FONTAINE RINGS AND LOCAL COHOMOLOGY

PAUL C. ROBERTS

1. INTRODUCTION

In this paper we use Fontaine rings to study properties of local cohomology for rings of mixed
characteristic. Fontaine rings, which we define and discuss in more detail in Section 3, give a method
of constructing a ring of positive characteristic from one of mixed characteristic in such a way that,
under certain circumstances, the original ring can be reconstructed up to p-adic completion. The idea
is to use the Frobenius map on the ring of positive characteristic and then to deduce results on the
original ring. We discuss the extent to which this program can be carried out and problems that arise.
Essentially, we begin with a certain Noetherian subring of the Fontaine ring of a ring R and look for
extensions 7' of this ring satisfying two properties. The first property is that a given quotient of the
ring of Witt vectors on 7' is almost Cohen-Macaulay. Almost Cohen-Macaulay algebras are algebras
for which certain local cohomology groups are almost zero; these concepts will be defined in section 2.
We will also explain their connection with some of the homological conjectures. The second property
is that relations that are mapped to zero in R are also mapped to zero in this quotient. It is possible
to construct an extension satisfying the first property, but in this paper we concentrate on the second
one and construct a minimal extension 7" such that the required relations are mapped to zero. It is not
clear whether or not this ring is almost Cohen-Macaulay. In the last section we present an example to
show that, at least in some nontrivial cases, the image of the relevant local cohomology modules of the
original ring are almost zero in the local cohomology of this extension, giving some evidence that this
ring might be almost Cohen-Macaulay.

2. ALMOST VANISHING OF LOCAL COHOMOLOGY

Let Ry be a complete local Noetherian domain of mixed characteristic. We will usually assume in
addition that Ry is normal. We let R{f be the absolute integral closure of Ry; that is, R(')" is the integral
closure of Ry in the algebraic closure of its quotient field. Throughout this paper R will denote a ring
between Ry and R{f . Although we do not assume that R is Noetherian, R is a union of local Noetherian
domains that are integral over Ry. As a result, we can define a system of parameters in R to be a
sequence of elements z1,...,z4 of R that is a system of parameters in a local Noetherian subring of R
containing Ry.

Let R be a ring as above; we next take a valuation v on R with values in the ordered abelian group
R of real numbers, Then v is a function from R to R U {oo} satisfying

(1) v(rs) =wv(r) +v(s) for r,s € R.
(2) v(r+s) > min{v(r),v(s)} for r,s € R.
(3) v(r) = oo if and only if r = 0.

We will assume also that v(r) > 0 for r € R and that v(r) > 0 for r in the maximal ideal of R. The
existence of such a valuation follows from standard facts on extensions of valuations, see for example
Zariski-Samuel [15], Chapter VI.

We say that an R-module M is almost zero with respect to v if for all m € M and for all € > 0, there
exists an r € R with v(r) < € and rm = 0.

We will also use another version of almost zero modules—if ¢ is an element of R, we will say that M
is almost zero for ¢ if for every element m of M we have ¢!/"m = 0 for arbitrarily large integers n. If v
is a valuation on R and v(c) < oo, this condition implies that M is almost zero with respect to v.

While we will be concerned in this paper with the two classes of almost zero modules defined above,

we will also mention that more general definitions can be used.
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Definition 1. A class C of modules is a class of almost zero modules if it satisfies the following two
conditions.

(1) If we have a short exact sequence
0—-M - M- M"—0,

then M is in C if and only if M' and M" are in C.
(2) C is closed under direct limits.

It is easy to see that both of the classes we have defined satisfy these conditions. Given a class C
satisfying these conditions we say that a module M is almost zero with respect to C if M € C. For the
remainder of this section we will assume that we have fixed such a class C and “almost zero” will mean
with respect to C.

We now recall some facts about local cohomology and define almost Cohen-Macaulay rings.

Let x1,...,24 be a system of parameters for R, and let H(lx)(R) denote the local cohomology of R
with support in (z1,...,z4). More precisely, H gl,) (R) is the cohomology in degree i of the Cech complex
0= R = [[Res = [[ Rewe; = -+ = Rarasewy = 0,

i i<j
where R has degree 0 and R, 4,...;;, has degree d.

Definition 2. An R-algebra A is almost Cohen-Macaulay if
(1) HEI)(A) is almost zero for i =0,...,d — 1.

(2) A/(z1,...,zq)A is not almost zero.
An alternative definition of almost Cohen-Macaulay can be obtained by defining a sequence z1, ..., z4
to be almost regular if {r|rz; € (x1,...,2i—1)}/(z1,...,z;—1) is almost zero for i = 1,...,d and defining

R to be almost Cohen-Macaulay if a system of parameters is almost regular (together with condition
(2)). Standard methods show that this definition implies the former one. In this paper we will only use
the weaker property defined above.

The importance of the existence of Cohen-Macaulay algebras has been known for many years—see for
instance Hochster [7]. Recently Heitmann [5] has shown that the weaker condition of having an almost
Cohen-Macaulay algebra in the sense defined here has some of the same consequences; in particular,
he showed that the Direct Summand conjecture in dimension 3 follows from the existence of an almost
Cohen-Macaulay algebra. He also showed that R(')" is an almost Cohen-Macaulay algebra in dimension
3; he was using a form of the second definition, although in dimension 3 it does not really matter which
one you use. We next show that in any dimension the existence of an almost Cohen-Macaulay algebra in
the weaker sense we are using here implies the Monomial Conjecture, which is equivalent to the Direct
Summand Conjecture (see for instance Hochster [6] for a discussion of these conjectures).

The Monomial Conjecture states that if z1,...,z4 is a system of parameters for a local ring Ry, then
s al g @ o)

for any ¢ > 0. We assume that there is an almost Cohen-Macaulay algebra A over Ry. Mel Hochster
([6]) has proven that it suffices to consider the case in which z; = p in the mixed characteristic case.
We can also assume that Ry is complete. Using these facts, we let ) be a regular subring of Ry

containing z(= p),z9, ..., x4 as a regular system of parameters. Let F' be a minimal free resolution of
Q/ (2t - - xfi,x'iﬂ,xgﬂ, ... ,xZH) over (. This resolution can be chosen so that Fy = Q, F; = Q4*!
with the map df from F} to Fy given by the row of matrix (z}z}- -l :E'i“ a;é"'l xZH) and

d
2

F, = Qd+( ), where the map d) from F, to Fj is given by the matrix

xl x2 PECEEY xd 0 PECEEY 0
—To Xy 0 . 0 Koszul
0 —Z1T3 - Tg - 0 relations
t+1 t+1
on r R
1 ) ' d
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Since @ is a regular local ring of dimension d and Q/ (2% -+ zf, 2™, ... ') has finite length, F
is a complex of length d. Let this complex tensored with A be denoted F4. Since F becomes exact
when any of the z; is inverted, the same holds for F4. Let

C=0—-R— Hin — HR-Ti-Tj == Rygoezy — 0
i i<j
be the complex defining the local cohomology of R with support in (z1,...,z4). In this complex we let

R have degree 0 and R,,...;,, have degree d. We next consider the total tensor product complex F 4C
over R. In this tensor product we give F; ® C7 degree i — j.

Lemma 1. (1) The complex FA ® C is quasi-isomorphic to FA.
(2) The cohomology of FA® C is almost zero in positive degrees (and hence the same holds for F4).

Proof. The two parts of the proof follow from the two spectral sequences associated with the tensor
product F4 ® C. For the first statement, we consider the spectral sequence obtained by first taking
the homology of F4 ® C? for fixed i. For i =0, C° = R, so F4 ® C° = FA and this gives F4. For
i >0, FA® C"is a product of localizations of F4 obtained by inverting products of the z;, so FA4 ® C"
is exact. Thus the projection of F4 ® C onto FA @ C° = F4 is a quasi-isomorphism, proving (1).

For the second statement, we counsider the homology of FZA ® C for fixed 7. Since FiA is a finitely
generated free module over A, FZA ® C' is a finite direct sum of copies of A ® C, and since A is almost
Cohen-Macaulay, the homology of A ® C' is almost zero in degrees less than d. To prove (2), it will
suffice to show that the homology of FiA ® C is almost zero at FiA ® €7 whenever i — j > 0. The only
value of 5 for which the homology of FZ-A ® C7 might not be almost zero is 5 = d. If i —j > 0, then
i > 7, and if j = d, then we must have i > d. However, the complex F* has length d, so this means
that FiA ® CJ = 0. This completes the proof of the second statement.

It follows from the lemma in particular that H;(F4) is almost zero. We now consider the projection
of Fi{* = A% onto the first factor; this gives a map to A. The image of the kernel of df under this
map is the set of a € A for which there is an n-tuple a,aq,...,aq with

aa;tlxg e :Efi + ala;tl"'l + -t adxfiH = 0.
In other words, the image is {a € Alazlizl - -zl € («1™, ... 2T1)}. We denote this ideal a. Thus
the projection of F{* onto A induces a map from Kerd! onto a. The image of df’ maps to the ideal
I = (x1,...,24). Hence this defines a map from Hy(F4) onto a/I. Since H;(F*) is almost zero, it follows
that a/I is almost zero. On the other hand, one of the conditions for A to be almost Cohen-Macaulay
is that A/(z1,...,%4) is not almost zero. Hence 1 is not in a, so ¥z} --- 2! is not in (:r'i“, . ,:vfl"'l),
and the Monomial Conjecture holds.

3. FONTAINE RINGS AND WITT VECTORS

Let @) be a ring of mixed characteristic p. The Fontaine ring of @, denoted E(Q), is defined to be
the inverse limit over n of (), as n ranges over the ordered set of nonnegative integers, where each @,
is Q/pQ and the map from @, 11 to @, is the Frobenius map for all n. The notation and terminology
that we use is taken from Gabber and Ramero [4], section 8.2 (in the most recent version); however,
we use the notation E(Q) rather than F(Q)™ to avoid confusion with the absolute integral closure. An
element of E(Q) can be represented by a sequence (qo, q1,...) = (¢;), where each ¢; is an element of Q)
taken modulo pQ and ¢! = ¢;_1 modulo pQ for i > 0. E(Q) is a perfect ring of characteristic p.

Let Ry be a complete local normal domain of mixed characteristic as above; we assume in addition that
the residue field k£ of Ry is perfect. Let Dy be an unramified DVR contained in Ry with the same residue
field as Ry such that there exists a homomorphism from a power series ring Sy = Dyl[y2, Y3, - - -, Yt]]
onto Ry. Such a homomorphism exists by the Cohen structure theorem (see for example Matsumura
[10], Section 29). Let z; be the image of y; for each i, and assume that the elements are chosen in such
a way that p,xo, ...,z form a system of parameters for Ry.
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We let S = U,Sp [pl/pn,y;/pn, . ,ytl/pn], adjoining p™th roots of p and the y; for each . Similarly,
adjoin p"th roots of the elements p and z; of Ry to form a ring R = UnRo[pl/pn,a;é/pn, e ,:E%/pn]. We
can then extend the map from Sy to Ry to give a surjective homomorphism from S to R. Since pth
roots are unique only up to a root of unity, there is a choice in adjoining the roots; we choose the roots
so that (pl/pn+l)p = p!/?" for each n and similarly for the z; and y;. We can choose the surjection from

S to R so that it takes pt/?" to p'/P" and yil/pn to ac;/pn for each ¢ and n.

We now take the Fontaine rings E(R) and E(S). We let P denote (p,p'/?,...), Y; = (yi,yil/p, ce)s

and X; = (x, a;g/p, ...) for our given choices of p™th roots.

Next, we take the rings of Witt vectors W (E(S)) and W(E(R)) of the rings we have defined. We
refer to Bourbaki [2] and Serre [13] for general facts about Witt vectors and Gabber and Ramero [4] for
connections with Fontaine rings.

Let R be the p-adic completion of R; that is, the inverse limit over n of R/p™R. We have a map &R,
or simply ¢, from E (R) to R defined by letting

— T P
¢r((ri)) = lim 7y

It is shown in [4] that this sequence converges. The map gg preserves multiplication but not addition.
We have qB(P) = p and qB(XZ) = x; for each i. The map ¢ induces a ring homomorphism ¢ from E (R)
to R/pR, and it extends to a ring homomorphism ¢ from W (E(R)) to R that also takes P to p and X;
to x;, where elements e of E(R) are identified with the corresponding elements (e, 0,0,...) in the ring
of Witt vectors. The reduction of ¢ modulo p is ¢. We refer again to Gabber and Ramero [4], Section
8.2 for details.

As outlined in the introduction, the aim of this paper is to investigate the possibility of using this
construction to construct almost Cohen-Macaulay algebras in mixed characteristic. We first review the
situation for rings of positive characteristic.

4. THE CASE OF POSITIVE CHARACTERISTIC

We assume now that R is a Noetherian integral domain of positive characteristic p and define the
perfect closure of R, denoted R, to be the ring obtained from R by adjoining all p"th roots of elements
of R. Alternatively, R® can be defined as the direct limit of R, for n > 0, where R, = R for all n and
the map from R, to R,+1 is the Frobenius map.

Theorem 1. Let R be a complete Noetherian local domain of positive characteristic, and let x1,...,zq
be a system of parameters for R. Then there is a nonzero element c in R such that Py =0 for all
n e HE:C]_)(ROO) fori=0,...,d—1 and for all integers n > 0.
Proof. We will use the fact that there is a nonzero element ¢ € R which annihilates the local cohomology
H(lxj)(R) for i =0,...,d — 1; this can be found in Roberts [11] or Hochster and Huneke [8], section 3.
We claim, in fact, that this element will satisfy the statement in the theorem. .

To see this, let ¢ be an integer with 0 < ¢ < d — 1, and let  be an element of HE:CJ_)(ROO). Let F
denote the map induced by Frobenius map on H, ij) (R™). Since every element of R* has its p*th power

in R for large enough k, there is some k for which F¥(n) € H! \(R). Let m be an integer such that
Ui (z:) g

;
m + k > n. Then ¢/?" is a multiple of cl/pm+k, so it suffices to show that cl/pm+kn = 0. We have

m m+k m m
Frrk( o™y = PR () = cF™(FR () = 0,

since F™(F*(n)) is in H(ixj)(R). Since R* is perfect, F' is an isomorphism on R* so induces an

isomorphism on H? (R*). Hence the fact that F™*F APy =0 implies that /Py =0, g
(x5) "l "

The above theorem implies that R* is an almost Cohen-Macaulay algebra for R in either of the
senses introduced in Section 2.
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As outlined in the introduction, the aim of this paper is to attempt to apply this kind of argument to

a ring constructed via the Fontaine ring and to deduce results in mixed characteristic by using the ring
of Witt vectors. In fact, for any ring Ry it appears that one can indeed find an almost Cohen-Macaulay
ring by this method. The procedure is to first find a system of generators {z;} for Ry for which the
Fontaine ring E(R) of the ring R defined by adjoining p"th roots as above contains a Noetherian ring
Ey with an ideal Jy with the following properties.

(1) P is a non-zero-divisor in Ey/Jy

(2) P, Xy,...,X4 form a system of parameters for Ey/Jy.
If we then let E be the perfect closure of Ey and let J be the radical of the ideal generated by Jy in E,
then we can define a ring 7'(J) by adjoining all elements of the form j/P™ to E for all j € J and for all
integers n > 0. The ring W(T'(I))/(P — p) is then an almost Cohen-Macaulay ring. However, there is
in general no way of mapping Ry into this ring, so it does not give an almost Cohen-Macaulay algebra
for Ry, and we do not pursue this idea further here. In the next section we describe a somewhat more
complicated construction for which the required map from Ry does exist. In the final section we give a
nontrivial example Ry for which we can verify that the image of the nontrivial local cohomology of Ry
is almost zero in the local cohomology of this algebra. However, we do not know whether this holds in
general.

5. AN ALGEBRA DEFINED FROM THE FONTAINE RING

We now return to the situation in which R is obtained by adjoining p"th roots of certain elements to
a complete local normal domain of mixed characteristic Ry. More precisely, we have a power series ring
So = V{[ya,-..,y]] over a DVR with perfect residue field k together with a surjective map from Sy to
Ry that takes y; to x; for each 7. We assume also that p,xs,..., x4 is a system of parameters for Ry. R
is then obtained from Ry by adjoining p™th roots of p and the z;, and S is obtained similarly from Sp.

We then take the Fontaine rings E(S) and E(R) together with their rings of Witt vectors W (E(S))
aand W (E(R)). We would now like to pass to E(W (R))/(P — p) and show that it is an almost Cohen-
Macaulay algebra for Ry. However, there are two problems. First, E(W (R)) is not the perfect closure
of a Noetherian ring, so we cannot directly apply the method of the previous section. We address this
question first.

The ring E(S) contains a power series ring in P, Ys,...,Y; over k and we define Fy to be the subring
of E(R) which is the image of this power series ring under the induced map from E(S) to E(R). Then
Ey is a Noetherian ring of positive characteristic, and we let EG° denote its perfect closure, a subring
of E(R).

The second problem is that the kernel of the map ¢ from W (E(R)) to R does not go to zero in
W(E(R))/(P —p), so that there is no map induced from Ry. One way around this problem is to embed
R into a larger ring C(R) = {s € Ry| s*" € R for some n}. It is shown in Roberts [12] that the kernel

of the map from W (E(C(R))) to C(R) is generated by P —p. What we do here is find a smaller ring
T containing E° for which there exists a map from Ry to W(T)/(P — p).

We will identify E(R) as a subset of the ring W (E(R)) of Witt vectors by associating e € E(R) with
the Teichmiiller element (e, 0,0...) of W(E(R)). Under this identification, let Wy be the completion of
the subring of W (FE(R)) generated by P, X»,..., X; over the discrete valuation ring V. Let Iy be the
kernel of the map from Wy to R induced by 1; we note that Wy maps onto Ry under this map. Then if
T is a ring containing Ejy such that every element in Iy maps to (P —p)W (T) under the inclusion from
W (E) to W(T), we will have an induced map from Ry to W(T")/(P —p)W (T).

Since P —p = P(1 — p(1/P)) and the ring of Witt vectors W (E§°) is p-adically complete, P — p is
a unit in W ((E§°)p), where (E§°)p denotes the ring obtained from E3° by inverting P. Hence for any
element a = (ag,ay,...,an,...) of Wy we can find a unique element z = (2, z1,...) of W((E§°)p) such
that a = (P —p)z. We define Tj to be the subring of (E§°)p generated by all such z; for all elements a
that belong to the ideal I, and we define T" to be the perfect closure of Tj.

We now go into more detail as to how the ring Ty can be computed. Let a = (ag,a1,...,ay,...) be
an element of Iy. Then we need to find z = (z0,21,...,2n,...,) such that a = (P — p)z = Pz — pz.
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Using the standard formulas for Witt vectors (see for instance Bourbaki [2] we have
Pz = (Pzy, PPz,...,P" z,,...)

and
pz = (0,28, 20 . .,20 .00,
Thus, again using the rules for computation in the ring of Witt vectors, to find the 2, we must solve

recursively the following formulas for z,:

Ppnzgn —i—pPpnzfn_1 o p PP, =
ad’ —i—pa’l’w1 P ay +pAl —I—p2z’1’n71 4+ ptah .

We remarked above that the z; are in (E§°) p; in fact, it is clear that when we solve these equations the
values will be in (E§°) p. More precisely, it can be shown that z, will be of the form f(P, X;)/P™+p",
where f(P, X;) is in Ey.

We also note that it is enough to take the ring generated by the z; where the (a;) run over a set of
generators for Iy. To see this we must show, for instance, that if a and b are in Iy and a/(P —p) = (u;),
b/(P —p) = (vi), and (a + b)/(P — p) = (2;), then the z; are in the ring generated over Ej by the w;
and v;. This follows from the fact that (a +b)/(P — p) = a/(P — p) + b/(P — p) and that the entries
in a sum of Witt vectors are polynomials in the entries of the summands. Similarly, one shows that if
a € Iy and e € Ey, and if a/(P — p) = (u;), ¢/(P — p) = (v;), and (ea)/(P — p) = (%), then the z; are
in the ring generated over Ey by the u; and v;.

As stated above, we let T' be the perfect closure of Ty. It is not clear whether W (T')/(P — p) is
an almost Cohen-Macaulay algebra or not. We show next that if 7' is any extension of E§° such that

the local cohomology of T' is almost zero in the sense described below, then the local cohomology of
W(T)/(P — p) will be almost zero as well.

Theorem 2. Let T be a ring containing Eg°, and suppose that P is not a zero-divisor in’I' and that there
exists an element ¢ € T such that ¢'/P" annihilates HEPXz ...Xd)(T) fori=0,...,d—1 for alln > 0.

Let ¢; be the image of ¢ in W(T) or W(T)/(P —p). Then c}/pn annihilates ng Yoo Xd)(W(T)/(P—p))
fori=0,...,d—1 for all n > 0.
Proof. We note first that since the map from T' to W (T') /(P —p) preserves multiplication, ¢'/?" will map
to a p"th root of ¢;. We will use the term “almost zero” to describe the property of being annihilated
by ¢'/P" for all n for T-modules or by c}/p for all n for W (T')-modules.
We first use the long exact sequences of local cohomology associated to the short exact sequences
0 — W(T)/pW (T) — W(T)/p"W (T) — W (T)/p" *W(T) =0
and induction to show that the local cohomology of W (T')/p"W (T') with support in (P, Xa,...,Xy)
is almost zero in degrees 0,...,d — 1; the case n = 1 is the hypothesis. Note that local cohomology
of W(T)/p"W(T) with support in (P, Xs,...,Xy) is the same as local cohomology with support in
(p, P, Xo,...,Xg) since W(T')/p"W (T) is annihilated by a power of p. We then consider the long exact
sequence associated to
0— W(T) % W () = W(T)/p"W(T) = 0.
This long exact sequence produces, for each %, an exact sequence

s n . pn .
H(lP,IID,XL...,Xd)(W(T)/p W(T)) — HEp,P,Xz,...,Xd)(W(T)) - HEp,P,Xz,...,Xd)(W(T))'
From this we deduce that the submodule of H, gp P X Xd)(W(T)) annihilated by p” is almost zero for
i =0,...,d. Since HEP;P;X2;~~~;Xd)(W(T)) is the union of these submodules, H(ip,P,Xg,...,Xd)(W(T)) is
almost zero for 1 =0,...,d.

Finally, since P is not a zero-divisor in 7', P — p is not a zero-divisor in W (7T'). We then use the long
exact sequence coming from the short exact sequence

0= W(T) 'SP W(T) - W(T) /(P —p) =0
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to conclude that H (l

X ___Xd)(W(T)/(P —p)) is almost zero for i =0,...,d — 1. O

We note that if we have a map from Ry to W (T)/(P — p) that takes x; to X; for all i, then the
local cohomology modules H, )(W(T) /(P — p)) are the same as the local cohomology modules

H(ip,zz,...,zd) (W(T)/(P —p)).

27"'7Xd

6. AN EXAMPLE

We now give an example of how this construction works in practice. The example is a non-Cohen-
Macaulay normal domain Ry of dimension three, and we show that the image of the local cohomology
of Ry in the algebra described in the previous section is almost zero. I would like to thank Anurag
Singh for bringing this example to my attention and explaining many of its properties.

Let p be a prime number greater than 3, and let V) be a complete DVR with maximal ideal generated
by p. Let Ry be the power series ring Vy[[z,y, u, v, w]] modulo the ideal generated by, first, the 2 by 2

minors of the matrix
b r Yy
u v ow )’

p3 + 23 + y3,p2u + z2v + y2w,pu2 + zv? + yw2,u3 + 03 + wd.

and, second, the elements

The ring Ry has the following properties.

(1) Ry is a 3-dimensional normal domain.

(2) A system of parameters for Ry is p, v,z + u.

(3) Ry is not Cohen-Macaulay, and its local cohomology in degree 2 is generated by the element
coming from the relation

(z + u) (yw) = zyw + uyw = vy* + pw?.

We will not prove these facts here, but we remark that the corresponding facts in the analogous
situation in which p is replaced by another variable over a field can be deduced from the fact that the
ring is a completion of a Segre product (see for example [9]) and our case can deduced from that case.

We now compute what happens when we adjoin p”th roots of the generators of Ry. We first adjoin
p"th roots of p for each n to form a (non-discrete) valuation ring V. Let m,, Ty, Yn, Un, Up, w, be
elements of RO+ such that 7}, = m,_; for all n and similarly for the other variables. By choosing v, and
wy, appropriately we can ensure also that the 2 by 2 minors of the matrix

Tn Tn Yn ( *)
Up Up Wp
are zero.

We claim that the only other relations on these elements are the 3p™ + 1 polynomials
TP 3P BT P Ly g3y 3P P 03P P ()
We first note that these elements are zero; the first one is the first of the original cubic relations,
and the others can be shown to be zero using the determinantal relations among m,, Tn, Yn, Un, Up, Wy
To see that they generate the ideal of relations, it suffices to show that the ideal generated by the
elements (x) and (**) in the power series ring V,[[Zn, Yn, Un, Un, wy]] is prime, where V;, is a discrete
valuation ring with maximal ideal generated by m,. Let U, denote the quotient of the power series ring
by the determinantal ideal () and localize U,, by inverting one of m,, zy, Yn, Un, vp, or wy,. The ideal
generated by the above polynomials in this localization is generated by either L e yi” " or
u%p " + ng " + w%p " . We assume that it is generated by ng " + a;%p 8 + yf’bp n; the other case is similar. The
localization of the determinantal ring is regular, and ol 423 isa product of distinct prime elements.
It follows that the element 7P + zof" + ygp "= yf’f’ s (m%p t g n) is prime. Thus the ideal is prime
after localization at any of the six generators, and to finish the proof it suffices to know that the depth
is at least two, which can be carried out by reduction to the case of a Segre product as outlined above.
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Thus the quotient obtained by dividing by these polynomials is an integral domain and is isomorphic
to the extension obtained by adjoining the p™th roots of the generators of our ring. Unlike the case of
Ry, this extension is not normal.

We now investigate what happens when we take the Fontaine ring of R. We have elements in E(R)
corresponding to p and the variables in Ry that we will denote, as above, by capitals: P, X, Y, U, V,W.
As in the previous section, they generate a Noetherian subring Ey (up to completion), and we let Eg°
be its perfect closure. We have relations given by the determinants of the matrix

pi/e™ xt/p"  yl/p"
(Ul/p” v/ Wl/p")

for each n, and we claim that these generate the relations among these elements in E5°. Since E§° is the
perfect closure of Ey, it suffices to show that the kernel of the map induced from k[[P, X,Y,U,V,W]| to
E(R) is generated by PV — XU, PW — YU, and XW —YV. Let f(P,X,Y,U,V,W) be an element of
this kernel. If we represent f by (fo, f1,...) in E(R), the component f; in degree 7 is given by the same
power series f with the coefficients and variables replaced by their p’th roots modulo p in R. From the
above description of the relations between these elements in R, we deduce that this component is in
the ideal generated by mv; — x;u;, mw; — y;u;, and z;w; — y;v; and the relations (+*) modulo p. The
relations (#x*) are contained in the ideal generated by p,z,y,u,v,w, so f; is in the ideal generated by
TV, — Tili, T,w; — Y, and x;w; — y;v; and p, z,y, u, v, w. Write

fi = ai(mv; — zu;) + bi(miw; — yiug) + ci(@iw; — yivg) + di,

where a;, b;, and ¢; are in R and d; is in the ideal of R generated by p, z,y, u, v, w.
If we knew that the d; were zero and that the a; satisfied af = a;—1 in R/pR and similarly for the b;
and ¢;, we could conclude that f was in the ideal generated by PV — XU, PW — YU, and XW —YV.

By noting that f; = fjj " for all 7 > 4 and using the equation
fj = aj (ijj — :vju]-) + bj(ﬂ'j’wj — ijj) + Cj(xjwj — ijj) + dj

we can deduce that f; is in the ideal generated by m;v; —x;u;, m3w; —y;u;, and z;w; —y;v; modulo the ideal
generated by the p/~*th power of (x,y,u,v,w) (modulo p) for all j > i, so f; is in the ideal generated by
T0; — Tilg, Tw; — y;uq, and z;w; —y;v;. Finally, any relation between these three generators of this ideal
can be lifted to a relation between the corresponding generators in degree i + 1 (using that the relations
are given by the rows of (%)), so we can adjust a;, b;, and ¢; step by step to make them compatible and
conclude that f is in the ideal generated by PV — XU, PW — YU, and XW —YV.

Thus the quotient has dimension 4 and is a determinantal ring. The elements P, V, X 4+ U are not
part of a system of parameters; in fact, they generate an ideal of height 2.

We now let Iy denote the kernel of the map from Wy to R as in Section 5. Let T be the perfect
closure of the extension of Ey as defined there. We claim that there is an element of local cohomology
of Ty with support in (P, V, X + U) that maps to the generator of the local cohomology of Ej defined
above and that this element is annihilated by arbitrarily small powers of every one of the generators of
the ring Ey. The first statement is clear; the element is defined by the relation

(X+U)YW)=XYW +UYW =VY? + PW2

To see that this element of local cohomology is annihilated by small powers of the generators we need
to go back and compute some relations in the ring 7. We note first that Iy is generated by the elements
PP+ X3+Y3 P2U+ X2V +Y2W,PU? + XV2+YW?2, and U+ V3 + W3, all computed in W (E(R))
(as well as P —p). As stated in the previous section, if a denotes one of these elements and we let z be
the element with a = (P — p)z, then we have

Zn = f(Pa X’i)/P(n+1)pn7

where f(P,X;) is in Fy. We will compute more precisely what the z, look like, but first we prove a
simple lemma on Witt vectors over graded rings.
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Lemma 2. Let A be a graded ring, and let f(x;) be a polynomial with coefficients in Z of degree k
with entries in A. Let 7(x¢) denote the element (z4,0,0,...) of W(A) for each t, and let f(7(xt)) =
(ag,a1,...) in W(A). Then a; is homogeneous of degree kp' for each i.

Proof. We prove this by induction on 4. For 4 = 0 we have that ag = f(x;), which has degree k = kp",
so the lemma is true in this case.
Now let 7 > 0, and assume that the lemma holds for all § with 0 < j < i. We have

i i—1 P opi—i i i
ay +pa)  +--+pla] T4 plap = f(a)).

Since f(z;) is homogeneous of degree k, f (xfl) is homogeneous of degree kp'. Also, for each j < i,

. - . . i—j . .
a; is homogeneous of degree kp’ by induction, so a? is homogeneous of degree kp'. Hence a; is also

homogeneous of degree kp’. g

In our example we use two gradings, one in which P, X, Y have degree 1 and U, V, W have degree 0,
and one in which P, X, Y have degree 0 and U, V, W have degree 1. This gives a bidegree to each of the
generators of Iy. The lemma implies, for example, that when PU? + XV?2 + YW? is expanded as the
Witt vector (ag,ay,...,), a; will have degree p’ in the first grading and 2p’ in the second grading.

The next Lemma gives a description of the quotient when divided by P — p.

Lemma 3. Let A be a graded ring as above, and let (ap, ay,...) be an element of W(A) such that a; is
homogeneous of degree kp® for each i. Let (ag,ay,...) = (P —p)(z0,21,...). Then for each i > 0 we can
write

B
L Pli+1)p

where each n;j is a positive integer and b;; is a homogeneous element of degree kp*.

Proof. Again we prove this by induction on i. We can write the equation defining the z; as
2
(ap,a1,az...) = (Pzg, PPz, PP 29,...,) — (0,25, 20, ...).

Thus for ¢ = 0 we have zy = ag/P, and since P = P(OH)I’O, this is in the correct form (here all the other
terms are zero).
We now assume that the result holds for j < ¢ and prove that it holds for 7. The defining equation
for z; is
1

a +pal 4 pld T e pla = (Pa) 4+ p(PPa )P 4 4 p (PP 25)P

—p() T = P )T = =)

Hence z; is a combination of the other terms in the above expression divided by piPpi. The factor p'
will divide the other terms in this expression after the formulas for the z; for j < ¢ are substituted from

i

oo p (PP 2)

the general theory of Witt vectors; the factor we have to consider is _sz. Thus to complete the proof
we must show that each term in the above equation other than p'(PP' ;) is a sum of terms that can be
written in the form P"a/ P%" with ¢ homogeneous of degree kp* and that the only term for which n = 0
is agl.

Each of the terms p’ a?z_] is homogeneous of degree kp® and we can take n = ip’, so these terms
clearly satisfy the required condition.

We next consider an element of the form pj(ij zj)pi_j. By induction, z; is a sum of terms Pkmp,,
divided by PUtDY with bm homo_geneous of degree kp’ and exactly one k,, = 0, for which b, = ag].
When this sum is multiplied by PP’ and raised to the p 7th power we obtain a sum of integer multiples
of terms of the form o

(PP I, Pkt
(PU+)P7)p=

( * )
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In this product the sum of the r, is p’~*, the k,,, are positive except for one term (coming from a‘g])
which we compute below, and the b, are homogeneous of degree kp’. It follows that the product of
the b7 is homogeneous of degree (3 rn)kp? = p"~Ikp’ = kp'. Denoting this product b, and letting
k= > rpkm,, we can write this term in the form

PP tkp
PE+pt”

Since the denominator of this term is (PUTDP '™ = pU+Dp' if j < i — 1, then any term of this
form can be written in the desired form with positive power of P. If 7 = 4, there is only one term where
the power is zero. That term has to come from a product of b, in expression (* * x) in which every

. . i it1 .
k., 1s zero, and the only such term is (ag )P = af; . Hence z; has the stated form, so this completes
the proof.

g

We will now show that for 7 equal to each of the variables P, X, Y, U, V, W and for any n > 1, we have
n'/P"YW € (P,V)T. Choose such an n, and let m be a positive integer such that 4/p™ < 1/p". Let a
be one of the four generators of Iy as above, and let (z;) be the the Witt vector a/(P — p). We consider
z for i = p* — 1. By Lemma 3 we know that z; is the quotient whose numerator is a polynomial in P

with constant term agl and coefficients homogeneous of the degree of ag times p’ and whose denominator

is PPt = prr’ — pr**' We now take the pF*?th root of this element. It is now of the form 8/P,

k
where [ is a polynomial in P with fractional exponents with constant term a(l)/ P" The coefficients are

homogeneous of the degree of ag divided by p¥. We have 8 = P(8/P) € (P,V)T, so 3 is a multiple of
P in T so is in the ideal (P, V).

Thus we are reduced to showing that if we set the elements described in the previous paragraph to zero
for each of the four generators of Iy and for k ranging between 0 and m, we can show that 5'/?"Y W
is in the ideal (P, V). To illustrate the method, we outline one step in detail. Letting k& = 1, the
procedure above applied to the element PU% 4+ XV?2+Y W? gives an element Y \/PW2/P — (—Pl/pUZ/p —
X1ry2e 4 P%y), where a is a positive rational number and +y is a polynomial each of whose terms has
degree in P, X, Y at least 1/p and degree in U, V, W at least 2/p. Thus if we substitute the expression in
parentheses for Y/PW?2/? we will decrease the total degree of n'/?"YW in Y and W and add terms that
are multiples of P®. We will show that if the degree in Y and W of a monomial of the same bidegree
as nl/ P"YW is small enough, then the monomial is in (P, V). Thus this process will eventually increase
the (rational) power of P that divides our element, so that it will eventually be a multiple of P. It is
important that we are fixing a bound m on the exponents that we use, so that this is in fact a finite
process and will eventually terminate.

Let m = P*U°XVIY*W/ be a monomial satisfying the inequalities on the degrees satisfied by
nl/pnYW; that is, the degrees in P, X,Y and U,V,W are at least 1 and the total degree is at least
2+ 1/p". Ifa+b > 1, since a + ¢+ e > 1, we can use the relations Xty = pi/ety it and
yUrtyi/et = pletwi/p* ¢ raise the expounent of P to 1, so the term is a multiple of P. Similarly, if
¢+ d > 1 we can show that the term is a multiple of V. If both are less than one, then e 4+ f > 1/p",
since the total degree is at least 2 + 1/p™. Since 4/p™ < 1/p", we can find nonnegative integers i and
g with i/p™ <'e, j/p™ < f, and i + j = 3. We then change the leading term by one of the generators
as in the previous paragraph and replace this term by terms that either lower the degree of the leading
coefficient in Y and W or are multiples of a higher power of P. We can continue this until the result is
a multiple of P, so that the whole element is in (P, V)T

REFERENCES

[1] F. Andreatta, Generalized ring of norms and generalized (¢,T')-modules Ann. Sci. Ecole Norm. Sup. (4) 39 no. 4
(2006), 599-647.
[2] N. Bourbaki, Algébre Commutative, Chapitres 8-9, Eléments de Mathématiques, Masson (1983).



FONTAINE RINGS AND LOCAL COHOMOLOGY 11

[3] J.-M. Fontaine, Représentations p-adiques des corps locaus, in: Cartier P., Illusie L., Katz N.M., Laumon G., Manin
Y., Ribet K.A. (Eds.), The Grothendieck Festschrift, vol. II, in: Progress in Math., vol. 87, Birkhauser, Basel, (1991),
249-3009.

[4] O. Gabber and L. Ramero, Foundations of p-adic Hodge theory, arxiv:math/0409584.

[6] R. C. Heitmann, The direct summand conjecture in dimension three, Ann. of Math. (2) 156 (2002), 695-712.

[6] M. Hochster, Canonical elements in local cohomology modules and the direct summand conjecture, J. Algebra 84
(1983), 503-553.

[7] M. Hochster, Big Cohen-Macaulay algebras in dimension three via Heitmann’s theorem, J. Algebra 254 (2002), no. 2,
395-408.

[8] M. Hochster and C. Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135
(1992), 53-89.

[9] K. Kurano, E. Sato, A. K. Singh, and K. Watanabe, Multigraded rings, diagonal subalgebras, and rational singularities,
to appear in the Journal of Algebra.

[10] H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, England, 1986.

[11] P. Roberts, Two applications of dualizing complezes over local rings, Ann. Sci. Ecole Norm. Sup. (4) 9, pp. 103-106,
1976.

[12] P. Roberts, The root closure of a ring of mized characteristic, arxivimath/0810.0215.

[13] J.-P. Serre, Local Fields, Graduate Texts in Mathematics, 67. Springer-Verlag, New York-Berlin, 1979.

[14] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies de corps locaus, Ann. Sci. Ecole Norm. Sup.
(4) 16 no. 1 (1983), 59-89.

[15] O.Zariski and P. Samuel, Commutative Algebra, van Nostrand, New York, 1958.



