
FONTAINE RINGS AND LOCAL COHOMOLOGYPAUL C. ROBERTS1. IntroductionIn this paper we use Fontaine rings to study properties of local cohomology for rings of mixedcharacteristic. Fontaine rings, which we de�ne and discuss in more detail in Section 3, give a methodof constructing a ring of positive characteristic from one of mixed characteristic in such a way that,under certain circumstances, the original ring can be reconstructed up to p-adic completion. The ideais to use the Frobenius map on the ring of positive characteristic and then to deduce results on theoriginal ring. We discuss the extent to which this program can be carried out and problems that arise.Essentially, we begin with a certain Noetherian subring of the Fontaine ring of a ring R and look forextensions T of this ring satisfying two properties. The �rst property is that a given quotient of thering of Witt vectors on T is almost Cohen-Macaulay. Almost Cohen-Macaulay algebras are algebrasfor which certain local cohomology groups are almost zero; these concepts will be de�ned in section 2.We will also explain their connection with some of the homological conjectures. The second propertyis that relations that are mapped to zero in R are also mapped to zero in this quotient. It is possibleto construct an extension satisfying the �rst property, but in this paper we concentrate on the secondone and construct a minimal extension T such that the required relations are mapped to zero. It is notclear whether or not this ring is almost Cohen-Macaulay. In the last section we present an example toshow that, at least in some nontrivial cases, the image of the relevant local cohomology modules of theoriginal ring are almost zero in the local cohomology of this extension, giving some evidence that thisring might be almost Cohen-Macaulay.2. Almost vanishing of local cohomologyLet R0 be a complete local Noetherian domain of mixed characteristic. We will usually assume inaddition that R0 is normal. We let R+0 be the absolute integral closure of R0; that is, R+0 is the integralclosure of R0 in the algebraic closure of its quotient �eld. Throughout this paper R will denote a ringbetween R0 and R+0 . Although we do not assume that R is Noetherian, R is a union of local Noetheriandomains that are integral over R0. As a result, we can de�ne a system of parameters in R to be asequence of elements x1; : : : ; xd of R that is a system of parameters in a local Noetherian subring of Rcontaining R0.Let R be a ring as above; we next take a valuation v on R with values in the ordered abelian group
R of real numbers, Then v is a function from R to R [ f1g satisfying(1) v(rs) = v(r) + v(s) for r; s 2 R.(2) v(r + s) � minfv(r); v(s)g for r; s 2 R.(3) v(r) =1 if and only if r = 0.We will assume also that v(r) � 0 for r 2 R and that v(r) > 0 for r in the maximal ideal of R. Theexistence of such a valuation follows from standard facts on extensions of valuations, see for exampleZariski-Samuel [15], Chapter VI.We say that an R-moduleM is almost zero with respect to v if for all m 2M and for all � > 0, thereexists an r 2 R with v(r) < � and rm = 0.We will also use another version of almost zero modules|if c is an element of R, we will say that Mis almost zero for c if for every element m of M we have c1=nm = 0 for arbitrarily large integers n. If vis a valuation on R and v(c) <1, this condition implies that M is almost zero with respect to v.While we will be concerned in this paper with the two classes of almost zero modules de�ned above,we will also mention that more general de�nitions can be used.1



2 PAUL C. ROBERTSDe�nition 1. A class C of modules is a class of almost zero modules if it satis�es the following twoconditions.(1) If we have a short exact sequence0!M 0 !M !M 00 ! 0;then M is in C if and only if M 0 and M 00 are in C.(2) C is closed under direct limits.It is easy to see that both of the classes we have de�ned satisfy these conditions. Given a class Csatisfying these conditions we say that a module M is almost zero with respect to C if M 2 C. For theremainder of this section we will assume that we have �xed such a class C and \almost zero" will meanwith respect to C.We now recall some facts about local cohomology and de�ne almost Cohen-Macaulay rings.Let x1; : : : ; xd be a system of parameters for R, and let Hi(x)(R) denote the local cohomology of Rwith support in (x1; : : : ; xd). More precisely, Hi(x)(R) is the cohomology in degree i of the �Cech complex0! R!Yi Rxi !Yi<j Rxixj ! � � � ! Rx1x2���xd ! 0;where R has degree 0 and Rx1x2���xd has degree d.De�nition 2. An R-algebra A is almost Cohen-Macaulay if(1) Hi(x)(A) is almost zero for i = 0; : : : ; d� 1.(2) A=(x1; : : : ; xd)A is not almost zero.An alternative de�nition of almost Cohen-Macaulay can be obtained by de�ning a sequence x1; : : : ; xdto be almost regular if frjrxi 2 (x1; : : : ; xi�1)g=(x1; : : : ; xi�1) is almost zero for i = 1; : : : ; d and de�ningR to be almost Cohen-Macaulay if a system of parameters is almost regular (together with condition(2)). Standard methods show that this de�nition implies the former one. In this paper we will only usethe weaker property de�ned above.The importance of the existence of Cohen-Macaulay algebras has been known for many years|see forinstance Hochster [7]. Recently Heitmann [5] has shown that the weaker condition of having an almostCohen-Macaulay algebra in the sense de�ned here has some of the same consequences; in particular,he showed that the Direct Summand conjecture in dimension 3 follows from the existence of an almostCohen-Macaulay algebra. He also showed that R+0 is an almost Cohen-Macaulay algebra in dimension3; he was using a form of the second de�nition, although in dimension 3 it does not really matter whichone you use. We next show that in any dimension the existence of an almost Cohen-Macaulay algebra inthe weaker sense we are using here implies the Monomial Conjecture, which is equivalent to the DirectSummand Conjecture (see for instance Hochster [6] for a discussion of these conjectures).The Monomial Conjecture states that if x1; : : : ; xd is a system of parameters for a local ring R0, thenxt1xt2 � � � xtd 62 (xt+11 ; : : : ; xt+1d )for any t � 0. We assume that there is an almost Cohen-Macaulay algebra A over R0. Mel Hochster([6]) has proven that it su�ces to consider the case in which x1 = p in the mixed characteristic case.We can also assume that R0 is complete. Using these facts, we let Q be a regular subring of R0containing x1(= p); x2; : : : ; xd as a regular system of parameters. Let F be a minimal free resolution ofQ=(xt1xt2 � � � xtd; xt+11 ; xt+12 ; : : : ; xt+1d ) over Q. This resolution can be chosen so that F0 = Q, F1 = Qd+1with the map dF1 from F1 to F0 given by the row of matrix (xt1xt2 � � � xtd xt+11 xt+12 : : : xt+1d ) andF2 = Qd+(d2), where the map dF2 from F2 to F1 is given by the matrix0BBBBB@ x1 x2 � � � xd 0 � � � 0�x2 � � � xd 0 � � � 0 Koszul0 �x1x3 � � � xd � � � 0 relations... ... ... on xt+11 ; : : : ; xt+1d0 0 � � � �x1 � � � xd�1
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FONTAINE RINGS AND LOCAL COHOMOLOGY 3Since Q is a regular local ring of dimension d and Q=(xt1xt2 � � � xtd; xt+11 ; : : : ; xt+1d ) has �nite length, Fis a complex of length d. Let this complex tensored with A be denoted FA. Since F becomes exactwhen any of the xi is inverted, the same holds for FA. LetC = 0! R!Yi Rxi !Yi<j Rxixj ! � � � ! Rx1x2���xd ! 0be the complex de�ning the local cohomology of R with support in (x1; : : : ; xd). In this complex we letR have degree 0 and Rx1���xd have degree d. We next consider the total tensor product complex FA
Cover R. In this tensor product we give Fi 
 Cj degree i� j.Lemma 1. (1) The complex FA 
 C is quasi-isomorphic to FA.(2) The cohomology of FA
C is almost zero in positive degrees (and hence the same holds for FA).Proof. The two parts of the proof follow from the two spectral sequences associated with the tensorproduct FA 
 C. For the �rst statement, we consider the spectral sequence obtained by �rst takingthe homology of FA 
 Ci for �xed i. For i = 0, C0 = R, so FA 
 C0 �= FA and this gives FA. Fori > 0, FA
Ci is a product of localizations of FA obtained by inverting products of the xi, so FA
Ciis exact. Thus the projection of FA 
 C onto FA 
 C0 = FA is a quasi-isomorphism, proving (1).For the second statement, we consider the homology of FAi 
 C for �xed i. Since FAi is a �nitelygenerated free module over A, FAi 
 C is a �nite direct sum of copies of A
 C, and since A is almostCohen-Macaulay, the homology of A 
 C is almost zero in degrees less than d. To prove (2), it willsu�ce to show that the homology of FAi 
 C is almost zero at FAi 
 Cj whenever i� j > 0. The onlyvalue of j for which the homology of FAi 
 Cj might not be almost zero is j = d. If i � j > 0, theni > j, and if j = d, then we must have i > d. However, the complex FA has length d, so this meansthat FAi 
 Cj = 0. This completes the proof of the second statement.It follows from the lemma in particular that H1(FA) is almost zero. We now consider the projectionof FA1 �= Ad+1 onto the �rst factor; this gives a map to A. The image of the kernel of dF1 under thismap is the set of a 2 A for which there is an n-tuple a; a1; : : : ; ad withaxt1xt2 � � � xtd + a1xt+11 + � � �+ adxt+1d = 0:In other words, the image is fa 2 Ajaxt1xt2 � � � xtd 2 (xt+11 ; : : : ; xt+1d )g. We denote this ideal a. Thusthe projection of FA1 onto A induces a map from KerdF1 onto a. The image of dF2 maps to the idealI = (x1; : : : ; xd). Hence this de�nes a map fromH1(FA) onto a=I. SinceH1(FA) is almost zero, it followsthat a=I is almost zero. On the other hand, one of the conditions for A to be almost Cohen-Macaulayis that A=(x1; : : : ; xd) is not almost zero. Hence 1 is not in a, so xt1xt2 � � � xtd is not in (xt+11 ; : : : ; xt+1d ),and the Monomial Conjecture holds.3. Fontaine Rings and Witt VectorsLet Q be a ring of mixed characteristic p. The Fontaine ring of Q, denoted E(Q), is de�ned to bethe inverse limit over n of Qn as n ranges over the ordered set of nonnegative integers, where each Qnis Q=pQ and the map from Qn+1 to Qn is the Frobenius map for all n. The notation and terminologythat we use is taken from Gabber and Ramero [4], section 8.2 (in the most recent version); however,we use the notation E(Q) rather than E(Q)+ to avoid confusion with the absolute integral closure. Anelement of E(Q) can be represented by a sequence (q0; q1; : : :) = (qi), where each qi is an element of Qtaken modulo pQ and qpi � qi�1 modulo pQ for i > 0. E(Q) is a perfect ring of characteristic p.Let R0 be a complete local normal domain of mixed characteristic as above; we assume in addition thatthe residue �eld k of R0 is perfect. Let D0 be an unrami�ed DVR contained in R0 with the same residue�eld as R0 such that there exists a homomorphism from a power series ring S0 = D0[[y2; y3; : : : ; yt]]onto R0. Such a homomorphism exists by the Cohen structure theorem (see for example Matsumura[10], Section 29). Let xi be the image of yi for each i, and assume that the elements are chosen in sucha way that p; x2; : : : ; xd form a system of parameters for R0.



4 PAUL C. ROBERTSWe let S = [nS0[p1=pn ; y1=pn2 ; : : : ; y1=pnt ], adjoining pnth roots of p and the yi for each i. Similarly,adjoin pnth roots of the elements p and xi of R0 to form a ring R = [nR0[p1=pn ; x1=pn2 ; : : : ; x1=pnt ]. Wecan then extend the map from S0 to R0 to give a surjective homomorphism from S to R. Since pthroots are unique only up to a root of unity, there is a choice in adjoining the roots; we choose the rootsso that (p1=pn+1)p = p1=pn for each n and similarly for the xi and yi. We can choose the surjection fromS to R so that it takes p1=pn to p1=pn and y1=pni to x1=pni for each i and n.We now take the Fontaine rings E(R) and E(S). We let P denote (p; p1=p; : : :), Yi = (yi; y1=pi ; : : :),and Xi = (xi; x1=pi ; : : :) for our given choices of pnth roots.Next, we take the rings of Witt vectors W (E(S)) and W (E(R)) of the rings we have de�ned. Werefer to Bourbaki [2] and Serre [13] for general facts about Witt vectors and Gabber and Ramero [4] forconnections with Fontaine rings.Let R̂ be the p-adic completion of R; that is, the inverse limit over n of R=pnR. We have a map ~�R,or simply ~�, from E(R) to R̂ de�ned by letting~�R((ri)) = limn!1 rpii :It is shown in [4] that this sequence converges. The map ~� preserves multiplication but not addition.We have ~�(P ) = p and ~�(Xi) = xi for each i. The map ~� induces a ring homomorphism � from E(R)to R=pR, and it extends to a ring homomorphism  from W (E(R)) to R̂ that also takes P to p and Xito xi, where elements e of E(R) are identi�ed with the corresponding elements (e; 0; 0; : : :) in the ringof Witt vectors. The reduction of  modulo p is �. We refer again to Gabber and Ramero [4], Section8.2 for details.As outlined in the introduction, the aim of this paper is to investigate the possibility of using thisconstruction to construct almost Cohen-Macaulay algebras in mixed characteristic. We �rst review thesituation for rings of positive characteristic.4. The case of positive characteristicWe assume now that R is a Noetherian integral domain of positive characteristic p and de�ne theperfect closure of R, denoted R1, to be the ring obtained from R by adjoining all pnth roots of elementsof R. Alternatively, R1 can be de�ned as the direct limit of Rn for n � 0, where Rn = R for all n andthe map from Rn to Rn+1 is the Frobenius map.Theorem 1. Let R be a complete Noetherian local domain of positive characteristic, and let x1; : : : ; xdbe a system of parameters for R. Then there is a nonzero element c in R such that c1=pn� = 0 for all� 2 Hi(xj)(R1) for i = 0; : : : ; d� 1 and for all integers n � 0.Proof. We will use the fact that there is a nonzero element c 2 R which annihilates the local cohomologyHi(xj)(R) for i = 0; : : : ; d � 1; this can be found in Roberts [11] or Hochster and Huneke [8], section 3.We claim, in fact, that this element will satisfy the statement in the theorem.To see this, let i be an integer with 0 � i � d � 1, and let � be an element of Hi(xj)(R1). Let Fdenote the map induced by Frobenius map on Hi(xj)(R1). Since every element of R1 has its pkth powerin R for large enough k, there is some k for which F k(�) 2 Hi(xi)(R). Let m be an integer such thatm+ k � n. Then c1=pn is a multiple of c1=pm+k , so it su�ces to show that c1=pm+k� = 0. We haveFm+k(c1=pm+k�) = cFm+k(�) = cFm(F k(�)) = 0;since Fm(F k(�)) is in Hi(xj)(R). Since R1 is perfect, F is an isomorphism on R1 so induces anisomorphism on Hi(xj)(R1). Hence the fact that Fm+k(c1=pm+k�) = 0 implies that c1=pm+k� = 0. ˜The above theorem implies that R1 is an almost Cohen-Macaulay algebra for R in either of thesenses introduced in Section 2.



FONTAINE RINGS AND LOCAL COHOMOLOGY 5As outlined in the introduction, the aim of this paper is to attempt to apply this kind of argument toa ring constructed via the Fontaine ring and to deduce results in mixed characteristic by using the ringof Witt vectors. In fact, for any ring R0 it appears that one can indeed �nd an almost Cohen-Macaulayring by this method. The procedure is to �rst �nd a system of generators fxig for R0 for which theFontaine ring E(R) of the ring R de�ned by adjoining pnth roots as above contains a Noetherian ringE0 with an ideal J0 with the following properties.(1) P is a non-zero-divisor in E0=J0(2) P;X2; : : : ;Xd form a system of parameters for E0=J0.If we then let E be the perfect closure of E0 and let J be the radical of the ideal generated by J0 in E,then we can de�ne a ring T (J) by adjoining all elements of the form j=P n to E for all j 2 J and for allintegers n � 0. The ring W (T (I))=(P � p) is then an almost Cohen-Macaulay ring. However, there isin general no way of mapping R0 into this ring, so it does not give an almost Cohen-Macaulay algebrafor R0, and we do not pursue this idea further here. In the next section we describe a somewhat morecomplicated construction for which the required map from R0 does exist. In the �nal section we give anontrivial example R0 for which we can verify that the image of the nontrivial local cohomology of R0is almost zero in the local cohomology of this algebra. However, we do not know whether this holds ingeneral. 5. An algebra defined from the Fontaine ringWe now return to the situation in which R is obtained by adjoining pnth roots of certain elements toa complete local normal domain of mixed characteristic R0. More precisely, we have a power series ringS0 = V [[y2; : : : ; yt]] over a DVR with perfect residue �eld k together with a surjective map from S0 toR0 that takes yi to xi for each i. We assume also that p; x2; : : : ; xd is a system of parameters for R0. Ris then obtained from R0 by adjoining pnth roots of p and the xi, and S is obtained similarly from S0.We then take the Fontaine rings E(S) and E(R) together with their rings of Witt vectors W (E(S))aand W (E(R)). We would now like to pass to E(W (R))=(P � p) and show that it is an almost Cohen-Macaulay algebra for R0. However, there are two problems. First, E(W (R)) is not the perfect closureof a Noetherian ring, so we cannot directly apply the method of the previous section. We address thisquestion �rst.The ring E(S) contains a power series ring in P; Y2; : : : ; Yt over k and we de�ne E0 to be the subringof E(R) which is the image of this power series ring under the induced map from E(S) to E(R). ThenE0 is a Noetherian ring of positive characteristic, and we let E10 denote its perfect closure, a subringof E(R).The second problem is that the kernel of the map  from W (E(R)) to R̂ does not go to zero inW (E(R))=(P � p), so that there is no map induced from R0. One way around this problem is to embedR into a larger ring C(R) = fs 2 Rpj spn 2 R for some ng. It is shown in Roberts [12] that the kernelof the map from W (E(C(R))) to [C(R) is generated by P � p. What we do here is �nd a smaller ringT containing E10 for which there exists a map from R0 to W (T )=(P � p).We will identify E(R) as a subset of the ring W (E(R)) of Witt vectors by associating e 2 E(R) withthe Teichm�uller element (e; 0; 0 : : :) of W (E(R)). Under this identi�cation, let W0 be the completion ofthe subring of W (E(R)) generated by P;X2; : : : ;Xt over the discrete valuation ring V . Let I0 be thekernel of the map from W0 to R̂ induced by  ; we note that W0 maps onto R0 under this map. Then ifT is a ring containing E0 such that every element in I0 maps to (P � p)W (T ) under the inclusion fromW (E) to W (T ), we will have an induced map from R0 to W (T )=(P � p)W (T ).Since P � p = P (1 � p(1=P )) and the ring of Witt vectors W (E10 ) is p-adically complete, P � p isa unit in W ((E10 )P ), where (E10 )P denotes the ring obtained from E10 by inverting P . Hence for anyelement a = (a0; a1; : : : ; an; : : :) of W0 we can �nd a unique element z = (z0; z1; : : :) of W ((E10 )P ) suchthat a = (P � p)z. We de�ne T0 to be the subring of (E10 )P generated by all such zi for all elements athat belong to the ideal I0, and we de�ne T to be the perfect closure of T0.We now go into more detail as to how the ring T0 can be computed. Let a = (a0; a1; : : : ; an; : : :) bean element of I0. Then we need to �nd z = (z0; z1; : : : ; zn; : : : ; ) such that a = (P � p)z = Pz � pz:



6 PAUL C. ROBERTSUsing the standard formulas for Witt vectors (see for instance Bourbaki [2] we havePz = (Pz0; P pz1; : : : ; P pnzn; : : :)and pz = (0; zp0 ; zp1 ; : : : ; zpn�1; : : :):Thus, again using the rules for computation in the ring of Witt vectors, to �nd the zn we must solverecursively the following formulas for zn:P pnzpn0 + pP pnzpn�11 + � � �+ pnP pnzn =apn0 + papn�11 + � � �+ pnan + pzpn0 + p2zpn�11 + � � � + pnzpn�1:We remarked above that the zi are in (E10 )P ; in fact, it is clear that when we solve these equations thevalues will be in (E10 )P . More precisely, it can be shown that zn will be of the form f(P;Xi)=P (n+1)pn ,where f(P;Xi) is in E0.We also note that it is enough to take the ring generated by the zi where the (ai) run over a set ofgenerators for I0. To see this we must show, for instance, that if a and b are in I0 and a=(P � p) = (ui),b=(P � p) = (vi), and (a + b)=(P � p) = (zi), then the zi are in the ring generated over E0 by the uiand vi. This follows from the fact that (a + b)=(P � p) = a=(P � p) + b=(P � p) and that the entriesin a sum of Witt vectors are polynomials in the entries of the summands. Similarly, one shows that ifa 2 I0 and e 2 E0, and if a=(P � p) = (ui), e=(P � p) = (vi), and (ea)=(P � p) = (zi), then the zi arein the ring generated over E0 by the ui and vi.As stated above, we let T be the perfect closure of T0. It is not clear whether W (T )=(P � p) isan almost Cohen-Macaulay algebra or not. We show next that if T is any extension of E10 such thatthe local cohomology of T is almost zero in the sense described below, then the local cohomology ofW (T )=(P � p) will be almost zero as well.Theorem 2. Let T be a ring containing E10 , and suppose that P is not a zero-divisor in T and that thereexists an element c 2 T such that c1=pn annihilates Hi(P;X2;:::;Xd)(T ) for i = 0; : : : ; d � 1 for all n � 0.Let c1 be the image of c in W (T ) or W (T )=(P �p). Then c1=pn1 annihilates Hi(p;X2;:::;Xd)(W (T )=(P �p))for i = 0; : : : ; d� 1 for all n � 0.Proof. We note �rst that since the map from T toW (T )=(P�p) preserves multiplication, c1=pn will mapto a pnth root of c1. We will use the term \almost zero" to describe the property of being annihilatedby c1=pn for all n for T -modules or by c1=pn1 for all n for W (T )-modules.We �rst use the long exact sequences of local cohomology associated to the short exact sequences0!W (T )=pW (T )!W (T )=pnW (T )!W (T )=pn�1W (T )! 0and induction to show that the local cohomology of W (T )=pnW (T ) with support in (P;X2; : : : ;Xd)is almost zero in degrees 0; : : : ; d � 1; the case n = 1 is the hypothesis. Note that local cohomologyof W (T )=pnW (T ) with support in (P;X2; : : : ;Xd) is the same as local cohomology with support in(p; P;X2; : : : ;Xd) since W (T )=pnW (T ) is annihilated by a power of p. We then consider the long exactsequence associated to 0!W (T ) pn!W (T )!W (T )=pnW (T )! 0:This long exact sequence produces, for each i, an exact sequenceHi�1(p;P;X2;:::;Xd)(W (T )=pnW (T ))! Hi(p;P;X2;:::;Xd)(W (T )) pn! Hi(p;P;X2;:::;Xd)(W (T )):From this we deduce that the submodule of Hi(p;P;X2;:::;Xd)(W (T )) annihilated by pn is almost zero fori = 0; : : : ; d. Since Hi(p;P;X2;:::;Xd)(W (T )) is the union of these submodules, Hi(p;P;X2;:::;Xd)(W (T )) isalmost zero for i = 0; : : : ; d.Finally, since P is not a zero-divisor in T , P � p is not a zero-divisor in W (T ). We then use the longexact sequence coming from the short exact sequence0!W (T ) P�p! W (T )!W (T )=(P � p)! 0



FONTAINE RINGS AND LOCAL COHOMOLOGY 7to conclude that Hi(p;X2;:::;Xd)(W (T )=(P � p)) is almost zero for i = 0; : : : ; d� 1. ˜We note that if we have a map from R0 to W (T )=(P � p) that takes xi to Xi for all i, then thelocal cohomology modules Hi(p;X2;:::;Xd)(W (T )=(P � p)) are the same as the local cohomology modulesHi(p;x2;:::;xd)(W (T )=(P � p)). 6. An ExampleWe now give an example of how this construction works in practice. The example is a non-Cohen-Macaulay normal domain R0 of dimension three, and we show that the image of the local cohomologyof R0 in the algebra described in the previous section is almost zero. I would like to thank AnuragSingh for bringing this example to my attention and explaining many of its properties.Let p be a prime number greater than 3, and let V0 be a complete DVR with maximal ideal generatedby p. Let R0 be the power series ring V0[[x; y; u; v; w]] modulo the ideal generated by, �rst, the 2 by 2minors of the matrix � p x yu v w � ;and, second, the elementsp3 + x3 + y3; p2u+ x2v + y2w; pu2 + xv2 + yw2; u3 + v3 + w3:The ring R0 has the following properties.(1) R0 is a 3-dimensional normal domain.(2) A system of parameters for R0 is p; v; x+ u.(3) R0 is not Cohen-Macaulay, and its local cohomology in degree 2 is generated by the elementcoming from the relation(x+ u)(yw) = xyw + uyw = vy2 + pw2:We will not prove these facts here, but we remark that the corresponding facts in the analogoussituation in which p is replaced by another variable over a �eld can be deduced from the fact that thering is a completion of a Segre product (see for example [9]) and our case can deduced from that case.We now compute what happens when we adjoin pnth roots of the generators of R0. We �rst adjoinpnth roots of p for each n to form a (non-discrete) valuation ring V . Let �n; xn; yn; un; vn; wn beelements of R+0 such that �pn = �n�1 for all n and similarly for the other variables. By choosing vn andwn appropriately we can ensure also that the 2 by 2 minors of the matrix� �n xn ynun vn wn � (�)are zero.We claim that the only other relations on these elements are the 3pn + 1 polynomials�3pnn + x3pnn + y3pnn ; �3pn�1n u+ x3pn�1n v + y3pn�1n w; : : : ; u3pnn + v3pnn + w3pnn : (��)We �rst note that these elements are zero; the �rst one is the �rst of the original cubic relations,and the others can be shown to be zero using the determinantal relations among �n; xn; yn; un; vn; wn.To see that they generate the ideal of relations, it su�ces to show that the ideal generated by theelements (�) and (��) in the power series ring Vn[[xn; yn; un; vn; wn]] is prime, where Vn is a discretevaluation ring with maximal ideal generated by �n. Let Un denote the quotient of the power series ringby the determinantal ideal (�) and localize Un by inverting one of �n; xn; yn; un; vn; or wn. The idealgenerated by the above polynomials in this localization is generated by either �3pnn + x3pnn + y3pnn oru3pnn + v3pnn +w3pnn . We assume that it is generated by �3pnn +x3pnn + y3pnn ; the other case is similar. Thelocalization of the determinantal ring is regular, and �3pnn +x3pnn is a product of distinct prime elements.It follows that the element �3pnn + x3pnn + y3pnn = y3pnn + (�3pnn + x3pnn ) is prime. Thus the ideal is primeafter localization at any of the six generators, and to �nish the proof it su�ces to know that the depthis at least two, which can be carried out by reduction to the case of a Segre product as outlined above.



8 PAUL C. ROBERTSThus the quotient obtained by dividing by these polynomials is an integral domain and is isomorphicto the extension obtained by adjoining the pnth roots of the generators of our ring. Unlike the case ofR0, this extension is not normal.We now investigate what happens when we take the Fontaine ring of R. We have elements in E(R)corresponding to p and the variables in R0 that we will denote, as above, by capitals: P;X; Y; U; V;W .As in the previous section, they generate a Noetherian subring E0 (up to completion), and we let E10be its perfect closure. We have relations given by the determinants of the matrix� P 1=pn X1=pn Y 1=pnU1=pn V 1=pn W 1=pn �for each n, and we claim that these generate the relations among these elements in E10 . Since E10 is theperfect closure of E0, it su�ces to show that the kernel of the map induced from k[[P;X; Y; U; V;W ]] toE(R) is generated by PV �XU;PW � Y U; and XW � Y V . Let f(P;X; Y; U; V;W ) be an element ofthis kernel. If we represent f by (f0; f1; : : :) in E(R), the component fi in degree i is given by the samepower series f with the coe�cients and variables replaced by their pith roots modulo p in R. From theabove description of the relations between these elements in R, we deduce that this component is inthe ideal generated by �ivi � xiui; �iwi � yiui; and xiwi � yivi and the relations (��) modulo p. Therelations (��) are contained in the ideal generated by p; x; y; u; v; w, so fi is in the ideal generated by�ivi � xiui; �iwi � yiui; and xiwi � yivi and p; x; y; u; v; w. Writefi = ai(�ivi � xiui) + bi(�iwi � yiui) + ci(xiwi � yivi) + di;where ai; bi; and ci are in R and di is in the ideal of R generated by p; x; y; u; v; w.If we knew that the di were zero and that the ai satis�ed api = ai�1 in R=pR and similarly for the biand ci, we could conclude that f was in the ideal generated by PV �XU;PW � Y U; and XW � Y V .By noting that fi = f j�ij for all j � i and using the equationfj = aj(�jvj � xjuj) + bj(�jwj � yjuj) + cj(xjwj � yjvj) + djwe can deduce that fi is in the ideal generated by �ivi�xiui; �iwi�yiui; and xiwi�yivi modulo the idealgenerated by the pj�ith power of (x; y; u; v; w) (modulo p) for all j � i, so fi is in the ideal generated by�ivi�xiui; �iwi�yiui; and xiwi�yivi. Finally, any relation between these three generators of this idealcan be lifted to a relation between the corresponding generators in degree i+1 (using that the relationsare given by the rows of (�)), so we can adjust ai; bi, and ci step by step to make them compatible andconclude that f is in the ideal generated by PV �XU;PW � Y U; and XW � Y V .Thus the quotient has dimension 4 and is a determinantal ring. The elements P; V;X + U are notpart of a system of parameters; in fact, they generate an ideal of height 2.We now let I0 denote the kernel of the map from W0 to R̂ as in Section 5. Let T be the perfectclosure of the extension of E0 as de�ned there. We claim that there is an element of local cohomologyof T0 with support in (P; V;X + U) that maps to the generator of the local cohomology of E0 de�nedabove and that this element is annihilated by arbitrarily small powers of every one of the generators ofthe ring E0. The �rst statement is clear; the element is de�ned by the relation(X + U)(YW ) = XYW + UYW = V Y 2 + PW 2:To see that this element of local cohomology is annihilated by small powers of the generators we needto go back and compute some relations in the ring T . We note �rst that I0 is generated by the elementsP 3+X3+ Y 3; P 2U +X2V +Y 2W;PU2+XV 2+YW 2; and U3+ V 3+W 3, all computed in W (E(R))(as well as P � p). As stated in the previous section, if a denotes one of these elements and we let z bethe element with a = (P � p)z, then we havezn = f(P;Xi)=P (n+1)pn ;where f(P;Xi) is in E0. We will compute more precisely what the zn look like, but �rst we prove asimple lemma on Witt vectors over graded rings.



FONTAINE RINGS AND LOCAL COHOMOLOGY 9Lemma 2. Let A be a graded ring, and let f(xt) be a polynomial with coe�cients in Z of degree kwith entries in A. Let �(xt) denote the element (xt; 0; 0; : : :) of W (A) for each t, and let f(�(xt)) =(a0; a1; : : :) in W (A). Then ai is homogeneous of degree kpi for each i.Proof. We prove this by induction on i. For i = 0 we have that a0 = f(xt), which has degree k = kp0,so the lemma is true in this case.Now let i > 0, and assume that the lemma holds for all j with 0 � j < i. We haveapi0 + papi�11 + � � � + pjapi�jj + � � � + piai = f(xpit ):Since f(xt) is homogeneous of degree k, f(xpit ) is homogeneous of degree kpi. Also, for each j < i,aj is homogeneous of degree kpj by induction, so api�jj is homogeneous of degree kpi. Hence ai is alsohomogeneous of degree kpi. ˜In our example we use two gradings, one in which P;X; Y have degree 1 and U; V;W have degree 0,and one in which P;X; Y have degree 0 and U; V;W have degree 1. This gives a bidegree to each of thegenerators of I0. The lemma implies, for example, that when PU2 +XV 2 + YW 2 is expanded as theWitt vector (a0; a1; : : : ; ), ai will have degree pi in the �rst grading and 2pi in the second grading.The next Lemma gives a description of the quotient when divided by P � p.Lemma 3. Let A be a graded ring as above, and let (a0; a1; : : :) be an element of W (A) such that ai ishomogeneous of degree kpi for each i. Let (a0; a1; : : :) = (P � p)(z0; z1; : : :). Then for each i � 0 we canwrite zi = api0 +PP nij bijP (i+1)piwhere each nij is a positive integer and bij is a homogeneous element of degree kpi.Proof. Again we prove this by induction on i. We can write the equation de�ning the zi as(a0; a1; a2 : : :) = (Pz0; P pz1; P p2z2; : : : ; )� (0; zp0 ; zp1 ; : : :):Thus for i = 0 we have z0 = a0=P , and since P = P (0+1)p0 , this is in the correct form (here all the otherterms are zero).We now assume that the result holds for j < i and prove that it holds for i. The de�ning equationfor zi isapi0 + papi�11 + � � �+ pjapi�jj + � � �+ piai = (Pz0)pi + p(P pz1)pi�1 + � � �+ pj(P pjzj)pi�j + � � �+ pi(P pizi)�p(zp0)pi�1 � � � � � pj(zpj�1)pi�j � � � � � pi(zpi�1):Hence zi is a combination of the other terms in the above expression divided by piP pi . The factor piwill divide the other terms in this expression after the formulas for the zj for j < i are substituted fromthe general theory of Witt vectors; the factor we have to consider is P pi . Thus to complete the proofwe must show that each term in the above equation other than pi(P pizi) is a sum of terms that can bewritten in the form P na=P ipi with a homogeneous of degree kpi and that the only term for which n = 0is api0 .Each of the terms pjapi�jj is homogeneous of degree kpi and we can take n = ipi, so these termsclearly satisfy the required condition.We next consider an element of the form pj(P pjzj)pi�j . By induction, zj is a sum of terms P kmbmdivided by P (j+1)pj with bm homogeneous of degree kpj and exactly one km = 0, for which bm = apj0 .When this sum is multiplied by P pj and raised to the pi�jth power we obtain a sum of integer multiplesof terms of the form (P pj )pi�j Qn P rnkmn brnmn(P (j+1)pj )pi�j : (� � �)



10 PAUL C. ROBERTSIn this product the sum of the rn is pj�i, the kmn are positive except for one term (coming from apj0 )which we compute below, and the bmn are homogeneous of degree kpj. It follows that the product ofthe brnmn is homogeneous of degree (P rn)kpj = pi�jkpj = kpi. Denoting this product b, and lettingk =P rnkmn , we can write this term in the formP pi+kbP (j+1)pi :Since the denominator of this term is (P (j+1)pj )pi�j = P (j+1)pi , if j < i � 1, then any term of thisform can be written in the desired form with positive power of P . If j = i, there is only one term wherethe power is zero. That term has to come from a product of bmn in expression (� � �) in which everykmn is zero, and the only such term is (api0 )p = api+10 . Hence zi has the stated form, so this completesthe proof.
˜We will now show that for � equal to each of the variables P;X; Y; U; V;W and for any n � 1, we have�1=pnYW 2 (P; V )T . Choose such an n, and let m be a positive integer such that 4=pm < 1=pn. Let abe one of the four generators of I0 as above, and let (zi) be the the Witt vector a=(P � p). We considerzi for i = pk � 1. By Lemma 3 we know that zi is the quotient whose numerator is a polynomial in Pwith constant term api0 and coe�cients homogeneous of the degree of a0 times pi and whose denominatoris P (i+1)pi = P pkpi = P pk+i: We now take the pk+ith root of this element. It is now of the form �=P ,where � is a polynomial in P with fractional exponents with constant term a1=pk0 . The coe�cients arehomogeneous of the degree of a0 divided by pk. We have � = P (�=P ) 2 (P; V )T , so � is a multiple ofP in T so is in the ideal (P; V ).Thus we are reduced to showing that if we set the elements described in the previous paragraph to zerofor each of the four generators of I0 and for k ranging between 0 and m, we can show that �1=pnYWis in the ideal (P; V ). To illustrate the method, we outline one step in detail. Letting k = 1, theprocedure above applied to the element PU2+XV 2+YW 2 gives an element Y 1=pW 2=p� (�P 1=pU2=p�X1=pV 2=p+P a
), where a is a positive rational number and 
 is a polynomial each of whose terms hasdegree in P;X; Y at least 1=p and degree in U; V;W at least 2=p. Thus if we substitute the expression inparentheses for Y 1=pW 2=p we will decrease the total degree of �1=pnYW in Y andW and add terms thatare multiples of P a. We will show that if the degree in Y and W of a monomial of the same bidegreeas �1=pnYW is small enough, then the monomial is in (P; V ). Thus this process will eventually increasethe (rational) power of P that divides our element, so that it will eventually be a multiple of P . It isimportant that we are �xing a bound m on the exponents that we use, so that this is in fact a �niteprocess and will eventually terminate.Let m = P aU bXcV dY eW f be a monomial satisfying the inequalities on the degrees satis�ed by�1=pnYW ; that is, the degrees in P;X; Y and U; V;W are at least 1 and the total degree is at least2 + 1=pn. If a + b � 1, since a + c + e � 1, we can use the relations X1=pkU1=pk = P 1=pkV 1=pk andY 1=pkU1=pk = P 1=pkW 1=pk to raise the exponent of P to 1, so the term is a multiple of P . Similarly, ifc + d � 1 we can show that the term is a multiple of V . If both are less than one, then e+ f > 1=pn,since the total degree is at least 2 + 1=pn. Since 4=pm < 1=pn, we can �nd nonnegative integers i andj with i=pm � e, j=pm � f , and i+ j = 3. We then change the leading term by one of the generatorsas in the previous paragraph and replace this term by terms that either lower the degree of the leadingcoe�cient in Y and W or are multiples of a higher power of P . We can continue this until the result isa multiple of P , so that the whole element is in (P; V )T .References[1] F. Andreatta, Generalized ring of norms and generalized (�;�)-modules Ann. Sci. �Ecole Norm. Sup. (4) 39 no. 4(2006), 599{647.[2] N. Bourbaki, Alg�ebre Commutative, Chapitres 8{9, �El�ements de Math�ematiques, Masson (1983).
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