method is as a direct limit. For each n we take the Koszul complex K*(x7,...27).
For m > n there is a map of complexes from K*(z7,...27%) to K*(z7",...27). The limit of these
is, in fact the above complex and tensoring with M again gives local cohomology.

For a ring of positive characteristic one can also define local cohomology as a limit over powers
of the Frobenius map, and this was one of the methods introduced by Peskine and Szpiro. We
will not discuss this further here, but we will return to the topic of local cohomology in later
sections.

One of the facts that is used over and over in studying these conjectures is the following. If
we assume that A is a complete domain of dimension d, then there is an element ¢ # 0 that
annihilates the local cohomology modules H'm(A) for ¢ < d. This was proven in Roberts [50],
where the element ¢ was taken to be in a product of annihilators of the cohomology of a dualizing
complex, and in Hochster and Huneke [31], where ¢ was taken to be an element such that the
localization A, = A[1/¢| is Cohen-Macaulay. Keeping in mind that the ring A is Cohen-Macaulay
if and only if the local cohomology modules H{ are zero for i < d, it is not surprising that this
fact is useful for approaching these conjectures in the non-Cohen-Macaulay case; this method
works especially well when combined with the use of the Frobenius map.

To conclude this section we note that Avramov, Buchweitz, and Iyengar have formulated a
generalization of the New Intersection Conjecture, called the “Class Inequality”, to differential
modules. A complex is a special case of a differential module; the differential module is the direct
sum of the modules in the complex with differential given by the sum of the boundary maps.
They prove this inequality in the equicharacteristic case; the case of mixed characteristic is still
open. We refer to [2] for details.

4. GENERALIZATIONS OF THE MULTIPLICITY CONJECTURES

As has already been mentioned, one direction of research on these conjectures was to generalize
Serre’s conjectures to nonregular rings. We recall that we had defined the intersection multiplicity
X(M,N), where M and N are two finitely generated modules over a regular local ring R with
M ®pg N of finite length to be

d
X(M, N) = (~1)"length(Tor;(M, N)).
i=0
As stated, this would be defined over any local ring; however, the fact that R is regular implies

that higher Tors are zero, which, using the long exact sequence of Tors, implies that x(M, N) is
additive in M and in N. Over a nonregular ring we need an extra condition, and the weakest
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condition which makes this work is that one of the modules, say M, has finite projective dimen-
sion; its projective dimension will still be at most d. We now restate the conjectures with this
assumption.

Conjecture 7. Let A be a local ring, and let M and N be finitely generated modules such that
M has finite projective dimension and M ®4 N has finite length. Then

(1) (My) dim(M) + dim(N) < dim(A).

(2) (M,: Vanishing) If dim(M) + dim(N) < dim(A), then x(M,N) = 0.

(3) (My: Positivity) If dim(M) + dim(N) = dim(A), then x(M,N) > 0.

It is a rather remarkable fact that the first of these conjectures, which appears to be the most
basic, is still open in this generality. It holds for many examples of modules of finite projective
dimension, and there are many easy counterexamples if neither module has finite projective
dimension, but it is not known in the case stated here, in spite of the fact that it is a rather
simple statement about the nature of the support of a module of finite projective dimension.

4.1. The graded case. One of the remarkable results of Peskine and Szpiro was a Comptes
Rendus article [48] in which they proved some of the conjectures for the graded case. More
precisely, they assumed that A is a standard graded ring over an Artinian local ring (such as a
field), M is a graded module of finite projective dimension, and N is another graded module. In
this case, M has a finite free resolution by modules that are direct sums of A[n;;], the graded
module A with grading shifted by n;;, for various n. They gave a formula which allows one to
compute the intersection multiplicities in terms of the n;; in such a way that they could prove
all three parts of this conjecture.
In addition, they proved the following conjecture in the graded case:

Conjecture 8. Let M be an A-module of finite projective dimension. Then
grade(M) = dim(A) — dim(M).

We recall that the grade of a module is the longest possible length of a regular sequence
contained in the annihilator of M. This is the Codimension Conjecture (13) of Hochster’s 1975
diagram; the word codimension was once used for what we now call grade. This conjecture is a
statement about the prime ideals in the support of a module of finite projective dimension and
holds, for example, for an equidimensional ring, but it is still open in general. For a discussion
of this conjecture we refer to [55].

We make one final remark about the methods of this paper on the graded case. The authors
said at the time that their method of computing intersection multiplicities through numerical
invariants was a kind of “Riemann-Roch Theorem”. This was in fact one of the main inspirations
for later work on finding a Riemann-Roch Theorem in general. On the other hand, the question
of whether this is really a version of the Riemann-Roch Theorem of Hirzebruch was not raised
until later, and a direct proof that they agree was only given recently (see [58]).

We now return to the main topic of the Strong Multiplicity Conjectures.

As mentioned above, the first of these conjectures is still open. The second two, however,
are false. This was an example of Dutta, Hochster, and McLaughlin [11] which was one of the
turning points in research in this area. We present an outline of this example, leaving out the
details.

Let k be a field, and let A be k[X,Y,Z,Y]/(XY — ZW) localized at the maximal ideal
(X,Y, Z, W) (or k[[X,Y, Z,W]]/(XY — ZW) if you prefer). Let N = A/(X, Z). We note that
since (X, Z) contains XY — ZW, N has dimension 2. The problem is to construct a module
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of finite length and finite projective dimension such that x(M, N) # 0. This is carried out by
a detailed computation of a set of matrices representing the action of X,Y, 7, and W on a fi-
nite dimensional vector space; the authors determine the precise conditions these matrices must
satisfy and produce a set of large matrices satisfying them.

This counterexample also had influence on the theory of local Chern characters, showing that
they did not vanish where predicted. More on this approach to the question can be found in
Szpiro [65] and Roberts [53] and [56].

We mention a result of Sather-Wagstaff [61] which is similar to statement M, above but where
the hypothesis of finite projective dimension is replaced by a condition on multiplicity.

Theorem 3. Let A be an excellent quasi-unmized Cohen-Macaulay local ring that contains a
field. Let p and q be prime ideals such that A/p @4 A/q has finite length and the multiplicity of
A, is equal to the multiplicity the multiplicity of A. Then dim(A/p) + dim(A/q) < dim(A).

The interesting point here is that the condition on multiplicities is automatic for regular local
rings, since the localization of a regular local ring is regular so both multiplicities are one, like
the condition in M, that M have finite projective dimension.

We now return to a discussion of further developments on counterexamples to this general-
ization of the Vanishing Conjecture. As mentioned above, the example of Dutta, Hochster, and
McLaughlin had implications for local Chern characters. Let A be a local domain of dimension
d which is either complete or essentially of finite type over a field (this is sufficient so that Chow
groups and local Chern characters are defined). Associated to A are two elements of the Chow
group of CH,(A). The first is the class [A]; since A is a domain, 0 is a prime ideal and this
defines an element of CHy(A). The second is the local Todd class, denote 7(A), which is equal
to [A] up to elements of lower dimension, and which is what is used in formulas for multiplicities.
If A is a complete intersection, it can be shown that 7(A) = [A]; there are no lower terms. The
counterexample to vanishing enables one to construct an example of a Cohen-Macaulay domain
A of dimension 3 for which the dimension 2 component of 7(A), denoted 75(A), is not zero and
(more important), there is a module of finite length and finite projective dimension whose local
Chern character does not vanish on 79(A). This left open the question of whether there was a
similar example where A is Gorenstein. If A is Gorenstein of dimension d, then it can be shown
that 74, 1(A) = 0, so any nonvanishing component would have to be of higher codimension.

First Kurano [41] provided an example of a Gorenstein ring of dimension 5 for which 73(A) # 0.
C. Miller and Singh [46] then gave an example, also Gorenstein of dimension 5, for which there
exists a module of finite length and finite projective dimension whose local Chern character does
not vanish on 73(A). In Roberts and Srinivas [60], a general theorem was proven for local rings A
which are localizations at the maximal ideal of a standard graded ring such that the associated
projective scheme X is smooth (this includes all the above examples). In the nice case in which
the Chow group of X is essentially the same as the cohomology of X (which is also true in the
above examples), the main theorem states that if 7 is any cohomology class that is zero when
intersected with the hyperplane section, intersection with 1 can be represented by a module of
finite length and finite projective dimension. This implies in particular the there is such a module
for Kurano’s example. It also means that counterexamples of this sort are quite natural when
seen from the point of view of intersection theory in Algebraic Geometry.

In all of the discussion in this section, we have only assumed that one of the modules M and N
has finite projective dimension. If we assume that both modules have finite projective dimension,
the conjectures are still open. If the ring is a complete intersection, then the Vanishing Conjecture
is known in this case. There is an example in Roberts [54] of two perfect complexes which define
positive cycles for which the intersection multiplicity is negative (this cannot happen over regular
local rings), which may suggest that the Positivity Conjecture does not hold in this generality.
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However, there are no indications that the Vanishing Conjecture for two modules of finite
projective dimension is not true, and this is one of the main open questions in this area at
the present time. In the counterexamples described above, the module M of finite projective
dimension has finite length and the module N has dimension less than the dimension of the ring.
If N also has finite projective dimension, the fact that its dimension is less than that of the ring
implies that the alternating sum of ranks of modules in its resolution is zero, and it follows that
X(M, N) = 0. Thus one must look elsewhere if one hopes to find a counterexample to vanishing
with both modules of finite projective dimension.

4.2. The generalized Rigidity Conjecture. The conjecture on the Rigidity of Tor was also
generalized from the regular case to the case in which one module had finite projective dimension.
This was disproven by Heitmann in [20].

It could be thought that with the regular case proven and the generalized case false, that would
be the end of the story for the question of Rigidity of Tor. However, there have been several
further results in this area, particularly for modules over hypersurfaces. We give two examples.

First, we have the following theorem due to Huneke and R. Wiegand [37] (their actual theorem
is a little stronger than this).

Theorem 4. Let A = R/(f) be a hypersurface of dimension d, where R is an unramified reqular
local ring of dimension d + 1. Let M and N be A-modules such that

(1) M ®4 N has finite length.
(2) dim(M) + dim(N) < d.
Then if Tor;(M,N) =0 for some i > 0, then Tor;(M,N) =0 for j > i.

A more recent result on this topic is due to Hailong Dao [6]. This uses a construction of
Hochster for hypersurfaces which had been introduced earlier to study these conjectures. Let
A = R/(f) be a hypersurface, and suppose also that A is an isolated singuarity. Then a resolution
of a finitely generate module is eventually periodic of period 2 by results of Eisenbud [12], and the
Tor;(M, N) are eventually of finite length since A has an isolated singularity. Hochster defined

O(M, N) = length(Tory; (M, N)) — length(Torg; 11 (M, N)).

Dao proved the following theorem. Here A is a hypersurface of the form R/(f), but in addition
to R being regular, it must also be a power series ring over a field or a discrete valuation ring,
so that in particular all of Serre’s multiplicity conjectures hold.

Theorem 5. Let A be as above, and let M and N be two finitely generated A-modules. Assume
that O(M,N) = 0. If Tor;(M,N) =0 for some i > 0, then Tor;(M,N) =0 for j > i.

We also want to mention an example of Dutta [9], which shows that the partial Euler character-
istic x2(M, N) can be negative for two modules of finite projective dimension over a Gorenstein
ring. While the original counterexample to vanishing shows that Serre’s conjectures on partial
Euler characteristics cannot be extended in general, Dutta’s example is interesting in that it
shows that they can fail even in a case where vanishing holds.

5. THE MONOMIAL, DIRECT SUMMAND, AND CANONICAL ELEMENT CONJECTURES

The first two of these conjectures, the Monomial and Direct Summand Conjectures, were
introduced by Hochster and are listed in his diagram as consequences of the existence of big
Cohen-Macaulay modules (which we will discuss below). They can all be proven in the equichar-
acteristic case by reduction to positive characteristic as outlined in the previous section.

The Direct Summand Conjecture states:
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Conjecture 9. (Direct Summand Conjecture) If R is a regular local ring and S is a module-finite
extension of R, then R is a direct summand of S as an R-module.

The Monomial Conjecture states:

Conjecture 10. (Monomial Conjecture) If xq, ..., x4 is a system of parameters for a local ring
R, then
ahal-oaly g (4T abt),

It is not too difficult to show that these two conjectures are equivalent. Shortly thereafter
Hochster formulated the Canonical Element Conjecture. There are several versions of this con-
jecture, and we state three. The first shows why it is called the “Canonical Element” conjecture,
and the second and third are easier to compute. In all three statements we let A be a local ring
of dimension d with maximal ideal m and residue field £.

Conjecture 11. (Canonical Element Congecture I) Let sy(k) be the dth syzygy module of k,
so that there is an eract sequence
0— syz’(k) = Fg_y — - — Fy =k — 0,

where the F; are free modules. Using the Yoneda definition of Fxt, this d-fold extension defines
and element of Ext*(k, sy2*(k)), and hence, mapping to the limit, an element 1 of

lim Ext?(A/m™ sy (k) = HY (syz"(k)).
Then n # 0. (n is the “canonical element”).

(Canonical Element Conjecture 11)
Let x1,...,xq be a system of parameters for A. Let K, be the Koszul complex on xq,...,%q
and let F, be a free resolution of k. Suppose we have

K., — A/(x,...,14)

ANOR 3
F, — k.
Then ¢q # 0.
(Canonical Element Conjecture III) Let x, ..., xq be a system of parameters for A. Let K, be
the Koszul complex on xy,...,x4 and let F, be a free resolution of Af(xy,...,x4). Suppose we
have

K, — Al(xy,...,xq)

Lo, )

F. — A/(x,...,2q).
Then the image of ¢q is not contained in mF,.

These three are not obviously equivalent, and proofs of their equivalence and the fact that they
are also equivalent to the Direct Summand and Monomial Conjectures can be found in Hochster
[25] and Dutta [7]. It should be pointed out that the fact that the Monomial Conjecture or
Direct Summand Conjecture implies the Canonical Element Conjecture is quite nontrivial for
rings of positive or mixed characteristic; in characteristic zero the Direct Summand Conjecture is
trivial and holds for any normal domain since the trace map can be divided by the degree of the
extension of quotient fields. It is equivalent to the Canonical Element Conjecture in characteristic
zero only in the sense that both are known to be true.

These three conjectures have been among the most seriously studied during the years since
their formulation. They all follow from the existence of big Cohen-Macaulay modules, and they
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can be proven directly by the method of reduction to positive characteristic outlined above in
the equicharacteristic case. Since Cohen-Macaulay modules exist in dimension at most two, the
conjectures have been known since the beginning in any characteristic in dimension less than
three. The reference Hochster [25] also contains many more interesting results on this topic, and
it includes the fact that to prove the direct summand conjecture it suffices to prove it in the case
in which R is an unramified regular local ring, a condition that is often assumed in studying the
problem.

Although the canonical element of the conjecture looks somewhat mysterious, there are a
number of conjectures similar to the ones we are discussing that involve the canonical module
or, more generally, the dualizing complex of a local ring. For examples, we refer to Strooker
and Stiickrad [64] and Dutta [8], where the Monomial Conjecture is related to properties of a
dualizing module.

A major breakthrough on these conjectures came in 2003, when Heitmann [22] proved the
Direct Summand Conjecture (and therefore several others) in dimension three in mixed charac-
teristic. This proof did not involve new machinery, but rather it showed, by prodigious compu-
tations, that if one had a non-Cohen-Macaulay ring of mixed characteristic of dimension three
for which p,z,y is a system of parameters, and if we have a relation ap™ € (z,y), then for any
integer n, in some finite extension we have that ap'/™ € (z,y). Thus we do not get a € (z,y)
(which would of course be true in a Cohen-Macaulay ring), but something close, and Heitmann
proved that this is enough to prove the Direct Summand Conjecture. A little later Heitmann
[23] showed that the system of parameters p,z,y can be replaced by any system of parameters;
it is not necessary to assume that one of them is p. We will discuss this further below.

6. COHEN-MACAULAY MODULES AND ALGEBRAS

The importance of finding Cohen-Macaulay modules was clear from the beginnings of this
subject. Serre had already shown, as we mentioned above, that if M and N are Cohen-Macaulay
in the situation of his positivity conjecture, then Tor;(M, N) = 0 for all i > 0, so that x(M, N)
is simply the length of M ® N, which is clearly positive. It is also not difficult to show that
most of the conjectures we have discussed over a ring A of dimension d will follow if there exists
a finitely generated Cohen-Macaulay module of dimension d. Such a module is called a “small
Cohen-Macaulay module” (it is also sometimes called a “maximal Cohen-Macaulay module”,
which admittedly is not terribly consistent terminology).

There are rings which cannot have small Cohen-Macaulay modules, such as non-catenary
rings, but these can be considered pathological. In addition, most of the conjectures we have
been discussing can be reduced to the complete case, and it would suffice to show that small
Cohen-Macaulay modules exist for complete domains.

Conjecture 12. Every complete local domain has a small Cohen-Macaulay module.

This conjecture is easy if the dimension of A is at most two, since in dimension one any
domain is Cohen-Macaulay, and in dimension two one can take the normalization, which is
Cohen-Macaulay. However, very little is known beyond that case. There is an example for
graded rings attributed independently to Peskine and Szpiro, Hartshorne, and Hochster; they
showed that small Cohen-Macaulay modules exist for graded domains of positive characteristic
in dimension three (for a proof see Hochster [29]). Dan Katz [40] proved that there is such a
module for extensions obtained by adjoining a pth root to an unramified regular local ring. On
the other hand, there are non-Cohen-Macaulay unique factorization domains, which cannot have
small Cohen-Macaulay modules of rank one [4]. But basically this question is completely open.

One of the new developments in Hochster’s 1975 paper was to introduce a weaker version
of Cohen-Macaulay modules, called “big” Cohen-Macaulay modules. Their existence does not
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imply the implication in Serre’s conjecture, but it does imply the Intersection Conjecture, the
Canonical Element Conjecture, and several others.

Let A be a local ring with system of parameters zy,...,x4. A big Cohen-Macaulay module is
an A-module M such that

(1) 21,...,z4 form a regular sequence on M.
(2) M/(x1,...,xq)M # 0.

The second condition is crucial; there are numerous infinitely generated modules that satisfy
the first condition but not the second, and without this condition none of the stated implica-
tions hold. If M is a small Cohen-Macaulay module, however, Nakayama’s Lemma implies that
condition 2 holds.

Conjecture 13. Every local ring has a big Cohen-Macaulay module.

Like the conjectures in the previous section, this conjecture is known in the equicharacteristic
case and for rings of dimension at most 3. The basic method used by Hochster in [24] was to
kill any bad relations as follows. If M is not Cohen-Macaulay, there exists an element m € M
such that x;m € (x1,...,2; 1) but m & (xy,...,2; 1) for some i. We then extend M to M' =
M @& A"™! modulo the relation (m,zy,...,x; 1); this puts the image of m into the submodule
(1,...,2;_1)M'. We then take a huge and carefully constructed limit, and it is then easy to see
that the limit will satisfy the first condition. The problem is to show that the second condition
also holds. The original proof in the equicharacteristic case involves the Frobenius map and
Hochster’s Metatheorem. The proof in dimension 3 uses Heitmann’s results.

6.1. Weakly Functorial Big Cohen-Macaulay algebras. A further development in this
area was the introduction of big Cohen-Macaulay algebras. One method for construction such
an algebra is similar to that of big Cohen-Macaulay modules mentioned earlier, but instead of
taking a free module in the extension and dividing by the relation as above, one takes a free
commutative algebra; that is, a polynomial ring and again divides by an appropriate relation
and takes a limit. For the applications one would like it to be functorial; this does not seem
possible, but when they exist they can be made “weakly functorial”, which is enough for many
applications. We give the definitions.

Let R be a local ring with system of parameters z1,...,z4. A big Cohen-Macaulay algebra is
an algebra module A such that

(1) z1,...,z4 form a regular sequence on A.
(2) A/(x1,...,2q)A #0.
“Weakly Functorial” means that given R — S, one can find Cohen-Macaulay algebras A and
B and a diagram

R — S
{ {
A — B

Conjecture 14. Every local ring has a big Cohen-Macaulay algebra, and for any map of local
rings they can be chosen to be weakly functorial in the sense given above.

It can be seen that this is a considerably stronger conjecture than the existence of big Cohen-
Macaulay modules, which in turn is stronger than the conjectures of the previous section. How-
ever, it has so far been the case that once methods had been developed to prove one of these
conjectures, it can be applied to prove the existence of weakly functorial big Cohen-Macaulay
algebras. An example is the case of dimension 3 in mixed characteristic, where the results of Heit-
mann’s proof of the Direct Summand conjecture were used by Hochster to prove this conjecture
as well [28].
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A remarkable theorem appeared in 1990, with the proof by Hochster and Huneke that R™ is
Cohen-Macaulay for R a domain of positive characteristic [33]. Here R™ is the absolute integral
closure of R, which means the integral closure in the algebraic closure of its quotient field. This
was later given a much simpler proof by Huneke and Lyubeznik [36]. This is better than just
the existence, since it gives a specific construction in the positive characteristic case.

The existence of weakly functorial big Cohen-Macaulay algebras has many applications; for
example, they imply the conjectures on the vanishing of maps of Tor and that direct summands
of regular local rings are Cohen-Macaulay that we will state below. For more details on the
existence and applications of such algebras we refer to Hochster and Huneke [34].

7. THE SYzyGy CONJECTURE AND THE IMPROVED NEW INTERSECTION CONJECTURE
Evans and Griffiths proved the following theorem for rings containing a field [13].

Theorem 6. Let A be a Cohen-Macaulay local ring containing a field, and let M be a finitely
generated kth module of syzygies that has finite projective dimension. If M 1is not free, then M
has rank at least k.

In proving this conjecture it turned out that a stronger version of the Intersection Conjec-
ture was one of the key points in the proof. This was named the “Improved New Intersection
Conjecture”.

Conjecture 15. Let A be a local ring of dimension d, and let
0—=Fy—---—=F—=F—=0

be a complex of finitely generated free modules such that H;(F,) has finite length for i > 1 and
the cokernel of F\ — Fy has a minimal generator annihilated by a power of the maximal ideal.

Then k > d.

The original New Intersection Conjecture is the case where the cokernel of Fy — Fj is itself of
finite length (and nonzero). While this is a version of the Intersection Conjecture, it is in fact
stronger, and is equivalent to the Canonical Element Conjecture and the others in that group.
Thus it is now known in the equicharacteristic case and in dimension at most 3.

Recently Evans and Griffith have proven their Syzygy Theorem for certain graded modules
of mixed characteristic ([15]). They also have a more extensive account of problems concerning
syzygies in [14].

8. TIGHT CLOSURE THEORY

In 1985 Hochster and Huneke introduced the concept of tight closure. It is defined for equichar-
acteristic rings; to keep the discussion simple we will give the definition for integral domains of
positive characteristic.

Definition 1. Let I be an ideal of an integral domain A of positive characteristic p. The tight
closure of I, denoted I*, is the set of a € A for which there is an element ¢ # 0 in A such that
ca”” € 1% for all e > 0.

Here I? is the ideal generated by i*" for all i € I. Tight closure is also defined for rings of
characteristic zero using a method of reduction to positive characteristic. We refer to Huneke’s
notes from the Fargo conference [35] and its bibliography for much more information about tight
closure. We will mention some connections to the problems we have been discussing here.

First of all, tight closure made it possible to give nicer proofs of some of the Homological
Conjectures, such as the Monomial Conjecture and the existence of big Cohen-Macaulay modules,
in the equicharacteristic case, although the basic idea, reduction to positive characteristic and
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the use of the Frobenius map, was similar to methods used earlier. One of the first ideas that
arose from this was to attempt to find a similar closure opration that would work in mixed
characteristic. A list of the desired properties of such a closure operation can be found, for
example, in the Introduction of the notes of Huneke cited above; for the purposes of these
conjectures, one of the main ones is “colon-capturing”, which states that if x, ...,z is a system
of parameters, and if ax; € (21, ...,x;_1) for some 4, then a is in the closure of (zq,...,2;_1). A
closure operation with all the right properties has not been found; however, this did inspire some
new methods; in particular, Heitmann’s proof of the Direct Summand Conjecture in dimension
three was motivated in part by an attempt to show that “full extended plus closure” satisfies
the colon-capturing condition in mixed characteristic. In this part of the discussion we assume
that A is a complete local domain and recall that A is the integral closure of A in the algebraic
closure of its quotient field.

Definition 2. If x € A, then x is in the full extended plus closure of I if there exists c #0 € A
such that for every positive integer n, c¢*/"x € (I,p")A+. We write v € 107 .

A similar closure operation had been defined by Hochster and Huneke in [32]. They defined
the “dagger closure” to as follows (with the same assumptions on A). In this definition we fix
a valuation v on A' with values in Q U {oo} which is nonnegative on A" and positive on the
maximal ideal of A™.

Definition 3. If x € A, then x is in the dagger closure of I if there exist elements u € AT of
arbitrarily small positive order with ux € IAY. We write v € IT.

It is easy to see that I°?/ C IT. The main result of Hochster and Huneke was that dagger
closure and tight closure are the same in positive characteristic, so it made sense to try to show
that dagger closure satisfies the colon-capturing property. Heitmann’s results show that this is
true in dimension three.

In addition to leading to these developments on the original homological conjectures, the
connections that tight closure demonstrated with other areas inspired some new conjectures.

Conjecture 16. (Vanishing of Maps of Tors) Let R be a regular ring, A a module finite torsion-
free extension of R, and T a regular local ring with a map ¢ from A to T. Then for every
R-module M and every i > 1, the map induced by ¢ from Tori'(M, A) to Torf(M,T) is zero.

This conjecture has a similar flavor to some of the previous ones, particularly in the case where
T is a finite A-module, and it implies several of them. However, this one is much more general;
T could be an infinite extension, or on the other hand it could be the residue field of A is A
is a local ring. It is known in the equicharacteristic case. We refer to Hochster [30] for a more
complete discussion of this conjecture and its relation to other ones.

Another result of tight closure was to give a simple proof in characteristic zero that invariants
of certain group actions on regular rings are Cohen-Macaulay. They proved, in fact, that a direct
summand of a regular ring in equal characteristic is Cohen-Macaulay; it is a conjecture in mixed
characteristic.

Conjecture 17. A direct summand of a regular ring is Cohen-Macaulay.

If we apply this to the R-module M = R/(24™ .. 2 22t - - 2l) where R is (regular) local
of dimension d and x4, ...z, is a system of parameters, it is not hard to see that this conjecture
implies the Monomial Conjecture and hence also the Direct Summand Conjecture. In fact, it is
equivalent to a stronger version of this conjecture.
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9. THE STRONG DIRECT SUMMAND CONJECTURE

In this section we discuss several recent variations on conjectures related to Direct Summands.

Conjecture 18. (Strong Direct Summand Conjecture) Let R be a regular local ring and let A
be a finite extension of R. Let () be a height one prime ideal of A containing xR, where x is a
manimal generaator of the maximal ideal of R. Then xR is a direct summand of Q).

At first sight this appears to be a rather gratuitous generalization of the Direct Summand
Conjecture. It is indeed a generalization, since if this holds, then since z A is contained in @), the
splitting map from @ to xR induces one from zA to xR, and dividing by = we obtain one from
A to R. Its importance comes from the surprising fact that it is equivalent to the Vanishing
Conjecture for maps of Tors. This was proven by N. Ranganathan in [49].

She also had a strong version of the Monomial Conjecture:

Conjecture 19. (Strong Monomial Conjecture): Let A be a local domain with system of param-
eters (x1,...,xq). Let Q be a height one prime of A containing x;. Then

wi(z1@e - mg)' € (2 2 THQ
for all t > 0.

A much more complete discussion of the conjectures of the last two sections and relations
between them can be found in Hochster [29] and [30].

Recent work on the Strong Monomial Conjecture conjecture can be found in McCullough [45].

We include here the updated version of Hochster’s diagram from the 2004 Minicourse at the
University of Utah.

Weakly Functorial
Big C-M Algebras

/ Small C-M

A Good Tight Closure Theory

Strong Direct Summand <—==> Vanishing for Maps of Tor Big C-M Algebras Algebras
Direct Summands Big C-M Modules x>0

of Regular Rings are C-M

Direct Summand <= Monomial

Improved New Intersection Canonical Element

ﬂ

Syzygy New Intersection

ﬂ

Intersection
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10. ALMOST COHEN-MACAULAY ALGEBRAS

As outlined above, Heitmann’s proof of the Direct Summand Conjecture in dimension three
introduced a new method for attacking many of the Homological Conjectures in mixed char-
acteristic. In this section we will go into more detail about this method and questions that it
raised.

What Heitmann showed originally was that if A is a complete normal local domain of dimension
3 and of mixed characteristic, if p, z,y is a system of parameters, and if ap” € (x,y) for some
a € A, then for any integer n > 0, there is a finite extension B of A such that ap'/™ € (z,y)B.
This implies that the local cohomology H2(A*) is annihilated by p'/" for all n > 0, where, as
usual, AT is the integral closure of A in the algebraic closure of its quotient field. In a later paper
([23]) he extended this to show that p can be replaced by any u in the maximal ideal of A, and,
using the fact that the condition that A is a normal domain of dimension 3, so that H2(A) has
finite length, it is easy to see that this implies that H2(A") is annihilated by the maximal ideal
of A*. Thus it is a vector space over the field At /m+. It is still an open question whether it is
actually zero.

As we also described earlier, the result, for example that ap™ € (z,y) in A then ap'/™ € (x,y)
in A" can be stated by the fact that certain closure operations have the colon-capturing property
in this case. The closure operations are full extended plus closure of Heitmann [23] and dagger
closure of Hochster and Huneke [32]. While the fact that full extended plus closure has this
property is a stronger result, for the remainder of this section we will only consider dagger
closure, since the fact that it has the colon-capturing property is enough to prove, for example,
the Direct Summand Conjecture. We describe this in more detail.

Let A be a ring as above; we take a valuation v on A with values in the ordered abelian group
R of real numbers, Then v is a function from A to R U {oo} satisfying

(1) v(ab) = v(a) + v(b) for a,b € A.
(2) v(a+b) > min{v(a),v(b)} for a,b € A.
(3) v(a) = oo if and only if a = 0.

We will assume also that v(a) > 0 for a € A and that v(a) > 0 for a in the maximal ideal of
A. The existence of such a valuation follows from standard facts on extensions of valuations, see
for example Zariski-Samuel [66], Chapter VI.

If I is an ideal of a local domain A with a valuation v satisfying the above properties, then a
is in the dagger closure IT of I if there exist elements u € AT of arbitrarily small positive order,
with uz € aA™. It follows from Heitmann’s result that in mixed characteristic in dimension three
dagger closure has the colon-capturing property. It also follows that, still in dimension three,
the local cohomology module H2(A™) is annihilated by arbitrarily small elements. To generalize
this we make the following definitions.

We say that an A-module M is almost zero with respect to v if for all m € M and for all € > 0,
there exists an a € A with v(a) < € and am = 0.

This terminology comes from a paper of Faltings [16], where he proves that certain local
cohomology groups are almost zero. The topic of almost zero modules was developed in much
more detail by Gabber and Ramero [17].

Definition 4. An A-algebra B is almost Cohen-Macaulay if
(1) ng)(B) is almost zero fori=20,...,d— 1.
(2) B/(x1,...,24)B is not almost zero.
An alternative definition of almost Cohen-Macaulay can be obtained by defining a sequence

Z1,...,Tq to be almost reqular if {alaz; € (x1,...,2; 1)}/(x1,...,2; 1) is almost zero for i =
1,...,d and defining A to be almost Cohen-Macaulay if a system of parameters is almost regular
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(together with condition (2)). Standard methods show that this definition implies the former
one (see for example Matsumura [44], Theorem 16.5 (i)).

Question 1. Let A be a complete Noetherian local domain. Is AT almost Cohen-Macaulay?

Of course, the result of Hochster and Huneke and Huneke and Lyubeznik that we referred to
above says that if A has positive characteristic, then A" is actually Cohen-Macaulay. However,
this is not true in characteristic zero, since if we have a normal non-Cohen-Macaulay domain A,
since A is a direct summand of every finite extension using the trace map, a nontrivial element
of local cohomology cannot go to zero in AT. There is little evidence that this would be true
in general, but there are some examples in characteristic zero in dimension 3 by Roberts, Singh,
and Srinivas [59], and Heitmann, as we have seen, showed that it is true in mixed characteristic
in dimension 3. As we have said, it is still open whether A" is Cohen-Macaulay in that case.

This question can also be generalized further. Instead of the class of almost zero modules
defined above, we can take other classes. To make the theory work we should take a class C of
almost zero modules satisfying the following conditions.

(1) f0— M — M — M" — 0 is a short exact sequence, then M € C if and only if M" and
M" are in C.
(2) C is closed under direct limits.

Question 2. Let A be a local ring. Does there exist an almost Cohen-Macaulay algebra over A
for some class of almost zero modules?

11. A SUMMARY OF OPEN (QUESTIONS

We summarize some of the main questions which remain open. Since they have varying degrees
of likelihood of being true, we simply label them all as “Questions”.

11.1. The Serre Positivity Conjecture.

Question 3. Let R be a ramified reqular local ring of mized characteristic, and let M and N be
R-modules such that M @r N has finite length. If dim M + dim N = dim R, is x(M, N) > 07

This conjecture would follow from the existence of small Cohen-Macaulay modules. There has
been some recent work to attempt to use Gabber’s proof of the Nonnegativity Conjecture to
prove this, but so far it has not been successful.

11.2. Partial Euler characteristics.

Question 4. If R is a ramified reqular local ring of mized characteristic of dimension d and M
and N are R-modules such that M ®gr N has finite length, s

d
Xi(M,N) = Z(—l)iﬂlength( Tor(M,N)) > 07
j=i

11.3. Strong Multiplicity Conjectures.

Question 5. Let A be a local ring, and let M and N be A-modules such that M ® 4 N has finite
length and M has finite projective dimension. Is dim(M) + dim(N) < dim(A)?

Question 6. Let A be a local ring, and let M and N be A-modules such that M ® 4 N has finite
length and both M and N have finite projective dimension.

(1) If dim(M) + dim(N) < dim A, is x(M,N) = 07

(2) If dim(M) + dim(N) = dim A, is x(M,N) > 07
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This question has been studied over the years, although it is still very much open. There are
complexes which define positive cycles for which the positivity part fails, which may be a sign
that the positivity is not true in this generality.

11.4. Cohen-Macaulay modules and related conjectures.

Question 7. (Small Cohen-Macaulay modules) Let A be a complete local domain of dimension
d. Does there exist a finitely generated A-modules of depth d?

No one has yet succeeded in coming up with a way to approach this question in dimension 3
or greater.

Question 8. (Big Cohen-Macaulay modules) Let A be a local domain of mized characteristic of
dimension d with system of parameters xy,...,xq. Does there exist an A-module M for which

(1) z1,...2q is a reqular sequence on M.
(2) M/(xla s 7xd)M 7é 0.

As discussed at length, there are numerous conjectures which follow from this one, many of
which are equivalent. Out of these we will state two, one because it is quite concrete, and the
other because it is the strongest of these conjectures. Both of these are open in the case where
A has mixed characteristic and dimension greater than three.

Question 9. (Monomial Conjecture) Let A be a local ring with system of parameters xy, ..., Tq.
Is atal - - - 2 in the ideal (a4 25T .. 2lth)?

Question 10. Can one construct weakly functorial big Cohen-Macaulay algebras?
We refer to section 6.1 for a precise statement of what this means.
11.5. Almost Cohen-Macaulay algebras.
Question 11. Let A be a local ring. Does A have an almost Cohen-Macaulay algebra?

We refer to the previous section for a precise statement of this question.
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