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We give a pattern avoidance criterion to classify the orbits of
Sp(p,C) × Sp(q,C) (resp. GL(n,C)) on the flag variety of type
Cp+q (resp. Dn) with rationally smooth closure. We show that all
such orbit closures fiber (with smooth fiber) over a smaller flag
variety, and hence are in fact smooth. In addition we prove that
the classification is insensitive to isogeny.
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Suppose G is a complex connected reductive algebraic group and let θ denote an involutive auto-
morphism of G . Write K for the fixed points of θ , and B for variety of maximal solvable subalgebras
of the Lie algebra g of G . (Henceforth we call this variety simply the flag variety of G .) Then K acts
with finitely many orbits on B via the restriction of the adjoint action (e.g. [Mat79]).

Since we have assumed the ground field is C, θ arises as the complexification of a Cartan invo-
lution for a real form GR of G . The localization theory of Beilinson–Bernstein relates the geometry
of K orbits on B with the category of Harish-Chandra modules for GR . Meanwhile, as a special case,
one can consider the setting where GR is itself a complex Lie group. In this case G = GR × GR , θ is
the involution that interchanges the two factors, K is the diagonal copy of GR , and the Weyl group
of GR parametrizes the orbits of K on B (which now is two copies of the flag variety B◦ for GR).
Intersecting such an orbit with (say) the left copy B◦ gives an orbit of a Borel subgroup on B◦ , that
is a Schubert cell. This process preserves the fine structure of the singularities of the closures of each
kind of orbit, and is the geometric underpinning of the equivalence of categories (essentially) between
category O and a suitable category of Harish-Chandra modules for GR (e.g. [BorBry85]).
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Thus, roughly speaking, any question which one can ask about Schubert varieties can also be posed
in the greater generality of K orbits on B, and any relation of the geometry of the former with cate-
gory O can potentially be translated into a relation of the latter with the category of Harish-Chandra
modules. Some of the deepest results in this direction are due to Lusztig and Vogan [LusVog83] and
Vogan [Vog79,Vog83], which when taken together give an algorithm to compute the local intersec-
tion homology (with coefficients in any irreducible local system) of any orbit closure. When GR is
a complex group, the algorithm is equivalent to that of [KazLus79] for Schubert varieties.

Our interest here is determining when the closures of K orbits on B are smooth, or more gen-
erally rationally smooth. Since the latter condition is equivalent to a condition on local intersection
homology (see the discussion of [KazLus79, Appendix]), the question of whether a particular orbit has
rationally smooth closure can be answered using the algorithm of [Vog79]. But it is desirable to have
a “closed form” of the answer. For instance, in the case that GR is complex (or, equivalently, the case
of Schubert varieties), a closed form answer for smoothness or rational smoothness has been obtained
in terms of a kind of pattern avoidance for Weyl group elements.2

In the setting of K orbits on B, new phenomena appear that are not present in the case of
Schubert varieties. The most obvious difference is that while the definition of Schubert varieties is
independent of the isogeny class of G , symmetric subgroups (and their orbits on B) do indeed de-
pend on isogeny. A typical complication in the latter case may be visualized as follows. Suppose G is
simply connected but not adjoint, G �= G is isogenous to G , and K and K are respective symmetric
subgroups with the same Lie algebra. Then it frequently happens that K is disconnected (while K
is connected).3 Thus there may be two distinct orbits Q 1 and Q 2 for K on B whose union forms
a single orbit Q for K . Schematically one encounters pictures as follows.

Q 1

Q ◦
•

Q ◦
•

Q 2

Here Q ◦ is a closed K orbit (which is also a K orbit) which appears in the closure of both K orbits
Q 1 and Q 2. The picture indicates that the closure of the K orbit Q 1 (or Q 2) is smooth at Q ◦ . But
the K orbit Q , the union of Q 1 and Q 2, has closure which isn’t smooth (or even rationally smooth)
at Q ◦ . Moreover, this particular example can “propagate” in higher rank schematically as follows.

Q 1

Q ◦
•

Q ◦
•

Q 2

••

This time the closure of the K orbit Q 1 (or Q 2) is no longer smooth at Q ◦ (but is rationally smooth),
but once again the K orbit Q has closure which is not smooth (nor rationally smooth) at Q ◦ . Of
course none of this is conceptually very complicated, but since, roughly speaking, pattern avoidance

2 There is an extensive literature of geometric and combinatorial results relating pattern avoidance in Weyl groups to singu-
larities of Schubert varieties. We do not attempt to recount the history of these results in detail here. See [Bil98], [BilLak00,
Chapter 8] or [BilPos05] and the extensive references therein.

3 We remark that the notion of isogeny we are considering here differs from isogeny of the corresponding real forms. More
precisely, if GR and GR are the real forms corresponding to symmetric subgroups K and K of groups G and G with G simply
connected and G a quotient of G by a central subgroup, then of course it does not follow that GR is a quotient of GR by
a central subgroup. (In other words, the relevant central subgroup of G need not be defined over R.) For the results of this
paper, the latter notion of isogeny of real forms is not interesting and will not be considered.
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results are predicated on failure of smoothness propagating uniformly to higher rank, these examples
suggest that such results are potentially more subtle in the case of K orbits in ways that are not seen
for Schubert varieties. This is made clear by Example 5.1.

In this paper, we are interesting in understanding nice isogeny-independent pattern avoidance
results. For instance, [McG07] answers the questions of smoothness and rational smoothness for the
closures of orbits of K = GL(p,C)×GL(q,C) on the flag variety for G = GL(p+q,C). This is the setting
arising from the real form GR = U(p,q) of G . After reviewing some preliminaries in Section 1, we
recall the results of [McG07] in Section 2 and then prove that they are, in a suitable sense, insensitive
to isogeny.

In the remainder of the paper, we go on to study other classical groups outside of type A. In gen-
eral, as remarked above, the situation potentially depends crucially on issues related to isogeny. But,
perhaps surprisingly, we find that isogeny essentially plays no role if G is of type C (resp. type D) and
the Lie algebra of K is sp(p,C) ⊕ sp(q,C) (resp. gl(n,C)). This setting includes the cases arising from
the real groups Sp(p,q) and SO∗(2n). The main results are Theorems 3.2 and 4.2. They completely set-
tle the question of rational smoothness (which, in the end, turns out to be equivalent to smoothness)
for K orbits closures in these cases. The statements are formulated in terms of a remarkably simple
pattern avoidance criterion resembling the one discovered in [McG07]. (Roughly speaking there are
always only seven “bad” patterns to avoid.)

1. Preliminaries

In particular examples below, we will need a detailed description of the closure order of K orbits
on B. We begin by recalling a few features of the general case. These are due to Matsuki [Mat79],
Matsuki and Oshima [MatOsh88], Lusztig and Vogan [LusVog83], and are given a full exposition in
Richardson and Springer [RicSpr90].

Following the terminology of [RicSpr90, Section 5.1], we first recall the weak closure order on K\B.
Fix, once and for all, a choice of θ -stable Cartan subalgebra h in g, and a choice of positive roots �+
in the full root system � = �(g,h). Write B for the corresponding Borel subgroup of G . For a simple
root α ∈ �+ , let Pα denote the variety of parabolic subalgebras of type α (i.e. those conjugate to the
one with roots �+ ∪ {−α}). Write πα for the projection of B to Pα , and define

sα · O := the (unique) dense K orbit in π−1
α

(
πα(O)

)
. (1)

The weak closure order is generated by relations O < sα · O whenever dim(sα · O) = dim(O) + 1. In
this case, for O′ = sα · O, we write

O α−→ O′.

Then O ⊂ O′ , but these relations do not generate the full closure order. To obtain all closure rela-
tions, we must recursively apply the following procedure (implicit in [RicSpr90, Theorem 7.11(vii)],
for instance). Whenever a codimension one subdiagram of the form

O1

O2

α

O3

O4
β α

(2)
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is encountered, it must be completed to

O1

O2

α

O3

O4

α

(3)

New edges added in this way are represented by dashed lines in the figures appearing in Section 5.
Note that this operation must be applied recursively, and thus the solid unlabeled edge in the original
diagram (2) may be dashed as the recursion unfolds.

We next recall a definition from [RicSpr90, 4.7]. Given w ∈ W = W (h,g), fix a reduced expression
w = sαk · · · sα2 sα1 . For O ∈ K\B, define

w · O = sαk · (· · · sα2 · (sα1 · O)
)
. (4)

It is easy to see this is well-defined independent of the choice of reduced expression.
The following is our main tool to detect failure of rational smoothness, and is a special case of the

results of Springer [Spr92].

Theorem 1.1. Suppose g contains a Cartan subalgebra which is fixed pointwise by θ . Fix O ∈ K\B and a closed
orbit Ocl ∈ K\O. Consider

S(O, Ocl) = {α ∈ �+ | sα · Ocl �= Ocl and sα · Ocl ⊂ O}.

If

#S(O, Ocl) > dim(O) − dim(Ocl), (5)

then the closure of O is not rationally smooth.

The necessary condition for rational smoothness furnished by Theorem 1.1 is a priori rather weak;
for example, the analogous necessary condition for rational smoothness of complex Schubert varieties
is far from sufficient, even in low rank. We will see below, however, that this condition is both neces-
sary and sufficient for rational smoothness in all the cases that we consider. (Even though we make
no use of them, we mention that a number of other powerful techniques exist for detecting (rational)
smoothness; see [Bri99,Bri00,CarKut03], for example, and the references therein.)

2. U(p,q)

We specialize to the setting of [McG07] before returning to questions of isogeny at the end of
this section. Fix integers p + q = n, and a signature (p,q) Hermitian form 〈·,·〉 on an n-dimensional
complex vector space VC . Let G = GL(VC) (the invertible complex linear endomorphisms of VC with
determinant one) and let GR denote the subgroup of G preserving 〈·,·〉. Write θ for the complexifica-
tion of a Cartan involution of GR and set K = Gθ . Then K  GL(p,C) × GL(q,C). Choose coordinates
so that �+ = {ei − e j | i < j}.

In the present setting, the twisted involutions of [RicSpr90, Section 3] parametrizing K\B amount
to involutions of S p+q with signed fixed points of signature (p,q); that is, involutions in the symmetric
group S p+q whose fixed points are labeled with signs (either + or −) so that half the number of non-
fixed points plus the number of + signs is exactly p (or, equivalently, half the number of non-fixed
points plus the number of − signs is q). The parametrization is arranged to have the following feature.
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Suppose O is parametrized by an involution with signed fixed points whose underlying involution in
the symmetric group is σ . Then there is a representative bO = hO ⊕ nO (with hO θ -stable) with the
following property. Write �+

O for the roots of hO in g. There is a unique inner automorphism of g

carrying h to hO and �+ to �+
O . Using it we may transport the action of θ on �+

O to our fixed
system �+ . Once this is done, the key property is that

θ(ei − e j) = eσ (i) − eσ ( j). (6)

Let Σ±(p,q) denote the set of signed involutions of S p+q with signature (p,q) as in the previous
paragraph. For the purposes of formulating pattern avoidance results, we introduce the following
notation. An element γ ∈ Σ±(p,q) will be identified with an n-tuple (c1, . . . , cn), with each ci either
a natural number, a +, or a − such that: every natural number occurs exactly twice; and the number
of distinct natural numbers plus the number of + entries is exactly p. For later use in Definition 2.1
below, we say that two such strings are equivalent if they have the same signs in the same position
and pairs of equal numbers in the same positions. (So 11 + − 22 is equivalent to 22 + − 33 and
55 +− 22, for instance.) In any event, the correspondence between equivalence classes of such strings
and involutions with signed fixed points is clear: pairs of equal natural numbers ci = c j in the string
correspond to indices i and j interchanged by the involution, and a sign ci in the string corresponds to
a label of the fixed points i of the involution. We will generally not distinguish between elements of
Σ±(p,q) and (equivalence classes of) such strings (which, we remark, are called “clans” in [Yam97]).

We now turn to an explicit description of the closure order. (It may be helpful to refer to Fig. 1
when reading the discussion below.) Fix γ = (c1, . . . , cn) ∈ Σ±(p,q), a simple root α = ei − ei+1 ∈ �+ ,
and recall the action (described before (6)) of θ on α determined by Oγ . Then

dim(sα · Oγ ) = 1 + dim(Oγ )

if and only if one of the following conditions hold (using terminology as in [RicSpr90, 4.3], for in-
stance):

(a) α is complex (i.e. θ(α) �= ±α) and θα ∈ �+;
(b) α is imaginary (i.e. θ(α) = α) and noncompact.

Using (6) for the former condition, and a calculation in U(1,1) for the latter, these may be formulated
as the following conditions on positions i and i + 1 in γ :

(a) ci and ci+1 are unequal natural numbers such that j < k where ci = c j and ci+1 = ck (and j �= i
and k �= i + 1);

(a′) ci is a sign, ci+1 is a number and the entry ck with ck = ci+1 (k �= i + 1) satisfies i < k;
(a′′) ci is a number, ci+1 is a sign, and the other entry ck with ck = ci (k �= i) satisfies k < i + 1;
(b) ci and ci+1 are opposite signs.

Thus if i = 2, then γ1 = (1,1,2,2) satisfies the first condition above, γ2 = (−,+,1,1) satisfies the
second, γ3 = (1,1,−,+) the third, γ4 = (1,+,−,1) the fourth, and (1,2,1,2) or (1,+,1,−) satisfies
none of them. In each case the dense K orbit in sα · Oγ is parametrized by γ ′ = (c′

1, . . . , c′
n) ∈ Σ±(p,q)

which differs from γ only in the i and i + 1 entries in each respective case as follows:

(a) c′
i = ci+1 and c′

i+1 = ci ;
(b) c′

i = c′
i+1 is a natural number.

So for the examples listed above, we have γ ′
1 = (1,2,1,2), γ ′

2 = (−,1,+,1), and γ ′
3 = (1,−,1,+),

and γ ′
4 = (1,2,2,1).

The previous paragraph thus gives a complete description of the weak closure order. After apply-
ing the recursive procedure given above, one obtains an explicit description of the full closure order.
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In particular, all of the following operations move from one element γ ∈ Σ±(p,q) to a higher one
in the order: replace a pair of (not necessarily adjacent) opposite signs by a pair of equal num-
bers; or interchange a number with a sign (again not necessarily adjacent to it) so as to move
the number farther away from its equal mate in the string (and on the same side); or interchange
a pair a, b of equal numbers with a to the left of b provided that the mate of a lies to the left
of the mate of b. Thus (the orbit corresponding to) (1,+,1,−) lies below (1,2,1,2) and (1,+,−,1),
while (1,2,1,3,2,3) lies below (1,3,1,2,2,3) but not below (1,3,1,3,2,2). In particular, the closed
orbits are parametrized by elements of Σ±(p,q) consisting only of signs, while the open orbit is
parametrized by (1,2, . . . ,2q,+, . . . ,+,2q − 1,2q,2q − 3,2q − 2, . . . ,1,2), with 2p − 2q plus signs, if
p > q.

By similar considerations, one quickly deduces the following dimension formula (as in [Yam97,
Section 2.3], for instance) for the orbit Oγ parametrized by γ = (c1, . . . , cn). Let

l(γ ) =
∑

ci=c j∈N, i< j

(
j − i − #{k ∈ N | cs = ct = k for some s < i < t < j}). (7)

Then

dim(Oγ ) = d(K ) + l(γ ),

where d(K ) is the dimension of the flag variety for K , namely 1
2 (p(p − 1) + q(q − 1)).

Definition 2.1. We say that an involution with signed fixed points (c1, . . . , cn) ∈ Σ±(p,q) includes the
pattern (d1, . . . ,dm) if there are indices i1 < · · · < im so that the (possibly shorter) string (ci1 , . . . , cim )

is equivalent to (d1, . . . ,dm). We say that γ avoids (d1, . . . ,dm) if it does not include it. For in-
stance, (1,1,2,+,3,2,−,3): contains the pattern (1,1,2,2) (by considering i1 = 1, i2 = 2, i3 = 3, and
i4 = 6), contains (1,2,1,2) (by considering i1 = 3, i2 = 5, i3 = 6, and i4 = 8), and contains (1,+,1,−)

(by considering i1 = 3, i2 = 4, i3 = 6, and i4 = 7); but avoids (1,+,−,1), (1,+,+,1), and (1,2,2,1).

Here is the main result from [McG07].

Theorem 2.2. Fix γ ∈ Σ±(p,q), an involution in S p+q with signed fixed points of signature (p,q) (as defined
above). If γ includes one of the patterns (1,+,−,1), (1,−,+,1), (1,2,1,2), (1,+,2,2,1), (1,−,2,2,1),
(1,2,2,+,1), or (1,2,2,−1) then the closure of Oγ is not rationally smooth. In all other cases, Oγ has
smooth closure. In particular, an orbit has smooth closure if and only if it has rationally smooth closure, or if
and only if the condition of Theorem 1.1 fails for some closed orbit below it.

Next we turn to issues of isogeny. First, we switch notation and consider the simply connected sim-
ple group G = SL(n,C). Since the center of GL(n,C) acts trivially on B, the above discussion applies
without change for symmetric subgroup K = S(GL(p,C) × GL(q,C)) of G . Now let G be a quotient
of G by a subgroup F < Z/n of the center of G . Let K be the symmetric subgroup of G with Lie alge-
bra s(gl(p,C) ⊕ gl(q,C)). Then the orbits of K on B coincide with those of K except in one case: if
n = 2m, p = q = m, and F contains the index m subgroup of Z/2m. In this case, K has two connected
components, and indeed K orbits can be disconnected. More precisely, K orbits are parametrized
by Σ±(p,q) modulo the equivalence relation generated by γ ∼ −γ , where −γ is obtained from γ
by reversing all signs of fixed points. (So, for instance, (1,+,−,1) is equivalent to (1,−,+1), but
(1,2,1,2) is equivalent to only itself.) Equivalence classes thus have either one or two elements. In
general, if γ denotes such a class, the K orbit Oγ parametrized by γ breaks into K orbits as

Oγ = Oγ ∪ O−γ (8)

which is disconnected if γ �= −γ . So the subtleties alluded to in the introduction could potentially
come into play. In fact, they do not, and one way to see this is to examine the proof of Theorem 2.2.
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It consists of two steps: first proving that if γ contains one of the three indicated patterns, then it is
not rationally smooth; and, second, proving that the remaining orbits are smooth. The first is done by
finding a suitable closed orbit Ocl in the closure of Oγ so that Theorem 1.1 applies. It turns out that
the identical argument can be carried out for K orbits; that is, roughly speaking, Springer’s criterion
is insensitive to isogeny in this case. (This need not always be true—see Example 5.1.) The second step
can also be carried out in an analogous manner which, once again, is a special feature of this case.
In the end, one concludes Theorem 2.2 holds for the orbits of any symmetric subgroup K of G (isogenous to
SL(n,C)) with Lie algebra s(gl(p,C) ⊕ gl(q,C)).

We conclude this section by recalling (as in [RicSpr90, Section 2]) the natural action of
W = W (h,g) on the set of twisted involutions parametrizing K orbits on B. (We will need this
for formulating some results in Section 4.) On the level of Σ±(p,q) we write w × γ for the action
of w on γ . Explicitly, it amounts to the obvious action of the symmetric group: the w(i)th component
of (the string parametrizing) w × γ is simply the ith component of (the string parametrizing) γ .

3. Sp(p,q)

We now turn our attention to GR = Sp(p,q), a real form of G = Sp(2n,C), again deferring isogeny
questions to the end of this section. We start with a brief outline of our strategy. As the definition
recalled below makes evident, GR is a subgroup of G ′

R
= U(2p,2q). In this section, we will try (as

much as possible) to reduce the study of K orbits on B, the flag variety for G , to corresponding results
in the previous section for K ′  GL(2p,C)×GL(2q,C) orbits on B′ , the flag variety for GL(2p +2q,C).
More precisely, B naturally includes into B′ and (for appropriate choices of the Cartan involutions in
question) a K ′ orbit on B′ either meets B in a single K orbit, or else not at all. Thus the orbits
of K on B are parametrized by a subset of the involutions with signed fixed points Σ±(2p,2q)

introduced above. In fact, we quickly check below that the closure order on K orbits on B is simply
the appropriate restriction of the closure order of K ′ orbits on B′ . Thus the simplest result that one
could hope for is this: the closure of an orbit for K on B has (rationally) smooth closure if and only if
the corresponding K ′ orbit B′ which it meets has (rationally) smooth closure (and recall these latter
orbits have been classified in Theorem 2.2). This is in fact the content of Theorem 3.2 below, apart
from an easily stated exception treated in Lemma 3.1.

It is worth remarking that since (up to issues of isogeny) any classical real group outside of type A
is a subgroup of an appropriate U(p,q), one could attempt to mimic the strategy of the previous
paragraph for any such group. In the next section, we do so for SO∗(2n) and obtain similar results.
But for the other classical groups, complications arise; see Example 5.1.

We return to the details of the case of Sp(p,q). Let H denote the quaternions equipped with the
standard bar operation a + bi + cj + dk = a − bi − cj − dk. Embed C in H, as usual, as elements of the
form a + bi and write the corresponding isomorphism H  C

2 as z = A(z) + B(z) j. Let 〈·,·〉 denote
a signature (p,q) sesquilinear form on an n-dimensional quaternionic (left) vector space VH . Define

〈·,·〉′ = A ◦ 〈·,·〉

and

〈·,·〉′′ = B ◦ 〈·,·〉.

Then 〈·,·〉′ is a nondegenerate Hermitian form of signature (2p,2q) on the underlying 2n-dimensional
complex vector space VC and 〈·,·〉′′ is a nondegenerate alternating form on VC .

Let GR = Sp(p,q) denote the subgroup of GL(VH) (the group of invertible left H-linear endomor-
phisms of VH) preserving 〈·,·〉 and view, as we may, GR as subgroup of GL(VC). Let G ′

R
denote the

subgroup of G ′ := GL(VC) preserving 〈·,·〉′ , and finally let G denote the subgroup of GL(VC) preserv-
ing 〈·,·〉′′ . Then GR is a real form of G  Sp(2n,C), G ′

R
 U(2p,2q), and

GR = G ′
R

∩ G.
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We adopt the notation of Section 2 for G ′
R

, adding a prime everywhere as appropriate. Any Cartan
involution for G ′

R
restricts to one for GR . If we write θ ′ for the corresponding complexified involution

of G ′ and θ for its restriction to G , we naturally have

Sp(2p,C) × Sp(2q,C)  K := Gθ < K ′ := (G ′)θ ′  GL(2p,C) × GL(2q,C).

Recall the natural inclusion of the flag variety B for G into B′ , the flag variety for G ′ . By the remarks
above, in order to classify K orbits on B it suffices to determine which orbits O′ meet B nontrivially.
If γ ′ = (c′

1, . . . , c′
2n) ∈ Σ±(2p,2q) (with notation as in the last section), we say that it is symmetric if:

(i) If the entry c′
i is a sign, then c′

2n+1−i is the same sign.
(ii) If c′

i = c′
j are natural numbers, then j �= 2n + 1 − i and c′

2n+1−i = c′
2n+1− j .

We write Σ
sym
± (2p,2q) for the subset of symmetric elements in Σ±(2p,2q). Then the K ′ orbit O′

γ ′

meets B if and only if γ ′ is symmetric ([MatOsh88], [Yam97, Section 4.3]), and thus Σ
sym
± (2p,2q)

parametrizes K orbits on B. Our next task is to describe the closure order explicitly.
Fix, as in Section 2, a θ ′-stable Cartan subalgebra h′ , a choice of positive roots, and (in appropriate

coordinates) write (�′)+ = {e′
i − e′

j | i < j}. Then h := g ∩ h′ is a θ -stable Cartan subalgebra of g.
Restriction defines a positive system of roots of h in g, � = {2ei | 1 � i � n} ∪ {ei ± e j, 1 � i < j � n}.
Let B denote the corresponding Borel subgroup of G . Fix a simple root α in �+ and let S ′(α) the
set of roots in (�′)+ which restrict to α. Concretely, if α = ei − ei+i , then S ′(α) = {α′,α′′} with
α′ = e′

i − e′
i+1 and α′′ = e′

2n−i − e′
2n−i+1; and if α = 2e1, then S ′(α) = {α′} where α′ = e′

n − e′
n+1.

Given a simple root α ∈ �+ and O in K\B, define sα · O as in (1). For β ∈ (�′)+ and O′ in
K ′\O′ , define s′

β · O′ similarly. The parametrization of K and K ′ orbits satisfies the following key
geometric compatibility condition (which follows easily from unraveling the definitions). Given any
symmetric γ , let Oγ denote the corresponding K orbit on B and O′

γ the corresponding K ′ orbits
on B′ . Then

dim(sα · Oγ ) = 1 + dim(Oγ ) (9)

if and only if

dim
(
s′
β · O′

γ

) = 1 + dim
(

O′
γ

)
(10)

for some (equivalently, any) root β ∈ S ′(α). Moreover, in this case, the dense K ′ orbit in

[ ∏
β∈S ′(α)

s′
β

]
· (O′

γ

)
(11)

intersected with B is the dense K orbit in

π−1
α

(
πα(Oγ )

)
. (12)

Note that if the product in (11) has more than one term, the order of the terms does not matter since,
in this case, the roots in S ′(α) are orthogonal.

Using these facts, it is a simple matter to write down the weak closure order on the level of
Σ

sym
± (2p,2q) from the description of the weak closure order described in the previous section. (This

is done in [Yam97, 4.4], for instance.) By examining the recursive procedure to generate the full
closure order from the weak order, one concludes that the closure order of K orbits on the level
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Σ
sym
± (2p,2q) is simply the restriction of the order on Σ±(2p,2q) given in the previous section. The

dimension of the orbit parametrized by γ ∈ Σ
sym
± (2p,2q) is also easy to read off, and is given by

dim(Oγ ) = d(K ) + (1/2)
(
l(γ ) + {t ∈ N | cs = ct ∈ N with s � n < t � 2n + 1 − s})

where d(K ) is the dimension of the flag variety for K , namely p2 + q2, and l(γ ) is as in (7). In
particular, closed orbits are once again parametrized by elements consisting only of signs, while the
open orbit is parametrized by

γ◦(p,q) := (1,2, . . . ,2q,+, . . . ,+,2q − 1,2q,2q − 3,2q − 2, . . . ,1,2) (13)

with p − q plus signs if p � q, and similarly if q � p. See Fig. 2 for a detailed example.
We need some notation for the next result. If γ1 = (c1, . . . , ck) represents an involution with signed

fixed points, then let γ r
1 be the string with the coordinates of γ in reverse order but with each

pair of equal numbers changed to a different pair of numbers. For example, if γ1 = (1,2,+,1,2,−),
then γ r

1 = (−,3,4,+,3,4). For any such γ1, the concatenation γ := (γ1, γ
r
1 ) is symmetric, so may be

viewed as an element of Σ
sym
± (2p,2q).

Lemma 3.1. Fix γ ∈ Σ
sym
± (2p,2q). Suppose that there are integers p′ + r = p and q′ + s = q so that γ can be

written as the concatenation

(
γ1, γ◦(p′,q′), γ r

1

)
with γ1 ∈ Σ±(r, s) such that γ1 avoids the bad patterns of Theorem 2.2. Then the closure of Oγ is a fiber
bundle with smooth fiber over a partial flag variety for K and hence is smooth. The fiber is isomorphic to the
product of the flag variety for Sp(2p′ + 2q′,C) and the closure of the GL(r,C) × GL(s,C) orbit parametrized
by γ1 (as in Section 2).

Proof. We start with a general observation. Suppose γ is any element of Σ±(p,q) which can be
written as a concatenation (γ1, γ◦, γ r

1 ) where γ◦ ∈ Σ±(p′,q′) and γ1 ∈ Σ
sym
± (2r,2s). Set n′ = p′ + q′ ,

n′′ = r + s. Then there is a θ -stable parabolic subgroup Q = LU , unique up to K conjugacy, contain-
ing B with L  Sp(n′,C) × GL(n′′,C) and

K ∩ L  Sp(p′,C) × Sp(q′,C) × GL(r,C) × GL(s,C).

The assumption that γ = (γ1, γ◦, γ r
1 ) implies that the image of Oγ under projection πP from

B  G/B to P  G/Q is the closed K orbit of the identity coset e Q and that the fiber of the re-
striction of πP to Oγ is a single orbit of L ∩ K on BL , the flag variety for L. The fiber is isomorphic to
the product of the Sp(p′,C)× Sp(q′,C) orbit parametrized by γ◦ with the orbit of GL(r,C)× GL(s,C)

parametrized by γ1. Meanwhile the K orbit of e Q is closed, and hence isomorphic to a partial flag
variety for K . The closure of Oγ is thus a fiber bundle over a partial flag variety for K whose fiber
is the closure of the product of the orbits parametrized by γ◦ and γ1. If we impose the additional
hypothesis that γ◦ = γ◦(p′,q′) and γ1 avoids the patterns given in the lemma, then we conclude from
Theorem 2.2 that the fiber is indeed smooth, and the remainder of the lemma follows. �
Theorem 3.2. Fix γ ∈ Σ

sym
± (2p,2q), a symmetric involution of S2p+2q with signed fixed point of signature

(2p,2q) (as defined above). Suppose γ is not of the form treated by Lemma 3.1 and, further, that γ includes
one of the bad patterns of Theorem 2.2. Then the closure of Oγ does not have rationally smooth closure.

In all other cases, the closure of Oγ is a fiber bundle with smooth fiber over a partial flag variety for K ,
and hence is smooth. In this case, there are integers r + s + n′ = p + q so that the fiber is isomorphic to the
product of a flag variety for Sp(2n′,C) and the closure of an orbit of GL(r,C) × GL(s,C) on the flag variety
for GL(r + s,C).

In particular, Oγ has rationally smooth closure if and only if it has smooth closure, or if and only if the
condition of Theorem 1.1 fails for some closed orbit below it.



2722 W.M. McGovern, P.E. Trapa / Journal of Algebra 322 (2009) 2713–2730
Proof. If γ is of the form treated by Lemma 3.1, there is nothing to prove. So suppose this is not
the case and that γ avoids the patterns given in the theorem. Then γ takes the form (γ1, γ

r
1 ) with

γ1 ∈ Σ±(p,q) which avoids the same patterns. Thus Lemma 3.1 applies (with p′ = q′ = 0) to give the
required assertion.

Suppose γ contains one of the patterns of the theorem. Then there are various geometric ways
to deduce the failure of the closure of Oγ to be rationally smooth by embedding the correspond-
ing failure for the smaller rank group where, roughly speaking, the pattern resides. (The exceptions
of Lemma 3.1 shows that some care is required.) A concise (and convenient) way to organize the
geometric reduction is to use Theorem 1.1, and this is how we shall proceed.

In the present context a root ei − e j with i < j is noncompact imaginary for an orbit Ocl
parametrized cl if the ith and jth coordinates of cl are opposite signs and the root ei + e j is non-
compact imaginary if the ith and 2n + 1 − jth coordinates are opposite signs. (The root 2ei is never
noncompact imaginary.) Then if α = ei − e j , sα · Ocl is parametrized by the element obtained from cl
by replacing its ith, jth and 2n + 1 − jth, 2n + 1 − ith coordinates by different pairs of equal num-
bers; if instead α = ei + e j , the new element is obtained by replacing the ith, 2n + 1 − jth and jth,
2n + 1 − ith coordinates by two different pairs of equal numbers. As we remarked above, closed orbits
are parametrized by elements consisting of only signs. Since we have given the closure order and
dimension formula above, the criterion of (5) becomes very explicit, and we may apply it directly as
follows.

Fix a γ = (c1, . . . , c2n) ∈ Σ
sym
± (2p,2q) including one of the bad patterns and not of the form

treated by Lemma 3.1. We first produce a suitable closed orbit Ocl lying below Oγ . Look first at
the natural numbers occurring twice among c1, . . . , cn . Replace the first occurrence of all such num-
bers by + and the second by −. Then look at all the natural numbers occurring just once among
c1, . . . , cn . Whenever ci = c2n+1− j is a natural number and i < j < n (so that c j = c2n+1−i is also
a natural number), replace ci by + and c j by −. Finally, replace cn+1, . . . , c2n by signs in such a way
that the result cl = (cl1, . . . , cl2n) is symmetric.

Assume for the moment that there are no indices i < j � n with ci and c j equal natural numbers.
Enumerate the indices i � n with ci and c2n+1− j equal natural numbers for some j � n as i1 <

· · · < i2m . Define a new element γ ′ = (c′
1, . . . , c′

2n) by decreeing that (c′
i1
, . . . , c′

i1+2m−1) = (1, . . . ,2m),
that (c′

2n+1−(2m−1)−i1
, . . . , c′

2n+1−i1
) = (2m − 1,2m,2m − 3,2m − 2, . . . ,1,2), and finally that there

be as many + signs among (c′
1, . . . , c′

n) as among (c1, . . . , cn) and similarly for − signs. Then γ ′
parametrizes an orbit Oγ ′ whose dimension is at least that of Oγ , but for which the left-hand side
of (5) for Oγ ′ (and Ocl) is no larger than it is for Oγ (and Ocl). Thus if either the closure of Oγ ′
is rationally singular by Springer’s criterion, or this closure has dimension larger than that of the
closure of Oγ , then Oγ has rationally singular closure. Note that both sides of (5) are unaffected if
we replace γ ′ by the new (smaller) element obtained by deleting all the initial signs c′

1, . . . , c′
i1−1

and terminal signs c′
2n−i1+2, . . . , c′

2n from γ ′ , and replace cl by the element obtained by deleting the
corresponding initial and terminal entries from cl. So we may assume i1 = 1.

We argue inductively based on the number of distinct natural numbers k appearing in γ ′ as fol-
lows. We will reduce our analysis to the case of k = 2, so assume first that k > 2. Consider the
new element γ ′′ (of smaller size) obtained from γ ′ first by deleting the initial entries c′

1, . . . , c′
i2

and terminal entries c′
2n+1−i2

, . . . , c′
2n , and then deleting all the initial and terminal signs from the

result. Let cl′′ denote the element obtained by deleting the corresponding entries from cl. Then in
passing from Oγ ′ to Oγ ′′ (and from Ocl to Ocl′′ ), the difference of the left- and right-hand sides
of (5) will strictly increase in all cases unless i2 = 2, in which case the difference will remain
the same. Continuing this procedure, we are thus led to investigating the “base case” of the form
γ ′′ = (1,2, ε3, . . . , εn, εn, . . . , ε3,1,2) and cl′′ = (+,−, ε3, . . . , εn, εn, . . . , ε3,−,+). There are two pos-
sibilities. If the signs εi are not all the same, one checks directly that (5) holds for the base case. Since
each of the steps leading to the base case weakly increases the difference of the left- and right-hand
sides of (5), one concludes that (5) holds for Oγ ′ and Ocl , hence for Oγ and Ocl , and hence the
closure of Oγ is not rationally smooth, as claimed. The other possibility is that all of the signs in the
base case are the same. In this case, the two sides of (5) corresponding to the base case are actually
equal. Again since each step in the reduction weakly increases the difference of the left- and right-
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hand sides of (5), the inequality in (5) holds for O′
γ and Ocl (and hence the closure of Oγ fails to be

rationally smooth) except possibly in just one case, namely when each step reducing to the base case
does not increase the difference of the left- and right-hand sides, and when the base case turns out
to have all signs the same. But the only way this can happen is if γ ′ is of the form γ◦(p′,q′) (possibly
flanked by a number of signs). If this is the case, the construction of γ ′ shows that γ must be of the
same form up to a permutation of the natural number entries. Since we have assumed that γ is not
of the form treated by Lemma 3.1, one checks that the initial passage from γ to γ ′ indeed increases
the differences between the left- and right-hand sides of (5). So once again the closure of Oγ is not
rationally smooth, as desired.

Finally return to the case where there are indices i < j � n with ci and c j equal natural numbers
in γ , and replace ci , c j for every such pair i < j by signs as in the definition of cl above (and define
c2n+1−i , c2n+1− j so that the resulting element is symmetric). We obtain an element parametrizing
an orbit that either does not contain any of the bad patterns, or whose closure fails to be rationally
smooth by the above argument. Changing the ith and jth coordinates of this element back to ci , c j
(and similarly for the 2n + 1 − ith and 2n + 1 − jth coordinates), we find that the dimension of the
corresponding orbit increases, but so too does the left-hand side of (5) by at least the same number,
and by a larger number if two of the signs between ci and c j are different. We conclude in all cases
that the closure of Oγ is not rationally smooth, as desired. �

Finally we must consider the situation for the symmetric subgroup K of G = PSp(2n,C) with Lie
algebra sp(2p,C) × sp(2q,C). Then K is connected (and its orbits on B coincide with those of K )
unless p = q, in which case K has two components. In this case, orbits of K are parametrized by
equivalence classes in Σ

sym
± (2p,2q) generated for the relation generated by γ ∼ −γ . Just as in the

case discussed at the end of Section 2, if γ denotes such a class, the K orbit Oγ parametrized by γ
breaks into K orbits as

Oγ = Oγ ∪ O−γ

which is disconnected if γ �= −γ . Once again one may retrace the steps of the proof of Theorem 3.2 to
show that no complications arise. One thus concludes: Theorem 3.2 holds for the orbits of any symmetric
subgroup K of G (isogenous to Sp(2p + 2q,C)) with Lie algebra sp(2p,C) ⊕ sp(2q,C).

4. SO∗(2n)

We follow the same strategy as outlined at the beginning of Section 3. Let 〈·,·〉 denote a nonde-
generate skew sesquilinear form on an n-dimensional quaternionic vector space V , so that

〈u, v〉 = −〈v, u〉.
As in the previous section, set

〈·,·〉′ = A ◦ 〈·,·〉
and

〈·,·〉′′ = B ◦ 〈·,·〉.
Then 〈·,·〉′ is a nondegenerate Hermitian form of signature (n,n) on the underlying 2n-dimensional
complex vector space VC and 〈·,·〉′′ is a nondegenerate symmetric form on VC . Let GR = SO∗(2n)

denote the subgroup of GL(VH) preserving 〈·,·〉 and view GR as subgroup of GL(VC). Let G ′
R

denote
the subgroup of G ′ := GL(VC) preserving 〈·,·〉′ , and let G± denote the subgroup of GL(VC) preserving
〈·,·〉′′ . Then G±  O(2n,C), G ′

R
 U(n,n), and

GR = G ′
R

∩ G±.
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(In fact, every element of GR has determinant one, so GR is indeed a real form of the connected
algebraic group G  SO(2n,C) consisting of determinant one elements in G± .) Fixing compatible in-
volutions θ and θ ′ as in Section 3, we naturally have

GL(n,C)  K := Gθ < K ′ := (G ′)θ ′  GL(n,C) × GL(n,C).

Let B denote the flag variety for G and B′ the flag variety for G ′ . Once again, there is a natural
inclusion B′ ⊂ B, and if O′ is an orbit of K ′ on B′ , then its intersection with B is either empty or
consists of a single orbit of K on B. If γ ′ = (c′

1, . . . , c′
2n) ∈ Σ±(n,n), we say that it is antisymmetric if:

(i) If the entry c′
i is a sign, then c′

2n+1−i is the opposite sign.
(ii) If c′

i = c′
j are natural numbers, then j �= 2n + 1 − i and c′

2n+1−i = c′
2n+1− j .

(iii) Among the entries c′
1, . . . , c′

n , the number of + signs plus the number of pairs of equal natural
numbers is even.

Write Σ
asym
± (n,n) for the set of such antisymmetric elements. Notice there is a choice of sign in (iii)

above. In Section 2, when p = q = n, the parametrization of orbits can obviously be twisted by an
outer automorphism of U(n,n), the effect of which is to change all signs. Possibly after twisting the
parametrization of Section 2, the K ′ orbit O′

γ ′ meets B if and only if γ ′ is antisymmetric. Thus

Σ
asym
± (n,n) parametrizes K orbits on B [MatOsh88]. (It may be helpful to refer to Figs. 3 and 4 in

the course of the discussion below.)
Fix a θ ′-stable Cartan subalgebra h′ , a choice of positive roots, and write (�′)+ = {e′

i − e′
j | i < j}.

Then h := g ∩ h′ is a θ -stable Cartan subalgebra of g. Choose a positive subset of roots of h in g,
in appropriate coordinates write �+ = {(ei ± e j) | i < j}, and let B denote the corresponding Borel
subgroup of G . Fix a simple root α in �+ and let S ′(α) the set of roots in (�′)+ which restrict to α.
For instance, if α = ei − ei+i , then S ′(α) = {α′,α′′} with α′ = e′

i − e′
i+1 and α′′ = e′

2n−i − e′
2n−i+1.

Adopt notation analogous to that around Eq. (9), fix α = ei − ei+1 ∈ �+ , and an antisymmetric
element γ of signature (n,n). Then once again we have the identical conclusions of Eqs. (9)–(12).
The situation for α = en−1 + en is more subtle, however. Set αn−1 = en−1 − en , fix an antisymmetric
element γ of signature (n,n), and let s′ denote the reflection in the simple root e′

n − e′
n+1 in (�′)+ .

Recall the action described at the end of Section 2. Then

dim(sα · Oγ ) = 1 + dim(Oγ ) (14)

if and only if

dim
(
s′
β · O′

s′×γ

) = 1 + dim
(

O′
s′×γ

)
(15)

for some (equivalently, any) root β ∈ S ′(αn−1). Moreover, in this case, if O′
δ is the dense K ′ orbit in

s′
β · O′

γ , then O′
s′×δ

intersected with B is the dense K orbit in sα · Oγ . Using this, one may deduce

that the closure order of K orbits on the level of Σ
asym
± (n,n) is once again the restriction of the order

on Σ±(n,n) given in Section 2. The dimension of the orbit parametrized by a γ ∈ Σ
asym
± (n,n) is given

by

dim(Oγ ) = d(K ) + (1/2)
(
l(γ ) − {t ∈ N | cs = ct ∈ N with s � n < t � 2n + 1 − s})

where d(K ) is the dimension of the flag variety for K , namely 1
2 n(n − 1), and l(γ ) is as in (7).

Closed orbits are once again parametrized by elements consisting only of signs, while the open orbit
is parametrized by

γ◦(n,n) := (1,2, . . . ,2m − 1,2m,2m − 1,2m, . . . ,1,2), (16)
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if n = 2m is even and

γ◦(n,n) := (1,2, . . . ,2m,−,+,2m − 1,2m, . . . ,1,2), (17)

if n = 2m + 1 is odd. We let ±γ◦(n,n) denote either γ◦(n.n) or the element obtained from inverting
the signs in γ◦(n,n) (which differs from γ◦(n.n) only if n is odd and, in this case, no longer satisfies
condition (iii) above).

We record two more operations on Σ
asym
± (n,n). Fix γ ∈ Σ

asym
± (n,n) and let s′ be as above. Let

γ ′ denote the element obtained by changing all signs in s′ × γ (described at the end of Section 2).
Then exactly one element of {γ ′, s′ × γ ′} is antisymmetric. Let τ (γ ) denote this element. Thus τ is
an involution on Σ

asym
± (n,n), and hence can be interpreted as an involution of the set of K orbits

on B. It coincides with the action of an outer automorphism of G . (As an example, τ corresponds
to the obvious symmetry in Figs. 3 and 4 below.) Finally, if γ ∈ Σ±(r, s), denote by γ −r the element
obtained from γ by reversing its coordinates, changing all of its signs, and replacing every pair of
equal natural numbers by a different pair of equal natural numbers. Then the concatenation (γ ,γ −r)

is antisymmetric and so may be viewed as an element of Σ
asym
± (r + s, r + s).

Lemma 4.1. Fix γ ∈ Σ
asym
± (n,n).

(a) Suppose that there are integers r + s + n′ = n so that γ can be written as the concatenation

(
γ1,±γ◦(n′,n′), γ −r

1

)

where ±γ◦(n′,n′) is defined after (17), γ1 ∈ Σ±(r, s) which avoids the bad patterns of Theorem 2.2, and
γ −r

1 is defined as above. Then the closure of Oγ is a fiber bundle with smooth fiber over a partial flag
variety for K , and hence is smooth. The fiber is isomorphic to the product of the flag variety for SO(2n′,C)

and the closure of the GL(r,C) × GL(s,C) orbit parametrized by γ1 (as in Section 2).
(b) Suppose n = 2m is even and that γ can be written as

(
1, γ1,2,1, γ −r

1 ,2
)
,

where γ1 ∈ Σ±(r − 1.s − 1), r + s = m, avoids the bad patterns of Theorem 2.2. Then the closure of
Oγ is a fiber bundle with smooth fiber over a partial flag variety for K , and hence is smooth. The fiber
is isomorphic to the closure of the GL(r,C) × GL(s,C) orbit parametrized by the element (1, γ1,1) ∈
Σ±(r, s).

Proof. Part (a) is proved much the same way as Lemma 3.1 and we omit the details. For (b), note
that the closure of the orbit parametrized by γ is isomorphic to the one parametrized by the outer
automorphism conjugate τ (γ ) described above. But if γ has the form indicated in (b), then τ (γ ) has
the form indicated in (a). Thus (b) follows from (a). �
Theorem 4.2. Fix γ ∈ Σ

asym
± (n,n), an antisymmetric involution of S2n with signed fixed points of signature

(n,n) (as defined above). Suppose γ is not of the form treated by Lemma 4.1 and, further, that γ includes
one of the patterns (1,+,−,1), (1,−,+,1), and (1,2,1,2). Then the closure of Oγ does not have rationally
smooth closure.

In all other cases, the closure of Oγ is a fiber bundle with smooth fiber over a partial flag variety for K , and
hence is smooth. In this case, there are integers r + s+n′ = n so that the fiber is isomorphic to the product of the
flag variety for SO(2n′,C) with the closure of an orbit of GL(r) × GL(s,C) on the flag variety for GL(r + s,C)

with r + s = n.
In particular, Oγ has rationally smooth closure if and only if it has smooth closure, or if and only if the

condition of Theorem 1.1 fails for some closed orbit below it.
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Proof. This is very similar to the proof of Theorem 3.2. We omit the details. �
Finally we turn to issues of isogeny. First assume n is odd, so that the center of Spin(2n,C) is Z/4.

So the three complex groups G to consider are Spin(2n,C), SO(2n,C), and PSpin(2n,C). It turns out
that the symmetric subgroup K with Lie algebra gl(n,C) is connected in each of these cases, and that
the orbits of K on B are insensitive to isogeny. So Theorem 4.2 applies without change.

The case of n = 2m even is more interesting since the center of Spin(2n,C) is Z/2 × Z/2. Write
SO(2n,C) for the quotient by the diagonal Z/2, SO′(2n,C)  SO′′(2n,C) for either of quotients by
an off-diagonal Z/2, and PSpin(2n,C) for the adjoint group. Write Ksc, K , K ′ , and Kad for the cor-
responding symmetric subgroups with Lie algebra gl(n,C). The orbits of Ksc and K on B always
coincide, so are treated by Theorem 4.2. If m is even, these orbits also coincide with the orbits
of K ′ on B. If m is odd, the orbits of K ′ instead coincide with the orbits of Kad on B. Finally, the
orbits of Kad are parametrized by equivalence classes in Σ

asym
± (n,n) for the relation generated by

γ ∼ τ (γ ) for the involution of Σ
asym
± (n,n) described above. If γ denotes such a class, the K orbit Oγ

parametrized by γ breaks into K orbits as

Oγ = Oγ ∪ Oτ (γ )

which is disconnected if γ �= τ (γ ). Nonetheless the (omitted) proof of Theorem 4.2 goes through
unchanged to establish that the statement of the theorem requires no modification in this case.

The conclusion of the discussion is: Theorem 4.2 holds for the orbits of any symmetric subgroup K of G
(isogenous to Spin(2n,C)) with Lie algebra gl(n,C).

5. Examples

We conclude with several examples of the closure order of K orbits on B. Vertices in the diagrams
below correspond to orbits, and orbits of the same dimension appear on the same column (or, in the
case of Fig. 2, row). Recall that the closure order is generated by relations in codimension one; so each
diagram need only keep track of such relations. Dashed edges correspond to relations not present in
the weak closure order, as described at the beginning of Section 2.

Fig. 1 corresponds to the case of SU(2,2); that is, the case where G = SL(4,C), K = S(GL(2,C) ×
GL(2,C)), and B consists of complete flags in C

4. (Without the dashed edges and boxed vertices this
is [MatOsh88, Fig. 7].) The labeling of simple roots is given by

1• 2•2• 3•

The boxed vertices correspond to orbits with nonsmooth closures according to the pattern criterion
given in Theorem 2.2. Suppose now G is a nontrivial quotient of G by a central subgroup, and let K
be the corresponding symmetric subgroup of G . According to the discussion at the end of Section 2,
quotienting Fig. 1 by the obvious Z/2 symmetry gives the corresponding picture for K orbits on B.

Consider next the case of Sp(2,2) where G = Sp(8,C) and K = Sp(4,C) × Sp(4,C). According to
the details of Section 3, there are 42 orbits for Sp(2,2), too many to fit in a reasonable diagram.
Instead consider G = PSp(8,C) = G/F where F is the two element center of G . Then K = K/F is
a symmetric subgroup of G corresponding to PSp(2,2). The orbits of K on the flag variety are given
in Fig. 2. (This graph, without the dashed edges and boxed vertices, is [MatOsh88, Fig. 15].) Simple
roots are labeled as

1• 2•2• 3•3• 4•

According to the discussion at the end of Section 3, an orbit labeled by an element of Σ
sym
± (2,2)

which contain signs is the (disconnected) union of two K orbits. (Nonetheless, such an orbit has
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Fig. 1. U(2,2).

smooth closure if and only if each connected component has smooth closure.) Boxed vertices in Fig. 2
correspond to K orbits with nonsmooth closures according to the criterion of Theorem 3.2.

Fig. 3 gives the case of SO∗(6), i.e. K = GL(3,C) orbits acting on the flag variety for so(6,C) 
sl(4,C). (This diagram is [MatOsh88, Fig. 20].) Simple roots are labeled as

1• 2•2• 3•

Since SO∗(6) is a quotient of SU(3,1) by the subgroup Z/2 (defined over R) of the center Z/4 of
Spin(6,C) = SL(4,C), either Theorem 2.2 (and the discussion at the end of Section 2) or Theorem 4.2
applies to give that all orbits have smooth closure in this case.

Finally, Fig. 4 gives the case of SO∗(8), i.e. GL(4,C) orbits on the flag variety for so(8,C). (This
diagram without the dashed edges or boxed vertices is [MatOsh88, Fig. 19].) Simple roots are labeled
as

1• 2•2•
3•

2•

4•



2728 W.M. McGovern, P.E. Trapa / Journal of Algebra 322 (2009) 2713–2730
Fig. 2. PSp(2,2).

Fig. 3. SO∗(6).
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Fig. 4. SO∗(8).

To conserve space, we introduce the following shorthand (as in [MatOsh88]). The eight symbols of
an element γ ∈ Σ

asym
± (4,4) are compressed to just four. The signs in the compressed symbol match

those in the first four coordinates of γ ; a pair of numbers in γ in positions i and j with 1 � i < j � 4
is represented by a lower-case letter in positions i and j of the compressed symbol; and a pair
of numbers in γ in positions i � 4 and 9 − j > 4, is represented by an upper-case letter in posi-
tions i and j of the compressed symbol. So, for instance, the γ = 1 + − 12 + − 1 becomes a + − a;
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+12 + − 12− becomes +A A+; 12123434 becomes abab; and 12341234 becomes AB B A. With this
convention, the boxed vertices correspond to orbits with nonsmooth closures according to the con-
dition of Theorem 4.2. Isogeny considerations amount (possibly) to folding the figure by the obvious
symmetry, as explained at the end of Section 4.

Example 5.1. We conclude with some examples where isogeny considerations necessarily make for-
mulating pattern avoidance results more complicated and less uniform. Let G = Sp(2n,C), G =
PSp(2n,C) = G/F , K = GL(n,C), and K = K/F . By considerations similar to those treated in Section 3,
orbits of K on B are parametrized by Σ

asym
± (2n), the union over all p + q = n of antisymmetric ele-

ments in Σ±(p,q). Orbits of K are parametrized by equivalence classes in Σ
asym
± (2n) for the relation

generated by γ ∼ −γ and the obvious version of (8) holds. This time, however, the relationship be-
tween the (rational) smoothness of the closure of Oγ and the (rational) smoothness of the closures
of its connected components is a little complicated. For instance, let γ2 = 1 + − 1, γ3 = +1 + − 1−,
and γ4 = 112 + − 233. Then each γi contains (in the sense of Definition 2.1) the pattern 1 + − 1.
The K orbits Oγi each have closures which are smooth but not rationally smooth. Meanwhile the K
orbit Oγ 1 has closure which is not rationally smooth, Oγ 2 has closure which is rationally smooth
(but not smooth), and Oγ 3 has closure which once again is not rationally smooth. (One may prove
the rational smoothness assertions using Theorem 1.1; so, in particular, the criterion of the theorem
is sensitive to isogeny.) Further calculation suggest a relatively simple pattern avoidance criterion for
(rational) smoothness of K orbit closures may exist, but formulating such a result for K orbit closures
is messier. The situation is similarly complicated for SO(p,q) (and even more so if p + q is divisible
by four). This example suggests that it is perhaps reasonable to assume that G is simply connected
(and thus K is connected) when formulating pattern avoidance results in general.
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