UNITARY REPRESENTATIONS OF U(p,q)

PETER E. TRAPA

ABSTRACT. Vogan has conjectured that a family of cohomologically in-
duced modules exhaust the unitary dual of U(p,q) for certain kinds of
integral infinitesimal characters. In this expository note (which is sub-
stantially a transcript of a talk given at the 1997 Seattle conference on
the representation theory of real and p-adic groups) we recall the defi-
nition of the relevant modules, describe an approach to the conjecture,
and discuss partial progress toward proving it.

1. INTRODUCTION

Let G be a real reductive Lie group with maximal compact subgroup
K. The great unsolved problem of harmonic analysis is to understand the
unitary dual, G, of G. By G,, we mean infinitesimal equivalence classes
of irreducible unitary (g, K)-modules; here g = Lie(G)c. The problem is
notoriously difficult, and to approach it, one begins by studying a larger
class of (g, K)-modules containing G,,. The larger set, denoted G, consists
of infinitesimal equivalence classes of irreducible admissible (g, K )-modules,
and is far more tractable. In particular, @a can be explicitly parameterized
in a number of ways. In any such parameterization, one begins by restricting
to a large abelian subalgebra of the enveloping algebra U(g). That restriction
is codified in the notion of infinitesimal character which, for our purposes,
we may take as a map

ic : Gy — h* /W,
here b is a Cartan subalgebra of g and W is the complex Weyl group W (g, b).

Fix v € h*/W. (Sometimes we will think of v as an orbit, other times as a
particular representative.) Let @g denote the fiber of ic over 7y, and similarly
let G = G2 N G,. The character theory implies that Gl c GY is an
inclusion of finite sets, so that for each infinitesimal character, determining
the unitary dual is a finite problem. But since the infinitesimal character is
a purely algebraic invariant and has nothing to do with unitarity, we cannot
expect the inclusion G7, C G to behave nicely with respect to ~. In fact,
this is the case: as « varies, essentially anything can happen. This at least
begins to illustrate the subtlety of picking G out of GY.

We will concentrate here on the particular example of U(p, q), the hope
being that a complete understanding of examples will shed light on the
problem in general. We will define U(p,q) below, but for now one need

only know that it is a real form of gl(n,C), n = p + ¢, so that an element
1
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v € b* /W is determined by an unordered n-tuple of complex numbers. Our
interest is in a particular kind of integral ~; depending on the parity of n,
we want to consider either tuples of integers or half-integers:

AL if n is odd,
(1) v E {(2Z+1)n
2

if n is even.

The reason for this form of + will become apparent below. For now, one
should note that p (the half-sum of positive roots) is always of this form.
__ We are going to formulate a very precise conjecture, due to Vogan, about
G in the setting of the previous paragraph. But first we need to recall the
(g, K)-modules that enter its statement.

2. THE WEAKLY FAIR A4(\) MODULES AND A CONJECTURE OF VOGAN

We will concentrate on our example explicitly, leaving it to the reader to
supply the correspondence between our discussion and more general treat-
ments (like the one given in [KV, Chapter 5]). As the name suggests, the
Aq(X) modules depend on the parameters of q and A, which we now describe.

Fix positive integers p and ¢, and suppose {(p1,¢1),...,(pr,q )} is an
ordered sequence of pairs of positive integers with . p; =p and ), ¢; = ¢.
Set n = p+ q and n; = p; + ¢;. Define G = U(p, q) to be the set of n-by-
n complex matrices that preserve a Hermitian form defined by a diagonal
matrix whose first p; entries are +1, whose next ¢; entries are —1, whose
next po entries are +1, and so on. Let g, = u(p, q) be the corresponding Lie
algebra so that g = (go)c = gl(n,C). Next let T C G denote the diagonal
(compact) Cartan, set t = (t,)c, and make the standard upper-triangular
choice of positive roots. Let p denote half the sum of these positive roots.

Let L denote the subgroup of G consisting of block diagonal matrices
whose block sizes are given by the n;’s; then L =[], U(p;, ;). Let [, denote
its Lie algebra, and [ the corresponding complexification. Define q = [ u to
be the standard block upper triangular subgroup of g with Levi subalgebra
[. Let @ denote the corresponding subgroup of G¢ = GL(n,C).

Next let C) be a one dimensional unitary representation of L or (by
complexifying and extending trivially on the nilradical) of Q). Then C, has
the form

det*” @ ... @det*”, A ¢z,
For future reference, note that its differential restricted to t, looks like

ni Ny

e N e N
(2) A=W D A0 A0,
Form the ()-equivariant holomorphic line bundle
L) = Ge xq (Cro \'Pu)

l

Ge/Q.
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(The appearance of A" u is a convenient normalization which makes Theo-
rem 2.3(a) work out nicely, for instance.) Now G acts on G¢/Q on the left,
and the orbit of eQ) is noncompact, open, and diffeomorphic to G/L. Write
i for the inclusion G/L — G¢/Q. Using it, we get a complex structure on
G/L, and can pull back £} to a holomorphic line bundle £, = i*£) on G/L.

One can imagine \ controlling the geometry of £y. When A is sufficiently
positive (never mind exactly in what sense), we expect cohomology in only
one degree. In the framework we have set up above, that degree of interest
is § = dimc(u N ¢). Here is the definition of the (g, K)-modules we have
been leading up to.

Definition 2.1. The module A4(\) is defined to be the underlying (g, K)-
module of the Sth Dolbeault cohomology group

H%S(G/L, L)).

There are a number of deep subtleties buried in this definition. The
main point is that the Dolbeault cohomology groups carry no obviously nice
topology, so there is nothing to guarantee that they are even representations
of G. They are; but that has only been settled surprisingly recently ([Wo]).
There is no harm in taking this result on faith, and proceeding naively.

To get a feel for the modules of the definition, let us consider some exam-
ples of them.

Example 2.2. (1) Suppose ¢ = 0, so that G = U(n) is compact, and
assume that A+ p is dominant and regular (or, explicitly by Equation
(2), that A®) — X0+D > 0 for all 7). Then the Borel-Weil-Bott
theorem implies that A4(\) is the unique irreducible representation
of U(n) with highest weight .

(2) Suppose each pair (p;,q;) is either (1,0) or (0,1); suppose further
that A + p is dominant and regular. Then L = U(1)" is a compact
torus, and q = b is a Borel subalgebra of g. By Schmid’s thesis and
its extensions, Aq(A) is the underlying (g, K)-module of a discrete
series representation with, roughly, Harish-Chandra parameter A+ p.
(The last assertion is a little imprecise because, as we have set things
up above, the definition of G depends on q.)

(3) If g = g (that is, if our ordered sequence of pairs of integers consists
of the single pair (p,q)), then A4(A\) = C, is one dimensional.

(4) In example 2, q was as small as possible, while in 3, q was maximal
in size. In general, q is somewhere in between, and the modules
Aq(N) interpolate between the two extremes of discrete series and
finite dimensional representations.

With these examples in mind, we can now state the properties of the
Aq(X) modules. The first statement of the theorem is easy. The next one
is much deeper; the unitarity part is due to Vogan, and for the range of
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A given, so is the rest (though weaker versions go back to Zuckerman and
others).

Theorem 2.3. Retain the notations given above. Then
(a) Aq(N) has infinitesimal character X + p.
(b) If .
A — 7\ > —5(711' + nit1),

then Aq(X) is unitarizable and either irreducible or zero.

There are several remarks to make about this theorem, but let us begin
by considering the condition on \. It arises sufficiently often that we set it
aside in a definition.

Definition 2.4. If
. : 1
A — A+ > —5(711' + nit1),

then A is said to be in the weakly fair range for g, and the module A4(\) is
said to be weakly fair. (This definition can be easily seen to coincide with
the more general coordinate free version given in [KV, Definition 0.52].)

Note that if the right hand side of condition in the definition were increased
to 0, then (by referring to Equation (2)) the inequality would imply that
A+p is dominant and regular. The relaxed condition of the weakly fair range
thus allows the infinitesimal character A 4 p to be substantially singular.

The next question to ask is whether or not Theorem 2.3 applies beyond
the U(p, q) setting. One can certainly imagine the definition of A4(\) being
modified for arbitrary reductive GG, and we have already given a reference
to a general condition of weakly fair, so the theorem has an exact analog
in general. Unfortunately, it is false: while the statements about infinitesi-
mal character and unitarity still hold, the last assertion about being either
irreducible or zero fails in general. The key feature of the U(p,q) case is
that the structure of nilpotent coadjoint orbits in gi(n,C) is very simple,
the relevant fact being that they are all normal.

A final question is to ask how well understood the modules appearing
in the theorem are. When A + p is dominant and regular, Example 2.2.2
suggests that we may be able to rely on intuition based on the discrete
series which, of course, are very well understood. This is essentially correct:
when A + p is dominant and regular, the Langlands parameters of the A4(\)
are relatively easy to describe (see [VZ, Section 6]). But outside this range
the situation is considerably more complicated. Determining the Langlands
parameters of a given weakly fair A4(\) for U(p, ¢) (or even determining if it
is nonzero) has only recently been solved; below, we will discuss this further.
For general G, the issue of Langlands parameters is still open, though recent
work of McGovern ([Mcl]) suggests that the cases of Sp(p,q) and SU*(2n)
might be handled by the methods of the U(p, q) case.
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In any event, as we vary the choice of the sequence {(p1,q1),-.. (Pr,q)}
(and hence of q) and as we vary A, Theorem 2.3 provides a large catalog of
irreducible, unitary (g, K)-modules for U(p,q)'. Conjecturally, the catalog
is complete.

Conjecture 2.5 (Vogan). Suppose G = U(p,q) and ~y is as in Equation
(1). Then

Gl = {Aq(N) | A is weakly fair for q, and
A+pe€Wnl

The reason for the Equation (1) condition on « is now clear: those v are
precisely the ones that arise as the infinitesimal character of an Aq(X). The
conjecture says that for that kind of ~, all irreducible unitary (g, K')-modules
are Aq(\)’s. When 7 is additionally assumed to be regular, Conjecture 2.5
is a theorem due to Salamanca. We shall return to this in the next section
where we discuss approaches to Conjecture 2.5.

3. APPROACHES AND PARTIAL PROGRESS TOWARD CONJECTURE 2.5

There is a fairly standard approach to proving a statement like Conjec-
ture 2.5. First recall the inclusion G, C GZ from Section 1. In our setting,
the approach consists of three steps:

(1) Parameterize GJ.

(2) Locate the parameters of the weakly fair Aq(\) with infinitesimal
character ~.

(3) Prove that all other parameters give rise to nonunitary (g, K )-modules.

For ~y regular, this program was successfully completed by Salamanca in her
thesis ([Sal]), which has been elegantly simplified recently ([Sa2]) using the
powerful ideas of Salamanca-Vogan ([SaV]). More precisely, in terms of the
steps outlined above, the parameterization of GI is by Vogan’s theory of
lowest K types; the identification is based on results of Vogan-Zuckerman
([VZ, Proposition 6.1]) depending on the regularity hypothesis; and the
exhaustion step follows by a careful reduction argument (using the results
of [SaV]) ultimately relying on Parthasarathy’s Dirac operator inequality.
Regardless of the details, one need only understand that Salamanca’s
proof of Conjecture 2.5 for regular infinitesimal character depends heavily
on that key hypothesis. To make progress on the singular case, we needAto
overhaul the entire approach, beginning with the parameterization of Gj.
The next theorem is such a parameterization; in its statement, many terms
are undefined, but we shall define them in the remarks following the theorem.

1Recall that our definition of U(p, q) depends on the choice of {(p1,q1),..., (Pr,qr)}-
(This has been done to make the description of q more transparent.) But the variously
defined U (p, q)’s are all conjugate inside GL(n,C) by the action of W, so this is a minor
point.
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Theorem 3.1 (Barbasch-Vogan [BV2]). Let G = U(p,q) and v be as in
Equation (1). The map

@g — Prim(U(g)) x {nilpotent orbits in u(p,q)}

assigning to each X € GJ the pair (Ann(X), AS(X)) consisting of its anni-
hilator and its asymptotic support is a bijection onto the same shape subset
of the image.

Obviously there is a lot to sort out in the statement of this theorem. First,
Prim(U(g)), denotes the set of primitive ideals with infinitesimal character
~. Joseph has classified this set explicitly in terms of tableaux. More pre-
cisely, (when v is real) he proved that Prim(U(g)), is in bijection with the set
of y-standard tableaux. Here a «-tableau consists of a Young diagram of size
n filled with the coordinate entries of ~y; the ‘standard’ condition amounts to
requiring that the entries weakly decrease across rows and strictly decrease
down columns.

The asymptotic support of an irreducible (g, K') module is an important
invariant originally defined by Barbasch-Vogan in [BV1]. Its precise defini-
tion is a little too complicated to recall here; roughly, it is a measure of the
singularity of the corresponding distribution character at the identity. For
an arbitrary X € GJ, AS(X) is a union of closures of real nilpotent orbits,
so it is not at all clear that the map of Theorem 3.1 is even well defined.
We will come back to this in a moment, but assume for now that AS(X) is
(the closure of) a single nilpotent orbit. Now the set of nilpotent orbits in
u(p, ¢) is in bijection with certain signed Young tableaux (see [CMc, Theo-
rem 9.3.3]). Combining this with Joseph’s parameterization of Prim(U(g)),
it is now clear what the ‘same shape subset’ of

Gl — Prim(U(g)), x {nilpotent orbits in u(p,q)}

means.

Note that given the explicit tableau-level descriptions of the same shape
subset of the image, the theorem is truly a parameterization of Gg: the
statement describes a bijection between @2{ and the concrete set of same-
shape pairs of certain kinds of tableaux. (The situation resembles the pa-
rameterization of irreducible Harish-Chandra modules for GL(n,C) by the
Robinson-Schensted algorithm. In fact, this analogy can be made much more
precise in terms of the geometry of the generalized Steinberg variety [Tr2].)

Let us consider where the theorem comes from; along the way, we will see
why the map of the theorem is well defined. For definiteness, fix v = p; the
general case follows by an appropriate translation principle. Barbasch and
Vogan introduced an equivalence relation on the set @g, the equivalence
classes of which are called (Harish-Chandra) cells. Each cell carries the
structure of a W-module. (In fact, the modules in each cell parameterize
an integral basis for the minimal subquotients of the coherent continuation
representation on the Grothendieck of formal characters spanned by those
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of @5) Inside each cell, Barbasch and Vogan located a canonically defined
Aq(X) module whose asymptotic support they explicitly computed to be the
closure of a single nilpotent orbit in u(p, q). Moreover, all nilpotent orbits
arise in this way. For mostly formal reasons, the asymptotic support is
constant on cells, thus implying that the asymptotic support of any member
of G? (and, by a translation principle, any @2{) is the closure of a single
nilpotent orbit. In particular, this shows that the map of the theorem is
well defined.

Now the statement of the theorem at least makes sense, but since we have
come thi§ far, we might as well finish sketching its proof. So far, we have
broken G% into a disjoint union of cells parameterized by nilpotent orbits
in u(p, q) or, equivalently, parameterized by certain signed Young tableaux
of size n. As we have said, the elements of a given cell parameterize a
basis for a representation of W 22 S,,. Barbasch and Vogan computed that
this representation is an irreducible representation of S,, and, in Young’s
notation, is simply the one given by the Young diagram which is the shape
of the signed Young tableau parameterizing the cell. The dimension of this
representation is the number of Young tableaux of this shape; of course, this
is also the number of p-standard tableaux. To finish proving the theorem,
one needs to know that all elements of a given cell have distinct annihilators
and that the shape of the annihilator and asymptotic support of a given
element coincide. Both of these facts are reasonably well known (see [V1,
Theorem 3.2] and [BV1, Theorem 4.1], respectively).

Theorem 3.1 completes the first step in the approach to Conjecture 2.5
described above. In this context, the first step is useful only if the (more
difficult) second and third steps are tractable. Here is the second step:

Theorem 3.2 (Trapa [Trl]). Given a pair of tableauz (S, Sy) consisting of
a y-standard tableau of size n = p+ q and a signature (p,q) signed tableau
of the same shape, there is an algorithm to determine all weakly fair Aq(X\)
with

(Ann(Ag(N), AS(Aq(N)) = (S, S).

Beyond noting that the theorem identifies the weakly fair Aq(\) in the
Barbasch-Vogan parameterization, there are several useful remarks to make.
The theorem follows by formally inverting an algorithm which, given a A in
the weakly fair range for a given ¢, computes the annihilator and asymptotic
support of the corresponding Aq(A). Coupled with Garfinkle’s algorithm
([G]), this gives the Langlands parameters of any weakly fair Aq(\) for

U(p,q):

Corollary 3.3. Given X in the weakly fair range for q, there is an algorithm
to determine the Langlands parameters of Aq(N).

A slight caveat is in order here: the Langlands parameters are obtained
by an algorithmic procedure, so it is difficult to make general statements
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about them. But even so, the statements that are available have interesting
applications in their own right.

Finally, there is the looming question of the third piece of the approach to
Conjecture 2.5, the exhaustion step. In practice, the results of [SaV] (some
of which are still partly conjectural) reduce the problem to a finite set of
small infinitesimal characters. For any particular U(p,q), one can write
down the finite set of tableau parameters for the @g with these infinitesimal
characters, and using Theorem 3.2, one can cross off the parameters giving
rise to the weakly fair Aq(\) modules. It remains to show that the remaining
pairs of tableaux correspond to nonunitary (g, K )-modules.

For a given U(p,q), this is a very concrete finite problem. Examples
immediately indicate that current techniques are inadequate to handle it
however. For instance, in U(3,2) there is an irreducible admissible X (that
is not a weakly fair Aq(\)) whose infinitesimal character is in the convex hull
of p, but for which the Dirac operator inequality is inconclusive on all K
types. One can in fact prove that X is nonunitary using an ad hoc argument.
From this example emerges a means to attack the exhaustion step: one might
hope that the new techniques developed to prove nonunitarity in examples
become systematic enough to handle the general case.
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