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0. INTRODUCTION

Let k£ be a non-archimedean locally compact field and G the group of k-rational
points of a reductive algebraic group defined over k. A (complex) admissible represen-
tation of G is a pair (m, V') where V' is a vector space over C and 7 is a homomorphism

from G to GLc (V) such that

(a) each v € V has an open isotropy subgroup — i.e., 7 is smooth, and
(b) for any open subgroup K, the space VE of K-fixed vectors has finite dimen-
sion.

It is my intention in this paper to lay a part of the foundations of the theory
of such representations (therefore complementing work of Harish-Chandra, Jacquet,
and Langlands—[20], [22], [23]).

If P is a parabolic subgroup of G with Levi decomposition P = M N and modulus
character dp, and (o,U) is an admissible representation of M, then o determines
as well a unique representation of P trivial on N since M = P/N. One defines
the (normalized) representation induced by o from P to G to be the right regular
representation of G on the space i% o of all locally constant functions f: G — U
such that f(pg) = o(p)dp(p)/?f(g) for all p € P and g € G. Because P\G is
compact, it is not difficult to show that % o is an admissible representation (2.4.1).

If 7 is an admissible representation, one may define its contragredient, which is
again admissible. The contragredient of 1% o is i% 5 (3.1.2).

There exists a form of Frobenius reciprocity: for any smooth G-representation 7,
one has a natural isomorphism of Homg(7, 1§ o) with Homp(, 05113/2) (2.4.1).

If (m, V) is any smooth G-representation and P = M N a parabolic subgroup of G,
one defines V() to be the subspace of V' generated by {m(n)v —v:n € N,v e V},
and one defines Vy to be V/V(N). This is the space of a smooth representation 7y of
M, and it has a universal property: if U is any space on which N acts trivially, then
Hompy (V,U) = Homg(Vy, U). This implies a second form of Frobenius reciprocity:

Homg(r, i% o) = Homy (my, 061?) (3.2.4).

The Vi-construction was used to some extent in Jacquet-Langlands [23], but first
seriously discussed in Jacquet’s Montecatini notes [22], at least for G = GL,,, where
Jacquet falls only slightly short of proving that when m is admissible, so is Ty (3.3.1).
Coupled with the more elementary observation that if w is finitely generated so is
7N, this becomes one of the cornerstones of the theory of admissible representations.

One basic fact is that the functor V ~» Vy is exact (3.2.3).

For the group G = PGLs, it was probably first realized by Mautner that there
are irreducible admissible representations of G which have no embeddings into an
i% o (where P is here the Borel subgroup of GG, and ¢ may be assumed to be one-
dimensional). Generalizing this phenomenon, one calls a finitely generated admis-
sible representation of arbitrary G absolutely cuspidal if there are no non-trivial G-
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morphisms into any representation of the form %o with P proper in G and o an

admissible representation of M. Equivalently, (mw, V') is absolutely cuspidal if and
only if Vy = 0 for all unipotent radicals N of proper parabolic subgroups.

The wrreducible absolutely cuspidal representations may be characterized also as
those whose matriz coefficients have compact support modulo the center of G (5.3.1).
This fact may be used to show that they are both projective and injective in a suitable
category of G-modules (5.4.1).

In [22], Jacquet did prove (for G = GL,,) that for any irreducible admissible repre-
sentation w there exists at least one P and one irreducible absolutely cuspidal o such
that ™ may be embedded into i% o (5.1.2).

The Vy-construction also plays a role in the asymptotic behavior of matriz coef-
ficients. This is best expressed like this: let N~ be the unipotent opposite to V.
Then there is a canonical non-degenerate pairing ( , )n of Viy with Vy- which is
characterized by the property that for v € V and v € V with images v € Vy and
u € V- there exists € > 0 such that for alla € A~ (¢€) (see §1.4 for notation) one has
(m(a)v,0) = (my(a)u, t)y (§4.2).

This makes possible a criterion for square-integrability in terms of the spaces Vy
(4.4.6), and also figures in the proof of the result mentioned earlier about the support
of the matrix coefficients of an absolutely cuspidal representation.

The main results of this paper depend on almost everything mentioned so far, and
are concerned with the composition series of the representation i%o. If A is the
maximal split component of the center of M and W, is the Weyl group of A, then
the final result is this:

(a) If o is an irreducible absolutely cuspidal representation of M, then the length
of i% o is at most card(W,) (7.2.3);

(b) if 7 is any irreducible composition factor of i%G o then there exists w € Wy
and a G-embedding of 7 into i%wo (7.2.2).

(The latter makes sense because Wy is also N(M)/M, and for m € M one has
mo = o. In this rather strong form, this result is due to Harish-Chandra, although
others had proven weaker and related verions.) From this one deduces that any
finitely generated admissible representation has finite length as a G-module (6.3.10).

The proof of this main result is rather long and complicated. I first prove a weaker
result in §6 involving the associates of a parabolic, use this to prove the square-
integrability criterion (also in §6), and use this in turn to prove the final version in
§7. If G has semi-simple rank one, however, the argument is not so complicated, and
it may be instructive to sketch it here:

(1) There is only one conjugacy class of proper parabolic subgroups, of the form
P = MN where M is compact modulo its center. Thus, the representation o
is finite-dimensional.

(2) Using the Bruhat decomposition G = PwP U P, where w is the non-trivial
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element of the Weyl group, one has a filtration 0 ;Cé L, ; I=i%0of I asa
P-space, where [, is the subspace of functions in I vanishing along P. The
corresponding filtration of Iy may be described explicitly; it fits into an exact
sequence

0— (wa)é}p/z — Iy — 05}1)/2 — 0
of M-spaces.

(3) If 7 is an irreducible composition factor of I, then 7 cannot be absolutely
cuspidal, because if it were one could apply the projectivity of absolutely
cuspidals to obtain an embedding of 7 into I. Thus by Jacquet’s result, 7 has
an embedding into some i% p, and in particular, by Frobenius reciprocity, 7y

has pé,lp/ * as an M-quotient.
(4) But then by exactness of the functor m ~» my, péllg/ ? must be either 06]13/ ? or

(wa)é,lp/ ?_ proving part of the main result.

(5) The same argument shows that if 0 G Iy G I, G I were a composition series,
then on the one hand (1), (I2/11)n, and (I/13)n would all be nonzero, but
on the other hand only two are allowed to be non-trivial, a contradiction.

Another class of results contained in §6 concerns intertwining operators and irre-
ducibility of representations induced from parabolic subgroups.

As a minor application of the general theory, I include in §8 a discussion of the
Steinberg representation of G (thereby justifying claims made in an earlier paper
[14]).

In §9 I work out an elementary example, that of the unramified principal series of
SLo, in some detail.

Very few of the results in this paper are entirely mine. A number of the basic
ideas may be found in Jacquet-Langlands [23] and Jacquet [22]. Many results were
discovered independently by Harish-Chandra (and given in a course of lectures at the
Institute for Advanced Study, 1971-72; this course is partly summarized in [20], and
details will presumably appear eventually!). Others are completely his. For example,
the results of §§7.1-7.2 were communicated to me by him in correspondence; I would
like to thank him for allowing me to include them here. The idea of the canonical
liftings in §5 arose from my attempts to understand his theory of the constant term
in [20]. And I have incorporated suggestions of his throughout.

Several other points were also discovered independently by Bernstein and Zelevin-
skii (see [1] and [2]), Baris Kendirli [24], Hideya Matsumoto ([26], [27]), Olshanskii
[28], Allan Silberger [30], Graham Williams [31], and Norman Winarsky [32].

I would like to thank James Arthur, Armand Borel, Roger Howe, Hervé Jacquet,
Robert Langlands, Rimhak Ree, and Allan Silberger for invaluable advice and sugges-
tions. I hope I have given them the proper credit in the body of the paper. Finally,

'We should cite Silberger here.
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thanks are due to both Matsumoto and Deligne for pointing out errors in earlier
versions.

The first version of this paper was written in the spring of 1974 while at the
Institute for Advanced Study in Princeton, where I was supported by a National
Science Foundation grant, and a second was written one year later in Bonn, where I
was supported partly by the Sonderforschungsbereich at the Mathematisches Institut
and partly by the National Research Council of Canada. I am grateful to all these
organizations.
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1. PREPARATION

1.1. Let @ be any finite dimensional real vector space, and further let
a* = the real dual of @,

Y. = areduced root system in 0* (assumed to span Q*);
YT = a choice of a set of positive roots in X
(I write a > 0 for a € X1);
¥ o= =Xt
A = the simple roots in 3T
S = the set {wa ‘ o€ A} of reflections
corresponding to the elements of A;
W = the Weyl group of ¥ (acting on both

0 and A* and generated by S);

For each © C ¥, let Qg be {x € Cl‘ a(x) =0 for all o € @} (and if © = {a}, write

(., and call this a root hyperplane). We will write © > 0 if & > 0 for each a € O.
For © C A, let

Yo = the subset of ¥ of linear combinations of the roots in ©;
5 = TtNXg;

Yo = YT Nig;

We = the subgroup of W generated by {wa ’ a e @}.

Every element of ¥g vanishes on fg, so that Yo may be identified with a subset
of (A/0g)*, and in fact it defines a root system in this space. Every element of Wg
acts trivially on (g, and therefore acts naturally on @/@g, and in fact Wg is the
Weyl group of ¥g. (Use [10] for a general reference.)

For every w € W, let X, be the set {a S ‘ wla < 0}. The cardinality of 3,
is also the length ¢/(w) of w — i.e., the length of a minimal expression for w as a
product of elements of S [10, Cor. 2, p. 158]. Note that w is determined by ¥,, (by
5.2 of [5]).

Lemma 1.1.1. For any wy,wy € W the following are equivalent:

(a) K(wlwg) = 6(11)1) + g(U)Q),
(b) Xy = W1, U Xy
(¢) X, € Bpyw, and w1, > 0.

Proof. The equivalence of (a) and (b) is Lemma 3.4 of [5]. That (b) implies (c) is
immediate, and the converse is almost as elementary. [

The set ¥, has a geometrical meaning: one knows that the open cone

C:{xea(a(aj)>0f0ralla€A}
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is a fundamental domain for W, or more precisely that as w ranges over W the
cone wC' ranges over the connected components of ("8 (the regular points of Q1) =
A N Upex@,. Now each @, is in fact determined by exactly one positive «, and the
correspondence a — @, is a bijective correspondence between ¥, and the set of root
hyperplanes separating wC' from C. In particular, the number of these separating
hyperplanes is equal to £(w).

Lemma 1.1.2. Let © be a non-empty subset of A. There exists in any left coset of
We in W a unique element w characterized by any of these properties:

(a) For any © € We, l(wz) = l(w) + £(z);

(b) wO > 0;

(¢) The element w is of least length in wWe.

This is Proposition 3.9 of [5].

Proposition 1.1.3. Let O, ) be non-empty subsets of A. In every double coset in
Wo\W /W there exists a unique w characterized by any of these properties:

(a) The element w has least length in WowWg;

(b) It has least length in Wew and also in wWWg;

(c) wO >0, w>0.

Proof. Exercise 3, p. 57, of [10] says that every double coset has an element of least
length, and also that (a) and (b) are equivalent. Lemma 1.1.2 implies that (b) and
(c) are equivalent. [

The previous two results say that the projections from W to W/Wg, We\W, and
Weo\W /W all have canonical splittings. Let [W/Wy], etc., be their images. Thus,
(W/Wa] = {weW|wQ >0}, [Wo\W] = {weW| w0 >0}, and [Wo\W/Wq] =
[W/Wao] N [We\W].

For each © C A, let wyo = wg,@_l be the longest element in Wy (and let w, be
we a). The element wywy g clearly lies in [W/Wg], and in fact it is the longest element
there. More precisely:

Proposition 1.1.4. Let © be a subset of A, write wy for wew,e, and let © be
wo(©) € A. Then

(a) Xy, = X N Z%;

(b) For any w € [W/We|, £(wy) = £(wow™") + £(w).

Proof. Since wy(0©) = ©, it is clear that ¥, € ¥* \ XL, But 1.1.2a, implies that
l(wy) = l(wy)+{(wpe), while that same result together with [10, Cor. 4, p. 20] (which
says the length of an element in Wg is the same in W as in Wg) imply that this in
turn is equal to the cardinality of X1 ~ X%, and this proves (a).

To prove (b), apply 1.1.1(c). If w® > 0, then wwy ' (©) > 0, so that Yy,,-1 C
YN 85 = By, which is the first half of the criterion. To prove wyw™'%, > 0:
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a € %, if and only if & > 0 and w™la < 0. But w™a < 0 if and only if w™ta €
YN 3g orwla € Xg; if wa € g then a € wXg C X7, a contradiction. Thus
wla € X7 N Xg and wow'a > 0 by (a). O

If © is a subset of A, the subset © = wywe(0) = wy(—0O) is called its conjugate
in A.

1.2. Continue the notation of §1.1. If © and ) are subsets of A, they are called
associates if the set W(0©,Q) = {w € W‘ w) = @} is not empty. For any © C A,
let {O} be the set of its associates.

What I shall do now is describe the connected components of each Ag% = Qg \
Usense (Ao N Bg) and at the same time show how one can express the elements of
W(O,) in a manner analogous to the way in which one expresses elements of W
as a product of elements in S. These results, as far as I know, are essentially due to
Langlands — see Lemma 2.13 of [25] — but I learned them, more or less in the form
in which I present them, from James Arthur.

Let me first recall some extremely elementary ideas from [10] (exercises at the end
of IV). Let V' be a finite dimensional vector space, H a set of hyperplanes passing
through the origin such that V' ~\ Ugen H is a union of simplicial cones. The con-
nected components of V'~ UgenH are called chambers of V' associated to H. An
(irredundant) gallery in V' is a sequence of chambers Cy, C4,... ,C, such that no
two successive chambers are the same, but the pair does share a common face. The
integer n is the length of the gallery, and it is said to be a gallery between Cy and
Cn. A minimal gallery is one of least length between its ends. The distance between
chambers is the length of a minimal gallery between them, and is also equal to the
number of hyperplanes in H separating them.

I apply these ideas to the spaces Qg (© C A) and the hyperplanes of the form
Ao NA, (o € X\ Xg). The cone Cg = {xea@] a(:z)>0foralla€A\@} is
a chamber in (g, and the height of any other chamber is defined to be its distance
from Cg. The cone Cg lies on the boundary of the cone C' defined after §1.1 (which
now becomes Cp) and more generally the closure of Cg is the disjoint union of the
Cq with © C Q.

Observe that if w € W(©,Q) then w takes Qg to fg and chambers to chambers.

Proposition 1.2.1. Subsets O, C A are associate if and only if there exists w € W
with wlg = Ae.

Proof. One way is of course trivial. For the other, suppose wllg = QAg, and let wy
be the element of least length in the coset WgwWg. Then since W, acts trivially on
(g, wellg = Qe as well, hence wyXq = Yg. Now by 1.1.2, w2 C ¥§, and hence
weXd, C X&; similarly, wy X8 C X, so that weXy is actually equal to L§. But
O consists precisely of the indecomposable elements of 3§ and similarly for Q and
5. O
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Proposition 1.2.2. Let © be a subset of A. Every chamber of Qg is equal to wCq
for a unique associate 2 of © and w € W(0O, ).

Proof. First suppose that C' is a chamber of Qg distinct from Cg but sharing a face
with it. Since the closure of Cg is the union of the C'y with © C &, this face equals
Cop where ® = © U {a} for some a € A\ 0. Let Q be the conjugate of © in ¢ and
let wy be wyewye (so that wy™'0g = @Ag). I claim that C = wy™(Cq). In order
to prove this I must show (i) wo™'Cq and Cg have the face Cp in common and (ii)
wo 1 (Cq) # Co. The first holds simply because wy € Wg and hence takes Cp to itself.
For the second, let © € Cg be given, so that a(z) > 0. Since @ € & \ O, woar < 0
(1.1.4(a)), and hence —wpa lies in 37 \ B¢, Therefore (—wpa)(woz) = —a(x) < 0
and wyx cannot lie in Cq and therefore x & wy~'Cq.

The proof proceeds by induction on the height of the chamber C. If ht(C) > 1,
then there will exist C) sharing a face with C' such that ht(C}) = ht(C) — 1. By
the induction assumption, there exist w; and §2; such that €7 = w;Cgq,. But then
wl_lCl = Cg, and wl_lC' lies in @g, sharing a face with, but not equal to, Cq,. By
what I have just done, wl_lC = wCq for suitable w and 2. Hence C = wwCq.

For uniqueness, suppose 2; and 2, w; and wy are such that w;Cq, = w.Cq,.
Then wflwgng = Cg, and wflwgﬂg = ()y. This implies that wflwga > ( for every
a > 0, which in turn implies that wi'w, = 1 and wy = wy. O

Corollary 1.2.3. If © is maximal proper in A, then © and © are the only associates
of ©.

Proof. In this case Qg is a line; Cg is half of it and (w,w,e) ' Cg is the other half. [

If © is a maximal proper subset of 2 C A, then I call the element wyqwse the
corresponding elementary conjugation. The proof of 1.2.2 also shows:

Lemma 1.2.4. Let © be a subset of A. If w1Cq, and wyCq, are neighboring but
distinct chambers of (g, then €2 is maximal proper in ® = Q;U€, )5 is its conjugate
in ® and w; 'w, is the corresponding elementary conjugation.

Let Cg = Cy, C4, ... ,C, be a gallery in Qg with (say) C; = w;Cq,. If 2; = w; w;

for « > 0, then each x; is an elementary conjugation, by 1.2.4, and clearly w, =
Z1...2T,. The proof of 1.2.2 in fact even shows:

Proposition 1.2.5. For a given w € W (0O, ), the above correspondence is a bijec-
tion between the set of galleries between Cg and wCq and the representations of w
as a product of elementary conjugations. In particular, w has such a representation
of minimal length equal to the height of wCl,.

If Cy,Cy,...,C, is a gallery between Cg and wCq with (say) C; = w;Cq,, I call
the corresponding representation of w primitive if €); is never equal to €2;_;.
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Corollary 1.2.6. If © and () are associates, then there exists at least one element
in W (0, Q) with a primitive representation as a product of elementary conjugations.

Proof. If w = x125...2, and ©; = ©,_; for some ¢ then z;...z;...x, also lies in

W(O,Q). O

Does there ever exist more than one primitive element in W (0O, )7
For w € W (0, ), define the height ht(w) of w to be that of wCq. (This depends
on O, not just w or W(0O, ). Example: © = A or ().)

Proposition 1.2.7. Let O, 0,, O3 be associates, w = wow; with w; € W (01, 03),
wy € W(0O3,0,). If ht(w) = ht(ws) + ht(w;) then ¢(w) = £(wsy) + (w).

Proof. 1t suffices to proceed by induction, and assume that w; is an elementary
conjugation. []

For any w in some W (O, ), let ¥, for the moment be the set of those hyperplaces
in g separating Cg from wCq. Then in analogy with 1.1.1, one has ht(wsw;) =
ht(ws) + ht(wy) if and only if U, UwsW,, C W, ., . Applying 1.1.1 itself, what I
want to show is that (i) any root hyperplane separating wyCy from Cj also separates
wowCy from Cy and (ii) if H is a root hyperplane separating w,Cy from Cjy then
we H separates wow,Cy from Cy.

Lemma 1.2.8. Let © and 2 be associates in A, and let w € W(0O, ).

(a) If @ € BT\ X4 is such that AeN@, separates wC from Cg, then @, separates
wCy from Cy.

(b) If @ € ¥7 is such that @, separates wCy from Cy, then either a € 3§ or
a € LT X4 and Qg N A, separates wCq from Cg.

This is elementary, and the proofs of claims (i) and (ii) follow directly from it.
One can prove similarly:

Proposition 1.2.9. Let ©,Q C A be associates, w € W(0,Q). Then ht(ww,q) =
ht(wewegw™) + ht(w).

Note that this at least makes sense because wywy o takes ) to its conjugate Q in
A. The geometric interpretation of 1.2.9 is that wew,q takes Cq to —Cg.

1.3. In this section, suppose k to be any field. I shall refer to algebraic groups
defined over k by boldface? letters with k as subscript, and the group of k-rational
points of that group by the same letter in ordinary type, again with k£ as subscript.
When confusion is unlikely, I shall drop the subscript. Thus G or G and Gy, or G.

Let G be a connected reductive group defined over k. If P is a parabolic subgroup,
I shall let Np be the unipotent radical of P, Mp a reductive subgroup of P with
P = NpMp a Levi decomposition, P~ the opposite of P, N the unipotent radical

2Between here and 1.3.1, I'm not sure just which letters should be in boldface.
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of P~. Ap the maximal split torus in the centre of Mp. I again often drop the
subscripts.

If Py is a minimal parabolic of G and Ay a maximal split torus of Py, recall that a
root of G with respect to Ay is any non-trivial rational character « of Ay such that
the eigenspace g, = {:E €g ’ Ad(a)r = a(a)z} for all a € A@} in the Lie algebra g of
G is not trivial. It is said to be positive with respect to Py if g, C n, the Lie algebra
of Ny. The roots may be considered to be embedded in the vector space X (Ap) ® R,
where X (Ayp) is the group of rational characters of Ay, and these form a root system.
Let X be the reduced set of roots corresponding to this — i.e. those « such that
a # (3 for any root 3 — and ¥* = ¥} the set of positive roots in ¥ (with respect
to Fy), A the set of simple roots in X7, etc.

For © C A, let Ag be the connected component of the identity in Nyee ker(a),
Mo = Zg(Ae), Po the standard parabolic corresponding to ©, Ng its unipotent
radical. Thus Pr = G and Aa is the maximal split torus in the centre of G. The
Weyl group of ¥ is naturally isomorphic to N(Ap)/Mpy, and each Wg (notation as in
§1.1) is naturally isomorphic to (N(Ag) N Mg)/Mjy. Note that Mg sits canonically in
Mg for Q C ©.

Proposition 1.3.1. If ©,€) are subsets of A, then one has a disjoint union decom-
position

G = H P@U)PQ
where w ranges over the set [We\W/Wg).

Recall from §1.1 that [We\W/Wy] is a particularly good choice of representatives
in N(Ap), but here this is of little importance.

Proof. One knows that (G, Py, N(Ay), S) form a Tits system. Lemma 1.1.3 and [10,
Remark 2, p. 28] imply the proposition. [

Recall from section 3 of [4] that associated to each reduced root « is a subgroup
N, of G whose Lie algebra is g, + g,, (of course g,, may be trivial) and such that
Ny is the product of all the N, (o € X7), in any order. The unipotent radical of
each Pg is equal to [[ N, (o € 3T N\ X§) and Ny N Mg is equal to [[ N, (o € Z§).
For any ©, C A and w € W the canonical projection induces an isomorphism

II No =% (wNew™ N Ng)\ Ne.
aEZJr\Eg
w’lafZJr\Eg

In the case where © = Q = (), I write this last as NN,,, which is also equal to [ N,
(o € 3). It follows from the remarks of section 3.2 of [5] that for w € [We\W /W]
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the product map induces an isomorphism

P@X {’LU}X H Nal)P@’LUPQ.
aEZJr\Z;g
w’1a€2+\2g

It follows immediately from the proceeding remarks and 1.1.1 that:

Proposition 1.3.2. If u, v are elements of W with ¢(uv) = ¢(u)+{(v) and x € N(Ap)
represents u, then the map (n,,n,) — xn,x " 'n, is a bijection between N, x N, and
Ny

It also follows immediately that:

Proposition 1.3.3. Let ©,Q C A be subsets of A, w € [We\W/Wg].

(a) The subgroup (w™!Pew N Py)Ngq is the standard parabolic corresponding to
wleNQ;

(b) Its radical is generated by N and w™!New N Ny, and w™! Ngw N Ny, and its
reductive component is w~! Mew N Mq;

(c) The group w~!Pow N Mg is parabolic in Mg with radical w™! Ngw N Mg and
reductive component w~!Mgw N Mq.

Two parabolic subgroups of G are called associates if their reductive components
are conjugate.

Proposition 1.3.4. Let ©,€) be subsets of A. The following are equivalent:

(a) The groups Pg and Py are associate;
(b) The groups Ag and Aq are conjugate;
¢) The sets © and (2 are associate;

() ;

Proof. Conditions (a) and (b) are clearly equivalent. That (c) implies (b) is trivial. If
(b) holds, and gAeg™" = Aq, then by [2, Corollary 4.22] one may assume g € N(Ay).
Apply 1.2.1 to the image of g in W. O

It will be useful to observe that if w € W (O, Q) then ¥, is equal to the set 2\ 2§,
since w™I¥g C X5.
Proposition 1.3.5. Let ©,Q,I" be associates in A, v € W(0,Q),v € W(Q,T'),
ht(uv) = ht(u) + ht(v). Then PouPq - PovPr = PouvPr.

Proof. This follows from the remark just made, one of the remarks made just after
1.3.1,and 1.3.2. O
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1.4. For the rest of section 1, and indeed most of this paper, let k£ be a non-
archimedean locally compact field, O its integers, and @ its prime ideal, and G a
connected reductive group defined over k.

Let Py be a minimal parabolic in G' (and assume notation as in section §1.3). For
each € in (0, 1] and each © C A define Ag(¢) to be

{aEA@‘ la(a)| < e for allaeA\@}.

I write simply Ag for Ag(1). Of course Ag(e1) C Ag(ea) for €5 < €, and one has
therefore in some sense a nested set of neighborhoods of Ag “at 0”. If P is any
parabolic of G, choose g € G such that gPg~! = Pg for © C A, and define A~ (¢) to
be g7 Ag(€)g. Since the conditions gPg~! = P, gAg~' = A imply that g € M, this
definition is independent of the choice of g.

Lemma 1.4.1. If N is any unipotent group defined over k, then there exist in N
arbitrarily large compact open subgroups.

Proof. This is clearly true of the subgroup of GL, consisting of unipotent upper
triangular matrices, and any other unipotent group has an embedding into this one
for a suitable n. O

Proposition 1.4.2. Suppose ¢ to be a finite extension of k, G, = G, x ¢, P a
parabolic subgroup of G and Py = Py x ¢, etc. Then A, = A,N A, and furthermore:
(a) For any € there exists ez such that A (e3) C A, (1) N Ag;
(b) For any €, there exists €5 such that A, (e2) N Ax C A; (e1).

Proof. Define groups Ag(€)* similar to the Ag(e):
Agle) = {a € A‘ |a(a)| for all a € XF Eg}.

(They will only be used in this proof.) It is clear that Ag(1)* = Ag(1), that Ag(e)* C
Ag(€), and that for every €; there exists €5 such that Ag(ey) C Ag(er)*. Furthermore,
because the restrictions of the o in 37 \ X§ are precisely the eigencharacters of the
representations of Ag on ng (the Lie algebra of Ng), it is clear that, in the present
terminology, Ag,(€)* = Ag,(€)* N Ar. The proposition is immediate from these
remarks. [

Proposition 1.4.3. If P is a parabolic subgroup of G and N; and N, are two open
compact subgroups of N, then there exists € > 0 such that a € A~ (e) implies
aNsa=' C Nj.

Proof. First assume G to be split over k, Py a minimal parabolic, P = Pg for some
© C A. Then N =[] N, (o € 3"\ XJ), and since A = Ag acts via o on each N,,
the proposition is clear.

In general, let ¢ be a finite extension of k£ such that G, = G x (¢ is split; let
P, = P, x {, etc. By 1.4.2 one can find Ny, compact and open in N, containing Ny;
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let N1, be compact and open in N, such that N;,N N, C N;. By the preceding case
one can find €* such that whenever a € A; (¢*), aNypa™' C Ny Apply 1.4.2(a). O

If P is a parabolic subgroup of G and K is a compact open subgroup, one says
that K has an Twahori factorization with respect to P if (i) the product map is an
isomorphism of Ng x My X Ni with K, where Ny = N~ N K, etc., and (ii) for every
a €A™, aNga™' C Ng, a ' Nga C Ng.

Proposition 1.4.4. Let Py be a minimal parabolic subgroup of G. There exists a
collection { K, }n>0, which forms a neighborhood basis of the identity such that

(a) Every K, is a normal subgroup of Kj;

(b) If P is parabolic subgroup containing Py then K, has an Iwahori factorization
with respect to P;

(¢) If P = MN is a parabolic subgroup containing Py then My has an Iwahori
factorization with respect to M N F.

Proof. Assume first that G is split over k. Then according to [16, XXV.1.3], there
exists a smooth group scheme G over Spec(Q) such that G = Gp X Spec(k). If R is
any ring supplied with a homomorphism from O to R, let G(R) be the group of R-
valued points on G, and similarly for any group subscheme of Gp. For each integer
n >0, let G(p™) be the kernel of the reduction homomorphism: G(O) — G(O/p"),
and similarly for any group subscheme of Gp. (I take ©° to be O.)

Let Pyo be a minimal parabolic group subscheme of G, K the inverse image
in G(O) of Py(O/p). It is essentially proven in [21] (in the proof of Theorem 2.5),
that K has an Iwahori factorization with respect to any parabolic P containing Fj.
More precisely, Ky = Ny MyN, where N = Ny (p), No = N(O), and M, is the
inverse image in My of (P N M)(O/p). The same is true of every K, = G(p"),
with N, = N~ (p"), etc., and therefore this sequence satisfies the conditions of 1.4.4.
Since every parabolic subgroup of GG is conjugate to one obtained from G, this proves
1.4.4 in this case.

Now let G be the k-points of an arbitrary reductive group defined over k, P a
minimal parabolic subgroup. Let ¢/k be a finite Galois extension with Galois group
Gal(¢/k) such that G x ¢ = Gy is split over . Let {K,,} be a sequence satisfying
1.4.4 for Py = P x {, and define K,, to be Ky, N G. The sequence {K,} is clearly a
basis of the neighborhoods of 1 in G.

Proof of (a): for k € K, one has k = n”mn with n € N, etc. But then for
o€ Gal(l/k), k = k% = (n7)7m?n?. Since P is defined over k, so is N~ etc. Since
N, NMyN; = {1} one has (n™)7 = n~, etc. This implies that n™, etc., are in fact in G,
hence in GN Ky, and shows that K, satisfies property (i) of an Iwahori factorization.
The remainder of 1.4.4 is proved similarly (using 1.4.2 at one point). O
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One can use results from [13] to obtain finer results, but at the cost of complication.
Other elementary derivations of 1.4.4 have been given by Harish-Chandra and also
by Deligne [17].

Lemma 1.4.5. Suppose that the center of G is anisotropic. Then there exists a
maximal compact subgroup K C G such that (a) G = PK for any parabolic subgroup
P; (b) Ag(O) C K; and (c) G = KAy K, with the map a — Kak establishing a
bijection between K\G/K and Ay /Ay(O).

Proof. Set A = Ay for convenience. Let G be the simply connected covering of the
derived group of G, ¢: G — G the canonical projection, A the maximal split torus
of G over A. By assumption ¢|7 is an isogeny. Define N to be N(A)/A(O). Let B
be an Iwahori subgroup in G compatible with A (see [12] and [13] for notation and
statements I give here).

Since the bornology of G is that of compact subsets, 3.5.1 of [13] implies that ¢ is
B-adapted (see 1.2.13 of [13]).

Since the canonical morphism from the direct product of the center of G and G
into G is both central and surjective, 3.19 of [6] together with its proof imply that

Z(A))d(Z(A)Z = G/¢(G)Z, and this implies that ¢ is M-adapted (see 1.2.13 of
[13]).

The group G acts on the building associated to (G B,N ) Let AV be the stabilizer
of the apartment A corresponding to A —ie., N is the normalizer of A in @, which
amounts as well to the normalizer of ¢(A) in G. But since the Zariski closure of
¢(A) is A, and ¢(A) is Zariski-dense in A, this is also the normalizer of A in G. This
implies that ¢ is of connected type (see 4.1.3 of [13]).

The remarks in 4.4.5 of [13] together with the proposition in 4.4.6 of [13] imply
that if K is the stabilizer of a special point in A (see 1.3.7 of [13]) it satisifies the
conditions of the proposition. [

Proposition 1.4.6. Let GG be arbitrary. There exists an open subgroup I' C G such
that
(1) G=rAT

(b) Ap(O) € T; and
(c) F/(FHZ) is compact.

Proof. Let G = G/AA, ¥: G — G. Then v induces an isomorphism G/Ax = G
by 15.7 of [3], and the group G satisfies the hypotheses of 1.4.5. Let K be the group
given there, and defined I to be ¢~ (K).

Note that I' fits into an exact sequence

l1— Ay —TI'— K —1

and that furthermore I' even contains all of Z. O
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1.5. If P = MN is any parabolic subgroup of GG, let dp be its modulus character:
P — C*, p+— | det Ad,(p)|, where n is the Lie algebra of N. It is trivial on N,
hence essentially a character of M.

Assign G' a Haar measure.

Lemma 1.5.1. If P is a parabolic subgroup of G and K, a compact open sub-
group with an Iwahori factorization with respect to P, then for a € A~ one has
meas KyaKy = 05" (a)meas K.

Proof. The map kjaky — kp induces an isomorphism between the sets KoaKq/ Ky
and Ky/(Ky NaKoa™t). But since a € A=, Ko N aKoa™! = Ny My(aNoa™!) and
[K() Ko N GKQCL_I] = [NQ : aN()CL_l] = 5131(a) ]

Proposition 1.5.2. Let P be a parabolic of G, K any compact open subgroup.
There exist constants Cy > C7 > 0 such that for any a € A~ one has

C16p (a) < meas(KaK) < Cydp'(a)

Proof. Let Ky be an open subgroup of K with an Iwahori factorization with respect
to P, and let C be [K : Kj]. Assume for convenience that meas(K,) = 1.
First: meas(KaK) < Cdp'(a). This follows from

meas(KaK) = [K : KNaKa™]

[K : Ko NaKoa™"

[Ko: KoNaKoa '[K : Ko
= Cép'(a)

VAN

by 1.5.1,

Next: meas(KaK) > C~'65'(a). One has an injection from K,/(Ky N aKa™')
into K/K NaKa™', so that meas(KaK) > [Ky : Ko NaKa™']. But one also has
1 <[KonaKa™': KgNaKya™t] < C which together with 1.5.1 implies the claim. [

1.6. Let Py be a fixed minimal parabolic of G, etc.

A rational character of G is a k-morphism from G to G,,, and of course determines
a map on k-rational points G — k*. For any G let X (G) be its group of rational
characters.

Lemma 1.6.1. Any rational character of G is determined by its restriction to Ax.
Recall that A is the maximal split torus in the center of G.

Proof. Let G4 be the derived group of G, T the torus quotient G/G%*, and T, the
maximal split quotient of T (see [18, XXII.6]). Any rational character of G factors
through the projection G — T, and the restriction of this projection to A is
an isogeny. The map from X (T) to X(Aa) is thus an injection of one lattice into
another. [
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For each © C A, let 7o be the rational modulus character of Pg: ~o(p) =
det Ady, (p). If for each o € ¥ one lets m(a) be the dimension of the a-eigenspace
g, in g, then according to 1.6.1 and the definition of the roots, g is characterized
as the unique rational character of Mg restricting to ] a™® (v > 0) on Ag. Since
Ag is the connected component of Nyep ker(a):

Proposition 1.6.2. For © C 2 C A, the restriction of 7¢ to Mg is equal to ~vq.

A complex character of G is a continuous homomorphism from G to C*. (If I
write of a character without qualification, I shall mean a complex one. Note that
I do not require a character to be unitary — i.e., have its image in the unit cir-
cle). If v: G — G,, is a rational character of G and : k* — C* is a complex
character of k*, then the composition is a complex character of G which I shall call
B-v: G— k* — C*. In particular one may choose 3 to be the modulus x — |z,
and one thus obtains the norm or modulus |y| of v: x — |y(z)|. For example, the
modulus dg of Pg is the usual modulus one refers to in connection with Haar measure
on Pg.

One can describe the group of complex characters of G' to some extent by means of
results in [6]. Let G* be the subgroup of G, hence of G4, generated by the elements
in the unipotent radicals of the minimal parabolics in G ([6] 6.2). Then the restriction
of any complex character of G to G" is trivial ([6] 6.4) so that it must factor through
the projection: G — G/G".

Let £ = G/G". 1 claim now that there exists in E a maximal compact subgroup
Ey such that the quotient E/Ej is a free abelian group of rank equal to the dimension
of the maximal split quotient T of G. First of all, one knows ([6] 6.14) that G is
closed in G and that G /G" is compact. Further, one has the exact sequences

1—G¥ -G —T—1

1 —Ty—T —T/Ty — 1

where T} is maximal compact in T, and T'/Tj is a lattice of rank equal to the dimension
of T,. Define Ey to be the inverse image in E of Tj.

A complex character of G is said to be unramified if it is trivial on Ey. A choice of
basis for £/ Ey gives an isomorphism of the group X,,;(G) of unramified characters of
G with (C*)" (r = dim T}) so that X,,(G) has naturally the structure of a complex
analytic group of dimension r (and this structure is of course independent of the
choice of basis). The unitary characters of X,,,(G) form a real analytic subgroup of
this isomorphic to a product of r unit circles.
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2. ELEMENTARY RESULTS ABOUT ADMISSIBLE REPRESENTATIONS

Throughout this section, let G be an arbitrary locally compact Hausdorff group
such that the compact open subgroups form a basis for the neighborhoods of the
identity. This condition is satisfied if and only if G has compact open subgroups and
they are all profinite. It is also satisfied for any closed subgroup of G, in particular
for its center Z.

See §3 of [3] for related matter.

2.1. Let F be an arbitrary field of characteristic 0. Let (m, V') be a representation
of G on a vector space V defined over F. If K is any subgroup of G, define VX to
be {v € V‘ m(k)v =vfor allk € K}. Define (7, V') to be a smooth representation if

every v € V lies in V¥ for some open subgroup K. This is equivalent to the condition
that 7 be continuous with respect to the discrete topology on V.

Define (m,V) to be admissible if it is smooth and if in addition V* has finite
dimension for every open subgroup K irreducible if there are no proper G-stable
subspaces; finitely generated if there exists a finite subset X C V such that the
smallest nonzero G-stable subspace containing X is all of V.

If H is a subgroup of GG, then a representation of GG is said to be H-finite if every
vector is contained in a finite-dimensional H-stable subspace.

If X is any subset of V', then the G-space generated by X is the smallest G-
stable subspace containing X, and is also the subspace of vectors in V' of the form
> em(gi)z;, with g; € G and z; € X.

If € is an involution of F', then (7, V) is said to be unitary with respect to e if there
exists a G-invariant anisotropic form on V', Hermitian with respect to e. If F' = C,
then the involution will be understood to be conjugation.

There are a number of smooth representations associated to the action of the
group on itself. Define C*°(G, F') to be the space of all locally constant functions
f: G — F; CX(G, F) to be those f € C™(G, F) such that for some compact open
subgroup K, f(kigks) = f(g) for all k1, ke € K, g € G (these are the uniformly locally

constant functions.) Define C2°(G, F') to be {f € C*(G, F)| f has compact support}.
One has C° C (e, clearly. For f € C*(G, F) and g € G, define R, f and L,f by
the respective formulas

(Ryf)(2) = f(zg) and (Lyf)(x) = f(g~'2).
These operators define smooth representations of G, called respectively the right
regular and left regular representations, on both C°(G, F') and CX(G, F).
From §3 on, I shall assume F' to be C (or, occasionally, R), but this is mostly a
matter of convenience in notation, as will be explained later, and it is probably worth
something to know that results may be formulated without this assumption. I should
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add that the possibility of using quite general fields of definition has not been, as far
as I know, seriously exploited (see, however, [16] and [29]).

If (7, V) is a representation over F', then for any field extension E/F one obtains
the obvious extended representation (7, V ®@p E).

Proposition 2.1.1. If (7, V) is a representation of G over F' and E/F is a field
extension, then (m, V) is

(a) smooth;

(b) admissible;

(c) finitely generated;

if and only if (7, V ® F) is.
Proof. The basic observation is that if K is any subgroup of G, then

VeE)X=VvEeeE.

Certainly, the right-hand side is contained in the left. For the opposite inclusion, let
> v; ® x; be fixed by K. One may assume the x; to be linearly independent over F.
But then 7(k)(X v; ® ;) = Y v; ® x; implies that > (7(k)v; — v;) ® x; = 0, which in
turn implies that 7(k)v; = v;.

From this, the proposition is clear. O

A representation (m,V) is said to be absolutely irreducible if for every extension
E/F, (7, V ® E) is irreducible.

Proposition 2.1.2. If 7 is smooth, then it is K-finite for every compact open sub-
group K.

Proof. For every v € V, there exists a subgroup K of finite index in K such that
v € VB Thus, K - v is a finite set, and generates a finite-dimensional K-stable
subspace. [

Proposition 2.1.3. If H is any closed subgroup of G such that H/HNZ is compact,
then any admissible representation of GG is H-finite. In particular, any admissible
representation is Z-finite.

Proof. 1f (m, V) is an admissible representation of G, then for each compact open
subgroup K, V¥ is finite-dimensional and Z-stable. This proves the last statement.
If H satisfies the hypotheses of the proposition and K is any compact open subgroup
of G, then the image of KN H in H/H N Z has finite index. Thus the space spanned

by the elements {h v ’ he H ve VK} is finite-dimensional. [
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Assign G a rational Haar measure, i. e., one such that for some (hence any) com-
pact open subgroup K one has meas(K) € Q. (Without further mention, all Haar
measures will be assumed to be rational.) If (7, V') is a smooth representation of G
and K is a compact open subgroup, define the operator Pg by the formula

Jr m(k)vdk
Prv) = meas K
The smoothness of 7 implies that this is essentially a finite sum, hence makes sense.
The operator Py is the projection of V onto VE. If V(K) is the kernel of Py, then
it may also be described as the space spanned by the vectors of the form 7 (k)v — v.
One has V = VE @ V(K) as representations of K.

Proposition 2.1.4. Let (7, V) be a smooth representation and K a compact open
subgroup of G. Then 7 is admissible if and only if the restriction of = to K is a
direct sum of irreducible finite-dimensional representations, each isomorphism class
occurring with finite multiplicity.

Proof. Assume 7w admissible. If K; is an open normal subgroup of K, one has V =
VEr @V (K,), each summand being K-stable. The group K; of course acts trivially
on V&1 which may then be considered a representation of K/Kj, hence a direct
sum with finite multiplicities of irreducible representations of K. An application
of Zorn’s Lemma then enables one to decompose V' as a direct sum of irreducible
finite-dimensional smooth representations of K.

Finite multiplicity follows from the fact that any given smooth finite-dimensional
representation must have some normal open K in its kernel.

The converse is clear. [

Proposition 2.1.5. If (7, V) is admissible and unitary, with Hermitian form (u,v),
and U is any G-stable subspace of V, then U+ = {v € V‘ (u,v) = 0for allu € U}
is also G-stable, and V = U @ U .

The proof is straightforward.

Proposition 2.1.6. The categories of smooth and admissible representations of GG
are abelian categories.

This is trivial.

Proposition 2.1.7. Let (m;, Vi) (i = 1,2, 3) be smooth G-representations, K a com-
pact open subgroup of G. If V; — Vo, — V3 is an exact sequence of G-morphisms,
then the sequence Vi — VK — VK is exact as well.

Proof. Given v € V& whose image in V; is 0, choose v; € V; with image v in V5.
Then Pg(v;) lies in VX and still has image v. [
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Proposition 2.1.8. If (m;,V;) (i = 1,2,3) are smooth representations of G and the
sequence of G-morphisms

00—V — Vo —V3—0
is exact, then my is admissible if and only if m; and 73 are.
Proof. By 2.1.7. O

Define now a character of G to be a smooth one-dimensional representation. It
thus amounts to a homomorphism from G to F*, with open kernel. (Since any
homomorphism from G to C* continuous with respect to the usual topology on C
has this property, the definition here does not contradict that in 1.6.2.) If € is an
involution of F', then the character y: G — F* is unitary if and only if x(G) C
{z er } rrt = 1}. If (w,V) is any smooth representation and x is a character, one
defines (7 ® x, V'), or sometimes (7 -y, V'), to be the representation of G on the same

space, taking g to 7(g) - x(g).
If (m,V) is Z-finite and w is a character of Z, then for each integer n > 1 define

Vo = {U € V‘ (m(z) —w(z))"v=0for all z € Z},

)

and also define

Vw,oo - U Vw,n>
neN
Vw - Vw,l-

Each V,,, is G-stable. The representation (m, V') is called an w-representation if
V="V,

Proposition 2.1.9. Assume that F' is algebraically closed and that V is Z-finite.
Then

(a) One has a direct sum decomposition V =@ V,, o;
(b) If V is finitely generated, then there are only a finite number of w with V,, o #
0, and there exists n such that V, . =V, for each w.

Proof. By standard facts about commuting families of operators on finite-dimensional
spaces. [

Proposition 2.1.9(b) implies that there exists a finite filtration of V' whose factors
are w-representations for certain w.

For a given w, the smooth and admissible w-representations clearly form abelian
categories, in analogy with 2.1.6. R

If (7, V) is any smooth representation of G, define its dual (7, V') to be the repre-
sentation ‘w(g") on the algebraic dual V of V, and define its contragredient (7,V)
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to be the restriction of 7 to the subspace V of elements of 1% fixed by some open sub-
group. Thus, 7 is smooth. For any compact open subgroup K, VE is the algebraic
dual of VX and of course also equal to V. This proves:

Proposition 2.1.10. The following are equivalent:
(a) m is admissible;
(b) 7 is admissible;
(c) the contragredient of 7 is isomorphic to 7.

Proof. Clear. [
One has, of course, the canonical embedding of 7 into 7.
Proposition 2.1.11. The functor 7 ~» 7 is contravariant and exact.

If (7, V) is smooth and U is any subset of V', define
Ut ={veV|v)=0foralzeU}.

Note that we had previously defined U+ to be a subspace of V in the case where 7 is
unitary. It turns out that our new definition is compatible with the old one: if (7, V)

is admissible and unitary, then the Hermitian form on V' allows us to identify V' with
V.

Proposition 2.1.12. Suppose (7,V) to be an admissible representation and U a

G-stable subspace of V. Then U+ C V is isomorphic to the contragredient of V/U.
Corollary 2.1.13. The admissible representation 7 is irreducible if and only if 7 is.
The proofs are straightforward.

Proposition 2.1.14. Suppose that (7,V) is a unitary admissible representation of
G. Then it is G-isomorphic to a direct sum of irreducible admissible unitary rep-
resentations, each isomorphism class occurring with finite multiplicity. If G has a
countable basis of neighborhoods at the identity, then the direct sum is countable.

Proof. Let K be a compact open subgroup, and first assume that V' is generated by
VE . We prove by induction on the dimension of V¥ that V is the direct sum of a
finite number of irreducible admissible representations. Since V' is finitely generated,
an application of Zorn’s Lemma guarantees that it has some irreducible quotient U,
which is generated by UX. The representation on V will then be (by Proposition
2.1.5) the direct sum of U; and Ui, where U is the kernel of the natural map from
V to U, and we may apply induction to Uj.

In the general case, the above implies that for each compact open subgroup K, the
subspace of V generated by V¥ is a finite direct sum of irreducible unitary admissible
representations. Another application of Zorn’s Lemma, letting K range over the set
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of compact open subgroups of GG, will finish the proof of the first claim. The final
remark is elementary. [

(The first application here of Zorn’s Lemma is unnecessary; instead one may apply
the considerations of §2.2.)

Proposition 2.1.15. If (7,V) is irreducible, unitary, and admissible, then (up to
scalar multiplication) there is only one G-invariant Hermitian inner product on V.

2.2. For each compact open subgroup K define the Hecke algebra Hp(G, K) to be
the space of all functions f: G — F' of compact support such that f(kigks) = f(g)
for all k1, ks € K, g € GG. Assign to it the convolution product

(fi* f2)(9) = /Gfl(ggo_l)f2(90) dgo.

This algebra has as identity the element (meas K)~!chg (where chy is the charac-
teristic function of K'). Define Hp(G) to be Ux Hr(G, K). The convolution defines
a product on this, but there is no identity unless G is discrete. The space Hp(G) is
the same as C°(G, F).

For each character w of Z, define Hz,,(G, K) to be the space of functions f: G — F
such that f has compact support modulo Z, f is bi-K-invariant, and L,f = w(z)f
for all z € Z. Convolution is defined by the formula

(fi* f2)(g) = /G/Z f1(996 ") f2(g0) dgo.

(Note that this is well-defined.) Define Hg,(G) to be Ux Hrw(G, K).
If (7, V) is any smooth representation of GG, then the space V' becomes an Hp(G)-
module by the formula

n(fo = [ flg)m(g)odg.

which makes sense because the integral is essentially a finite sum. The algebra
Hr.(G) acts similarly on smooth w-representations?®.

We shall often drop the reference to F' if confusion is unlikely.

Whenever A and B are smooth G-representations, Homg(A, B) will denote the set
of linear maps from A to B which commute with the action of G.

Proposition 2.2.1. If (7;,V;) (i = 1,2) are two smooth representations of G, then
the natural map induces an isomorphism of Homg (V7, V2) with Homy ) (V1, V2). A
similar statement is true for w-representations and H,,.

3From now on we will adopt the convention that if S is subset of G which is bi-invariant under
some compact open subgroup K of G, then 7(S) denotes the action of chg as an element of Hr (G).
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Proof. A G-morphism f: V; — V; is clearly an H(G)-morphism as well. Conversely,
suppose f: V)3 — V5 is an H(G)-morphism. Suppose v € V; and g € G. Choose a
compact open K such that v € VI m(g)v € V&, f(v) € V¥, and m(g)(f(v)) € V¥,
Then 71(g)v = meas(KgK) 'm(KgK)v, and

f(m(KgK)v)

.f(ﬂ-l(g)v) meas(KgK)
_ m(KgK)f(v)
meas(KgK)
=m(g)f(v). O

If (7, V) is a smooth representation of GG, and K is a compact open subgroup, then
the space VX is stable under H(G, K).

Proposition 2.2.2. Suppose (m;, V;) (i = 1,2) are smooth representations of G, and
K is a compact open subgroup of G. If
(i) V1 is generated as a G-space by VX and
(ii) every nonzero G-stable subspace of V5 contains a non-zero vector fixed by K,
then
Homg (Vi, Va) & Homyyg i) (VS V3" ).

Proof. The map from left to right is the obvious one. The rest of the proof is word-
for-word the same as in [15, pp. 33-34]*. (I should mention that the argument there
was inspired by the proof of [23, Lemma 7.1].) O

A result similar to that in 2.2.2 holds for w-representations and H, (G, K).
The following may make condition (ii) in 2.2.2 more reasonable:

Lemma 2.2.3. Suppose that (7, V) is an admissible representation of G. Then V
is generated by VX as a G-space if and only if V' satisfies the condition that every
non-zero GG-stable subspace of V' contains a non-zero vector fixed by K.

Proof. Suppose that V is generated as a G-space by V&, and let U be a G-stable

subspace of XN/Nsuch that UX = 0. If U is the annihilator of U in V 2 V, then
(V/ULHE =~ UK = 0. Thus by 2.1.7, VE = (ULH)X and since VE generates V,
V = U", and U = 0. The converse argument is similar. [J

Proposition 2.2.4. Let (7, V) be a smooth representation of GG, and K a compact
open subgroup. Then
(a) If (m, V) is irreducible, then V¥ is an irreducible module over H(G, K);
(b) If V satisfies the conditions (i) and (ii) of Proposition 2.2.2 and VE is an
irreducible H(G, K)-module, then the representation (m, V') is irreducible.

4Should we include the proof?
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Proof. Say (m,V) is irreducible. Let U be any non-zero H(G, K)-stable subspace
of VE. Then U must generate V as a G-space, and every v € V is of the form
S 7w(gi)ui, with g; € G, u; € U. Now if u € VX and g € G, then Pg(n(g)u) differs
from (K gK)u only by a constant. Thus, with v as above,

Pr(v) => Pr(r(g:)u;) = > (constant) - (K g; K )us,

which lies in U since U is H(G, K)-stable. Thus VX C U and in fact VX = U. This
proves (a).

Conversely, assume (i) and (ii) to hold and V¥ to be an irreducible H(G, K )-space.
If U is any non-zero G-stable subspace of V, then by (ii) UX # 0. By hypothesis,
UK = VE. But then by (i), U = V. This proves (b). O

Remark 2.2.5. The same reasoning shows that a smooth representation (m, V') is ir-
reducible if and only if there exists a set of compact open subgroups {K,} forming
a basis of neighborhoods of the identity and such that each V%« is an irreducible
H(G, K,)-module.

Proposition 2.2.6. If F' is algebraically closed and (7, V') is a smooth irreducible
representation of (G, then it is absolutely irreducible.

Proof. Let K be a compact open subgroup such that V& £ 0. Then V¥ is an irre-
ducible H(G, K)-module by 2.2.4(a). If E/F is any field extension, then conditions
(i) and (ii) of Proposition 2.2.2 hold for V' ® E. Thus, by 2.2.4(b), in order to know
V ® F is irreducible, it suffices to show that (V ® E)¥ is irreducible over Hg(G, K).
By [7, §1.2, Proposition 3, p. 9], the commutant of Hg(G, K) in VE @ EX is E, since
that of Hp(G, K) in VE is F. By the proof of 2.1.1, VX @ EX = (V @ E)X. Apply
[7, §7.3, Theorem 2, p. 87] to finish the proof. O

This is due to A. Robert in [29].
The point of 2.2.6 is that from §3 on, where F' will be C, one doesn’t have to worry
about the distinction between irreducibility and absolute irreducibility.

2.3. If (m,V) is an admissible representation of G, then for every f € H(G) the
operator 7( f) has finite rank, and one may therefore speak of its trace. The functional
on H(G) which takes f to the trace of m(f) is called the distribution character of =,
and referred to as ch,. Of course, since the definition of 7(f) depends on the choice
of a Haar measure for G, so does the definition of the distribution character.

Proposition 2.3.1. If {m,m,... ,m,} is a set of inequivalent irreducible admissible
representations of G, then the functionals {ch,,,... ,ch,, } are linearly independent.

Proof. This is [23, Lemma 7.1]. (Note that part of this proof already occurs in that
of 222.) O
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Corollary 2.3.2. If (7, V) and (mq, V) are two irreducible admissible representa-
tions with the same distribution character, then they are isomorphic.

Proof. Clear. O

Corollary 2.3.3. Let (m,V7) and (72, V3) be two admissible representations of finite
length as G-spaces. Then they have the same irreducible composition factors (with
multiplicities) if and only if their distribution characters are the same.

Proof. One way is clear, since it is straightforward to show that if
00—V —V—V,—0

is an exact sequence of admissible G-representations, then the distribution character
of V' is the sum of those of V; and V5.

If (m,V) is now any admissible representation of finite length, define (7%, V") to
be the representation of G on the direct sum of the irreducible composition factors of
V. (It is a semisimple G-space.) Then 7 and 7% have the same characters, by what
I have just remarked, and the conclusion of the corollary is merely that (% = 73°
Thus, it suffices to assume that 7 and m, are semisimple. But in this cases one
may apply 2.3.2 and an inductive argument. (This is of course a rather well-known

argument.) [

2.4. If H is a closed subgroup of G and (o, U) a smooth representation of H, define
Ind% o to be the space of all functions f: G — U such that

(i) f(hg) =0o(h)f(g) forall h € H, g € G, and
(i) for some compact open subgroup K of G, Ryf = f for all k € K.

Define c¢-Ind% o to be the subspace of Ind% o of functions with compact support
modulo H. The group G acts on both of these by R (the right regular representation).

Theorem 2.4.1. Let H be a closed subgroup of G, (0,U) a smooth representation
of H. Then

(a) Ind% o and c-Ind$ o are smooth representations of G

(b) the maps A: Indo — U and A.: c-Ind 0 — U, defined by f +—— f(1g), are
surjective H-morphisms;

(c) the restriction of A (or A.) to any non-trivial G-subspace of Ind ¢ (or c-Ind o)
is non-trivial,

(d) if H\G is compact and (o, U) is admissible, then Ind ¢ = c-Ind o is admissible;

(e) (Frobenius reciprocity) if (7, V') is any smooth G-representation, then compo-
sition with A induces an isomorphism of Homg(V, Ind o) with Hompg (V, U).

Proof. (a) is immediate from the definitions.
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For (b): Ome has A(R,f) = f(h) = o(h)A(f). To see that A. (hence A) is
surjective, choose u € U and let K be a compact open subgroup of G such that
u € UKM  Define f on G by

o) = o(hyu ifg=hk,he H, k€ K;
70 itgg HE.

This lies in c¢-Ind o and has u as its image under A..

For (c¢): If V' is any nontrivial G-stable subspace of Ind o, choose f # 0in V. Then
f(g) # 0 for some g € G, hence A(R,f) # 0, but one also has R,f € V.

For (d): If K is any compact open subgroup of G, X a finite subset of G, and U
a finite-dimensional subspace of U, define

I(K, X, Uy) = {f € (IndU)K‘ f(X) C Uy; f has support inHXK}.

This space clearly has finite dimension. Assume (o, U) to be admissible. Let K be a
compact open subgroup of G, choose X such that HXK = G, let L = (,ex tKx 71,
and let Uy = UX™M | Then (Ind 0)® C I(K, X, Uj), and hence Ind o is admissible.
For (e): Composition with A gives a map from Homg(V, Ind 0) to Homg (V, U). To
define an inverse map, let f: V — U be an H-morphism. Define the G-morphism
® from V to Ind o to be that which takes v € V to ®,, where ®,(g) = f(7(g)v).
(P, € Ind o since 7 is smooth.) It is clear that f — ® works, since A(®,) = f(v). O

Let 0y be the modulus character H — Q™. Assume that G is unimodular.

Theorem 2.4.2. Let H be a closed subgroup of G, (¢,U) a smooth representation
of H. If 7 = ¢-Ind% o, then 7 = Ind%, 56y.

Proof. For any f € C°(G), define the operator P by the formula

(Psf)(g /5H )L f(hg) doh,

where d,.h is a right Haar measure on H. The map Py is clearly a surjection from
C=(G) to c-Ind$; 6. A slight modification of well-known results in [8] shows that
there exists on c¢-Ind% 0y a unique G-invariant functional I such that for all f €

(@),
| £(9)dg = I5(Psf).

Since ¢ ® dy = Hompy(o,dy) as an H-space, there is a pairing of o with ¢ ® oy
giving rise to an H-morphism

® (6 ®6g) — .

Let (w,@), denote the image of (w,&) under this pairing. If ¢ € V = c-Indo
and ¢ € Ind (6 ® ), then define (¢, ®), € Ind oy by (P, P).(9) = (&(g), P(g))x.
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The map (¢, @) — (¢, ) = I;((¢, P).) is a G-invariant pairing, defining also a G-
morphism from Ind% (7 ® §5) to V. To finish the proof, one may show quite easily
that this induces an isomorphism of (Ind% (& ® dg))% with VX for each compact

open K. [
Corollary 2.4.3. Homg(c-Ind$ o, F) = Hompg/(0, ).

Proof. This follows from the more general fact that if (o,U) is any smooth H-
representation, then
(Ind$ o) = U". O
The proofs of the following are trivial:

Proposition 2.4.4. Let H be a closed subgroup of G, (0;,U;) (i = 1,2) smooth
representations of H. To each H-morphism f: U; — U, is associated a canonical G-
morphism Ind (f): Ind 0y — Ind 03. The map Ind (f) is a surjection, or an injection,
if and only if f is. The functor o ~» Ind o is exact.

Proposition 2.4.5. Let Hy C H; be closed subgroups of G, (o,U) a smooth repre-
sentation of H,. Then Ind§ o = Ind§;, (Indj}. o).

2.5. We have a natural pairing
(,): VeV —F

given by (v, 0) = v(v).
Let (m, V') be a smooth representation of G, v € V, v € V. The matriz coefficient
of 7 associated to v and v is the function c,3(g) = (7(g)v,v).

Lemma 2.5.1. One has, for every g € G:

Cﬂ(g)vﬁ; = Rg Cvﬁ)'

Cv,;r'(g); = Lg Cvﬁ)'

This is trivial.

Corollary 2.5.2. The function ¢, ; is uniformly smooth. For a fixed & € V, the map
v — ¢,7 is a G-morphism from (m,V) to (R,C>(@)), and for a fixed v € V the
map ¥ — ¢, 7 is a G-morphism from (7, V) to (L, C(Q)).

Now assume F' to be R or C. Let w: Z — F* be a character. If (m,V) is an
admissible w-representation of G, it is said to be square-integrable modulo Z (but
later we will often just say “square-integrable”) if |w(z)| = 1 for every z € Z and if
for every v € V and @ € V, the function |lc,5(9)| is square-integrable on G/ Z.
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Proposition 2.5.3. If (7, V) is an irreducible admissible w-representation with |w| =
1, then in order for it to be square-integrable modulo Z, it is necessary and sufficient
that for one nonzero vy € V' and one nonzero vy € V' the matrix coefficient ¢, 7 is
square-integrable on G/Z.

Proof. Let Vj be the space of all v such that ¢, 7 is square-integrable on G'/Z. Then
Vo # 0 since vg € Vp, and it is clearly G-stable, hence all of V. Treat 1% similarly. [
This is a well-known result.

Proposition 2.5.4. If (7, V) is an irreducible admissible square-integrable represen-
tation of GG, then it is unitary.

Proof. Choose Ty # 0 in V. Define an inner product by the formula
(w,0) = [ (m(g)u,50)(n(g)v, 7o) dy.
G/Z

The integral converges by the Schwarz inequality, and clearly defines a G-invariant
positive definite inner product. O

This is also well known.

2.6. If G; and G4 are two topological groups, their direct product is locally profinite
if and only if each G; is. Assume this to be the case, and let G = G; x Gs.

Lemma 2.6.1. If K; C G; and Ky C Gy are compact open subgroups and K =
K, x K,, then H(G, K) is naturally isomorphic to H(G1, K1) @ H(Gs, K>).

This is straightforward.

Lemma 2.6.2. Let (7, V}) and (w2, V5) be smooth representations of G; and Ga,
respectively, and let (m,V) = (m ® m, V4 @ V5). Let K1 C Gy and Ky C Gy be
compact open subgroups and K = K; x K,. Then the natural injection of V¥ @ VX2
into VX is an isomorphism.

Proof. To see this, use the fact that VE = P (V). O

Proposition 2.6.3. If (7;,V}) and (7, V3) are irreducible (resp. absolutely® irre-
ducible) smooth representations of Gy and Gy, respectively, then (m ® m, Vi ® V3)
is an irreducible (resp. absolutely irreducible) smooth representation of G.

51 still think this isn’t the right way to say it. What Casselman proves is exactly the proposition
with the word “absolute” deleted. His proof has nothing to do with absolute irreducibility. Maybe
we should have a remark that this result implies a similar one about absolute irreducibility. This
will also solve the problem of how to handle the numerous instances of “absolutely” in this and the
next proof.



30 W. CASSELMAN—DRAFT 1 May 1995

Proof. The smoothness is immediate.

If Ki C G and K5 C Gy are compact open subgroups and K = K; x Ks, then by
2.6.2, Vi@ Vo)X =2V @ V) as a module over H(G, K) = H(G1, K1) @ H(Gy, K»).
By [7, §7.3, Theorem 2, p. 87], this is an irreducible module. Since the subgroups
K; x Ky form a basis for the neighborhoods of 1 in G, one may apply Remark
2.2.5. O

Proposition 2.6.4. If (7, V) is an irreducible (resp. absolutely® irreducible) admis-
sible representation of GG, then there exist irreducible (resp. absolutely irreducible)
admissible representations (w1, V}) and (ms, V5) of G; and G5 (respectively) such that
T =T X .

Proof. Let K = K| x K, be a compact open subgroup such that V& #£ 0. By 2.2.4,
this is an irreducible module over H(G, K). It is finite-dimensional, so that by [7,
§7.3, Theorem 2, p. 87 and §7.7, Proposition 8, p. 93]", there exists an irreducible
module U; over H(G1, K1) such that VX = U; ® Homyyg, k) (Ui, VE) as a module
over H(G, K). Let Uy = Homyq, k) (U1, VF).

Define (ms, V3) to be the obvious representation of Gy on Homyq, k) (Ur, V),
and define (m, V) to be that of G; on Homg,(V5, V). Neither of these spaces is
trivial. There is a canonical non-trivial map from V; ® V5 to V.

It is immediate that since V' is smooth, so is V5. Furthermore, for any compact open
subgroup Ly C Go, V52 = Homyy (g, xy) (U, VE*£2) which by the results from [7]
already mentioned is an absolutely irreducible module over H(Gy, Ly), since V51xL2
is absolutely irreducible over H(G, K7 X Ly). By Remark 2.2.5, then, V5 is absolutely
irreducible.

Let f: Vo — V be any element of Vi, and choose vy € V5 nonzero. Then f(vs)
lies in some VIt since V is smooth. But since V5 is irreducible, v, generates V5
as a Gy-module and f(V5) C V& as well. Therefore V; is smooth, since Vi
Homg, (Va, V).

6See previous footnote.
It’s not obvious to me that the references say what Casselman says they say, although they are
certainly close. Here are the relevant results:
Theorem 2. Let A and B be K-algebras. Let M and N be nonzero modules over A and B,
respectively. Then
(a) M ® N is simple (resp. semisimple) = M and N are simple (resp. semisimple).
(b) Let M and N be simple, E and F the “field commutants” of M and N (fields aren’t
necessarily commutative), S and T the centers of E and F. Then M ® N is simple & E®Q F
is a field.

Proposition 8. Let A and B be K-algebras, P a simple A ® B-module of finite dimension
over K. Then there exist simple modules M and N (over A and B, respectively) such that P is
isomorphic to a quotient of M ® N. M and N are uniquely determined up to isomorphism.

Casselman doesn’t just use the existence of M and N; he assumes that N has a certain form.
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In particular, Homg, (Va, V1) % 0 for suitably small L;. Consider the restriction
map from this space to Homya, k) (Uz, VE*52). 1t is an ‘H(Gy, Ly)-morphism. It
is an injection, for if f: Vo — V1 were 0 on U, then f = 0, since V} is irreducible.
But by [7] again, this latter H(G4, L1 )-module is absolutely irreducible. Since this is
true for all suitably small L;, Remark 2.2.5 implies that V] is absolutely irreducible.

Therefore V; ® V5 is irreducible over G and since the canonical map from V; ® V5
to V' is non-trivial, it is an isomorphism. [

2.7. Let X be any complex analytic space.

A holomorphic sheaf of admissible representations of G over X, or an analytic
family of such parametrized by X, consists of a pair (7,)) where V is an analytic
sheaf over X and 7 is a representation of G in the ring of analytic endomorphisms of
V such that

(a) the sheaf V is the direct limit of the subsheaves V¥, as K ranges over the

compact open subgroups of G and
(b) each VX is coherent.

In this situation, each stalk V, is the direct limit of the stalks VX and likewise the
fibre V, = V,/m,V, is the direct limit of the fibres VX = VX /m, VX Each fibre is
also, in the obvious way, the space of an admissible representation of G.

Each operator 7(g) defines an analytic morphism from V¥ to V9 97" For compact
K, the projection operator Py is an analytic morphism from V to VX. For each
f € H(G, K) the endomorphism 7(f): VX — V¥ is an analytic morphism.
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3. REPRESENTATIONS INDUCED FROM PARABOLIC SUBGROUPS

From now on, k will be a fixed locally compact non-archimedean field, G the group
of k-rational points of a connected reductive group G defined over k. Also, all of our
vector spaces will be complex.

I remark that by density results of [3], the center of G consists of the k-rational
points of the center of G.

3.1. Let P be a parabolic subgroup of GG, with Levi decomposition P = MN. If
(0,U) is a smooth representation of M, it defines as well a smooth representation
of P, since P/N = M. In this situation, I shall define an induced representation
which differs slightly from the one I defined in §2. This is because I shall not be
concerned with the rationality of representations, and shall be concerned with a
certain symmetry which is rather awkward to express in the old notation.

Therefore, let dp be the modulus character P — M — C* of P (so that dp(mn) =
| det Ad,(m)|, where n is the Lie algebra of N). Define i% o now to be what I defined
as Ind$ (05113/2) in §2.4, so that for every f € i% o one has L,f = 0_15;1/2(p)f for
every p € P. This is known as normalized induction.

If (o, U) is admissible, then so is 1% o, by 2.4.1, since P\G is compact.

If P is a minimal parabolic subgroup and o is irreducible (hence necessarily finite-
dimensional) then % o is said to be a representation in the principal series of G.

Suppose K to be a good compact subgroup of GG, so that one has an Iwasawa
decomposition G = PK (see [10, §4.4]). Let Kp = K N P, and let (s,U) be the
restriction of (o,U) to Kp.

o 0 . . G . . . K
Proposition 3.1.1. The restriction of 1% o to K is isomorphic to iy, s.

Proof. The K-isomorphism is given by the restriction of an element of i% o to K.
This is surjective for obvious reasons, and injective because of the Iwasawa decom-
position. [

Proposition 3.1.2. The contragredient of i% o is isomorphic to i% 5.

Proof. This follows from 2.4.2 and the fact that P\G is compact. O

Let K be a good compact subgroup of G, (uy, us), the pairing of U with U given
by
(0 ®65%) @ (5 ® ") — dp.

Proposition 3.1.3. For f; € i%0, f, € i% 5, one has

(i f2) = [ (00, fol0)).
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Proof. Refer back to the proof of Theorem 2.4.2, where the fact that i%5 is the
contragredient of i% o was proven. From that proof, it clearly suffices to show that
for f € iG 5113/2, Is(f) = [k f(k) dk. But one may show easily that if one defines I ( f)
to be [ f(k)dk for any f € i§ 61/?, then for any f € C°(G) one has

| £9)dg = 1;(Ps).

and this shows that Ij = I5. O

Proposition 3.1.4. The representation i§ o is unitary if o is.

Proof. Since o is unitary, o is isomorphic to the contragredient of its conjugate, and
3.1.2 implies the same for 1% 0. The fact that I; is a positive functional implies that
this isomorphism induces a positive definite Hermitian inner product on i%o. O

This explains the new normalization of induction.

3.2. [Ishall give now a new formulation of Frobenius reciprocity for P and G. First
of all, of course, one must take into account the new normalization of i§ o. But there
is also a second and less obvious point to introduce and I digress slightly to make it.

Assume N to be for the moment any locally compact group such that the compact
open subgroups form a basis of the neighborhoods of the identity, and possessing
arbitrarily large compact open subgroups as well. This means that if X is any
compact subset of N then there exists a compact open subgroup Ny containing X.
This condition is satisfied, for example, if N is the set of k-rational points of a
unipotent group defined over k.

Let (m,V) be a smooth representation of N. For a compact subgroup Ny C N,

define V(Ny) to be {v € V’ S, T(n)vdn = 0}. Define V(N) to be UV (Vy), the
union over all compact open subgroups Ny of N. By the assumption on NNV, this is a
subspace of V.

Proposition 3.2.1. The space V(N) may also be characterized as the subspace of
V spanned by the elements {71’(71)’&} — v’ neN,ve V}.

Proof. The subspace is contained in V(N), for if n € N and v € V, then there exists
a compact open subgroup Ny with n € Ny, and w(n)v —v € V(INy).

For the opposite inclusion, suppose v € V(NN), and choose two compact open
subgroups Ny C N; such that v € VNe N V(Ny). Then

0= / m(n)vdn = (constant) - > w(n)v
M Ni1/No
so that
v = (constant) - »_ (7(n)v—v). O
N1/No



34 W. CASSELMAN—DRAFT 1 May 1995

Define Viy to be V/V(N).
Corollary 3.2.2. If U is any space on which N acts trivially, then the canonical
projection V' — Vjy induces an isomorphism of Homy (V, U) with Home(Vy, U).
Proof. Clear. O

If P is some group in which N is normal, and (7, V') is a smooth representation of

P, the space Viy becomes naturally the space of a representation (wy, Vy) of P/N.
One might call this the Jacquet module of (w, V') associated to P.

Proposition 3.2.3. If U — V — W is an exact sequence of smooth N-spaces,
then Uy — Vv — Wy is also exact.

Proof. One may assume
0—U—V-—W-—70
exact. It is then elementary, applying 3.2.1, that
Uy — Vy — Wy — 0
is exact, and it suffices to show that Uy — Vj is injective. This follows from the
fact that, by its definition, U(N) =UNV(N). O

This result really amounts to the claim that Hy(N,U) = 0, where U is a smooth
N-space, since after all Uy = Hy(N,U).

Let now P be a parabolic subgroup of G with unipotent radical N, and (o,U) a
smooth representation of M = P/N.

Theorem 3.2.4 (Frobenius reciprocity). If (7, V) is a smooth representation of
G, then the P-morphism A: (R,i% o) — (05113/2, U) defined by f — f(1) induces an
isomorphism of Homg(V, i% o) with Homy(Viy, U), where U is given the M-structure

05113/ 2,

Proof. This is immediate from 2.4.1(e) and 3.2.3. O

Corollary 3.2.5. If there exists a non-zero G-morphism from (m, V) to i% o, then
Vv # 0.

Proof. This follows from 3.2.4, or also from 2.4.1(c) and 3.2.3. O
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3.3. The following result is one of the cornerstones of the subject. It was suggested
by a result of Harish-Chandra ([20, Theorem 4]); the original result leading to it is
Jacquet’s ([22, Theorem 5.1]); and the brief proof is due to Borel.

Theorem 3.3.1. Let P be a parabolic subgroup of G with Levi decomposition
P =MN, and let (m,V) be a smooth representation of G. If (m,V) is a finitely
generated (resp. admissible) representation of G, then (my,Vy) is a smooth and
finitely generated (resp. admissible) representation of M.

Proof. In either case, the smoothness of (my, Vy) is clear. Let X be a finite subset of
V generating it as a G-space. Let K be a compact open subgroup such that X C V&,
Let I" be a finite subset of G such that PI'K = . Then it is easy to see that since V'
is the linear span of 7(G)X, Vi is generated as an M-space by the image of 7(I') X.
Hence, (my, V) is finitely generated. This proves the first claim.

As an amplification, suppose that K is a good compact subgroup of G.

Proposition 3.3.2. If (7, V) is any smooth representation of G, P a parabolic sub-
group of GG, and U a K-stable subspace of V generating it as a G-space, then the
image of U generates Vy as an M-space.

Proof. Clear, from the fact that G = PK. O

Let us now prove the admissibility claim of 3.3.1. What I shall actually show is
something more precise. The claim is implied by 1.4.4 and this:

Theorem 3.3.3. Let (m,V) be an admissible representation of G, K, a compact
open subgroup of G with an Iwahori factorization K, = Ny M;N, with respect to P.
Then the canonical projection from Vo to Vo™ is surjective.

I begin the proof of this with a useful technical result.

Theorem 3.3.4 (Jacquet’s First Lemma). With hypotheses as in 3.3.3, suppose
that v € VMoNo . Then vy = P, (v) is also Py, (v), and v — vy € V(Np).

Proof. Since K is compact and isomorphic to N, x M, x Ny, one has
dn( / w(nm)v dm)
MyNy

= (constant) - / m(n)vdn

No

vo = (constant) - /
No

since m(m)v = v for m € MyNy . The last claim follows immediately from the fact
that Vg = PNO (U) O

Corollary 3.3.5. Hypotheses as in 3.3.3. Then V¢ has the same image in Vy as
VMoNo

Proof. This follows since v and vy have the same image in V. O
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To return to the proof of 3.3.3: Let U be any finite-dimensional subspace of V3,
and let U C VMo be any finite-dimensional subspace of V' mapping onto U. One can
find a compact open subgroup N; € N~ such that U C VMoN1 | Choose a € A such
that a='Nja C Ny (by 1.4.3). Then 7(a)U C VMoNo | since if u € U and n € Ny,
one has w(n)r(a)u = w(a)m(a " na)u = w(a)u. Hence the image of m(a)U, which
is 7y (a)U, is contained in the image of Vo by 3.3.5. This latter image, hence U,
has dimension bounded by that of V%0, Since (7, V) is admissible, this dimension
is finite. Therefore, so is the dimension of V™. Taking U to be V4™, we see that
mn(a)Va™ is in the image of Vo, But my(a)Va™ = Va'. This proves 3.3.3 and also
3.3.1. O

It is often useful to know:

Proposition 3.3.6. Let (0,U) be an irreducible admissible representation of M,

K, = Ny M,N, a compact open subgroup with an Iwahori factorization with respect
to P such that UMo #£ 0. If V # 0 is a G-stable subspace of i% o, then V0 £ 0.

Proof. Apply 2.4.1(c) to see that A: V — U is non-zero, hence a surjection. The
map Ay: Vi — U is therefore also a surjection, and by 3.3.3 the composition
VEo s Vi UMo s surjective. Hence, VE0 £ 0. O

Corollary 3.3.7. With the hypotheses as in 3.3.6, the space I = i% G is generated
by %o,

Proof. This follows from 2.2.3, 3.1.2, and 3.3.6. O

3.4. Let P be a parabolic subgroup of G. Recall from §1.6 that the set X, (M) of
unramified characters of M possesses a natural complex analytic structure.

If (o,U) is any admissible representaton of M, define a sheaf I, over X, (M)
by the condition that for any open X C X, (M) the space I'(X, I,) is that of all
f: X x G — U such that

(a) for any x € X, g € G, p € P one has f(x,pg) = ox6"*(p) f(9);
(b) there exists an open K C G such that for all x € X, g € G, k € K one has

fFxgk) = f(x. 9); 1
(c) if K is asin (b) then for every fixed g € G the function y — f(x,g) € U9 M
is analytic.

The group acts on this sheaf by right regular representations: R, f(x,z) = f(x,zg).

Proposition 3.4.1. The sheaf I, with this action of G defines a holomorphic sheaf
of admissible representations of G' whose fibre at x € X,,.(M) is isomorphic to i& .

Proof. Straightforward. [
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Since the representations i% oy may be identified as K-representations (3.1.1), the
subsheaves IX are not just coherent but in addition locally free, and isomorphic to
Ox,an (% (0)").

Next comes what is in some sense a converse to this. If (7,V) is any holomor-
phic sheaf of admissible representations of G with base some space X, then since
the representation on each I'(U, V) is smooth, the sheaf Vy is defined by the formula
I'(U,Vy) = I'(U,V)n, and defines a holomorphic family, at least, of smooth repre-
sentations of M, whose fibre at x € X is isomorphic to (V,)y (where V, is the fibre
of V at x). Substantially the same argument used to prove Theorem 3.3.1 together
with standard facts about coherent sheaves will then prove:

Theorem 3.4.2. The holomorphic sheaf (my, Vy) of representations of M is admis-
sible.
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4. THE ASYMPTOTIC BEHAVIOR OF MATRIX COEFFICIENTS

This section pursues a question suggested by the proof of Theorem 3.3.3 and some
results of Harish-Chandra.

4.1. Fix a minimal parabolic subgroup Py of G, let P be any parabolic subgroup
containing Py, and let P = M N be a Levi factorization. Let (7, V') be an admissible
representation of G. Let Ky be a compact open subgroup of G possessing an Iwahori
factorization K, = N,M,N, with respect to P (according to 1.4.4, one can choose
arbitrarily small such groups). Assume a Haar measure on G such that meas(K,) = 1.

Lemma 4.1.1. If v € VX has image u in Vy, then for any a € A~ (as defined in
§1.4), the element Py, (7(a)v) has image 7 (a)u.

Proof. One has w(a)v € VMNo . Therefore, by Jacquet’s First Lemma (3.3.4),
Pr,(m(a)v) = Pn,(m(a)v), so that m(a)v and Pg,(m(a)v) have the same image in
Vy. O

Theorem 4.1.2 (Jacquet’s Second Lemma). Let Ny, N; be compact open sub-
groups of N, v € V(N;), and m € M such that mNym™' C Ny. Then P, (w(m)v) = 0.

Proof. One has
P, (m(m)v) = (constant) - /N 7(n)m(m)vdn

= (constant) -w(m)/ m(n)vdn

m~1Nom
=0
because Ny C m~'Nym. O
Suppose now that N is a compact subgroup of N such that VEoNV (N) C V(IV,).
Corollary 4.1.3. If a € A~ is such that aNja™' C Ny, then P, (7(a)v) = 0 for all
v e VE A V(N).

Proof. By Jacquet’s First Lemma (3.3.4), Pg,(7(a)v) = Py, (7(a)v). By his Second,
this in turn is zero. [

For each a € A™, define V,° to be P, (r(a)V) = m(KoaKy)V. (To interpret the
right-hand side, recall that by our convention from §2.2, we really mean the action
via 7 of the characteristic function of KyaKj.)

Proposition 4.1.4. If a is in A™, then the projection from VX0 to V]\]yo is a surjec-
tion. If aNja=t C Ny then VEo N V(N) = 0 and the projection is an isomorphism.
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Proof. Let u lie in Vg™, Then 7y(a~")u also lies in V3%, and therefore by Theorem
3.3.3 there exists v € VEo with it as image in Vy. By 4.1.1, then, P, (7(a)v) has
image u in Vy.

Assume aNya™! C Ny, and v € VEONV(N), say v = Py, (m(a)vg) with vy € VEo.
Then v lies in V(N;) and v = Py, (m(a)vy), so that

0= /N1 W(nl)(/No m(ng)m(a)vg dng) dny

= (constant) - / W(n)(/NO m(ng)m(a)vg dng) dn

a1 Npa
= (constant) -ﬂ(a)/ (n)(/ 7(n")vg dn’) dn
a—2Npa? a~1Npa
= (constant) -ﬂ(a)/ m(n)vg dn.
a—2Npa?

Therefore vy lies in V() as well, hence in V(Vy), so that by 4.1.3,
v =Pg,(m(a)vg) =0. O
Lemma 4.1.5. For aj,as € A~ one has this identity in H(G, Ky):

ChKoa1Ko * ChKoazKo = ChK0a1a2K0 .

Proof. As sets, one has Koa; Ky - Koas Ky = Koajas Ky because for kg = nymyng one
has

arkoas = ayngay’ - a @y - My - ag 'ng as
which is in KyajasKy. But by 1.5.1 the measures agree as well. (For my purposes
here the agreement as sets is all that is required.) [

Proposition 4.1.6. For all a € A~ with aN,a™! C Ny, the spaces VX0 are identical.

Proof. For all ay, ay satisfying the hypothesis, the product ajas also satisfies it. By
4.1.5, m(Koa1 Ko) takes VX0 onto itself and into VX0 . Hence V0 C V.Eo. By 4.14,

ayaz’ a1az

the two spaces have the same dimension, hence are equal. Similarly, V5o = VKo

Following this, define V;*° to be the subspace of V50 equal to V.50 for all a € A~
with aNla_l - N().

Lemma 4.1.7. For any a € A~, n(KyaKy) is an isomorphism of V< with itself.

Proof. The space Vf,o is stable under this map by 4.1.5. Since the space is finite-
dimensional, it suffices to prove that the map is an injection. Say, then, that
P, (m(a)v) = 0 for some v € V. The image of P, (r(a)v) in Vi is 0 as well,
but this is just my(a) applied to the image of v by 4.1.1. Therefore the image of v in
Vi is 0 and by 4.1.4 v itself is 0. O
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According to 4.1.4 the canonical projection from V' to Vy induces an isomorphism
of Vf,‘) with V3. The inverse of this isomorphism is called the canonical lifting from
VA’ to V. (Note that according to 1.4.3 there will exist e > 0 such that a € A~ (e)
implies aNja™! C Ny.)

This “canonical lifting” is not independent of the choice of K. More precisely, let
K| C K, be two subgroups with Iwahori factorizations. Then it is not generally true

that VKo Vo = v Ko,
Proposition 4.1.8. If v € fo and v’ € fol) have the same image in Vy, then
v="Pn, ('U,) =Pk, (UI)'

Proof. Let N be chosen large enough so that V(N) N V% C V(N}), and choose
a € A” so that aNja™ C Nj. According to 4.1.7, there exist vy € Vj@ and v} € VA,
such that v = P, (m(a)vg), v' = Pg;(m(a)vg). If vg has image up and vy has image wj,
in Vi, then v and v have images 7y (a)ug and 7y (a)ug, by 4.1.1. Therefore uy = uy,
and hence vy — v}, € V(N) N Vo, But then by 4.1.3, Pry(m(a)vo — m(a)vy) = 0, or
Pry(m(a)vy) = Pry(m(a)vy) =0,

Since vy is fixed by Ko, 7(a)vg and hence P, (m(a)vg) = v" are both fixed by MyNy .
Jacquet’s First Lemma implies then that

PNO (U/) = PKO (U/)

= Pk (Pry(m(a)vg)) = v. O

4.2. Let P be a parabolic subgroup of G and (7, V) an admissible representation
of G.

Note that for the representation (7, ‘7) and parabolic P, the set A~ must be
replaced by AT = (A7)~

Lemma 4.2.1. If Kj is a subgroup with an Iwahori factorization with respect to P,
v €V and v € VEoNV(N™), then (v,7) = 0.

Proof. Choose Ny so that VEoNV(N) C V(Ny), Ni~ so that VEeNV(N™) C V(N7),
and a € A” so that a™'Nya C Ny . Choose vy € V° such that v = P, (7(a)vp)
(4.1.7). Then

(0,0) = (P, (m(a)vo), 0)

= (vo, Pro(m(a™")0))
=0

by 4.1.3 applied to V. O
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Lemma 4.2.2. Suppose that K C K are two subgroups with Iwahori factorizations
with respect to P, and v’ ENVX(,‘I), DN Vﬁ, v eV T € ‘N/fﬁo, and assume that
v—v €V(N)and v — 0 € V(N7). Then

(v,0) = (V',7").
Proof. From 4.1.8, v = Py, (v'). Therefore,

<U7 6) = <7DN0 (U/>7 17)

and

by 4.2.1. O
One may thus define a canonical pairing of Viy with Viy— according to the formula
(u, u)y = (v,0)
where v, ¥ are any two canonical lifts of u, u.

Proposition 4.2.3. The canonical bilinear form on Vi x Vy- is characterized unique-
ly by the property that for any v € V|, v € V with images u € Vi, u € V- there
exists € > 0 such that for any a € A~ (¢) one has

(r(a)v,0) = (mn(a)u, ).

Proof. That the canonical bilinear form has this property follows from 4.2.1. To see
that it is uniquely determined by this property, let B be a bilinear form on Vi x V-
with this property, and suppose Ky to be a compact open subgroup possessing an
Iwahori factorization with respect to P. One can find € > 0 such that

(i) for all v € VKo 5 € VKo with images v € Vi, @ € Vy—, and a € A~ (¢), one

has (7(a)v,v) = (Pg,(7(a)v),v) = B(nn(a)u,w) and

(il) VKo = Vi for a € A~ (e).
But then Pg,(m(a)v) is a canonical lift of my(a)u, and since my(a) is surjective on
Va0 this implies that for all u € V3™ and @ € XN/J\% with canonical lifts v € Vo and
v € VFo one has B(u, @) = (v,0). [

Theorem 4.2.4. The canonical bilinear form on Vy X XN/Nf is M-invariant and non-
degenerate.
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Proof. For any m € M the bilinear form B(u,u) = (my(m)u, mn(m)u)y has the
characteristic property of 4.2.3, thus is the same as the canonical form.

For the non-degeneracy: Suppose u € Vy to be such that (u,u)y = 0 for all
i € Vy-. Let v € VI be a canonical lift of u. Then 4.2.3 implies that (v,7) = 0 for

every v € VEo hence v = 0. Therefore u = 0 as well. [

Corollary 4.2.5. The contragredient of the representation (my, Viy) of M is isomor-
phic to (Tx-, V-).

4.3. Let (7, V) be an admissible representation of G. Let Py be a minimal parabolic
subgroup, A a set of simple roots associated to Ay and Fy. Let K, be a compact open
subgroup of GG possessing an Iwahori factorization with respect to all the parabolics

containing Py (arbitrarily small such K exist according to 1.4.4).
It is immediate that for any © C A and € > 0,

Agle) - Ay C {a €Ay ’ la(a)] < efor alla € AN @}.
Conversely:

Lemma 4.3.1. Let © be a subset of A. For any €; > 0 there exists e5 > 0 such that
{a c Ay ‘ la(a)] < e for alla € AN @} is contained in Ag(e;) - Ay

Proof. Since the product morphism from Ag X Aax.e to Ap is an epimorphism, the
image of the product of the lattices Ag/Ag(O) X Aro/Ar6(O) in Ay/Ap(O) has

finite index. One may therefore find a finite set a of representatives of the cokernel
lying in A;. If € is the minimum value of |a(a)| as o ranges over A\ © and a over a,

then the set {a €Ay ‘ la(a)] < e for alla € A N @} is contained in Ag(e)-A,. O

Lemma 4.3.2. Let © be a subset of A, P = Pg. For any v € VX0 there exists € > 0
such that whenever a € Ay satisfies the condition |a(a)| < € for all @ € A\ O, then
W(K()aKQ)'U € V;{,O

Proof. Let €, > 0 be small enough so that V50 = V° for a € A~ (1), and let €, be
as in 4.3.1. Then for a € Aj such that |a(a)| < € for alla € AN O,

m(KoaKo)v € m(KyA™ (1) Ky)m(KyAy Ky)V (by 4.1.5)
C (KA (e))K,)V =V, O
Theorem 4.3.3. Let © be a subset of A, P = Pg, and let v € V, 5 € V be given

with images u € Vi, @ € Vy-. There exists e > 0 such that whenever a € Ay satisfies
|a(a)| < e for all @« € A\ O, then (7(a)v,v) = (my(a)u, u)y.

Proof. This follows immediately from the construction of the canonical pairing ( , )y
and 4.3.2. [
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For each © C A and ¢ in (0, 1], define oA, (¢) to be

la(a)] < e foraEA\@,}

{“6% e<|a(@)| <1 forae®

This is a subset of A stable under multiplication by Ag, and for any € one sees that
Ay is the disjoint union of the g A; (€) as © ranges over all subsets of A.

Corollary 4.3.4. Let v eV, v € V be given. For © C A let ue, i be their images
in Vy_, V. There exists € > 0 such that for any © C A and a € ¢4y (€) one has
) €]

(m(a)v, ) = (TN (a@)ue, Uo) No -

Proof. Let € be the minimum of the € guaranteed by 4.3.3 as © ranges over all subsets
of A. O

4.4. The next few results (4.4.1 through 4.4.3) are technical and elementary. T will
not give proofs®.

If X is a set on which a group H acts, then a function F': X — C is said to
be H-finite if it and its H-translates span a finite-dimensional subspace of the space
of all complex-valued functions on X. Suppose H is abelian. Then the characters
associated to an H-finite F' are the generalized eigencharacters of the representation
of H on this finite-dimensional space. If x1, ..., x,, are the characters associated to
F then there exist ¢y, ..., {,, € N such that [[(h — x;(h))%F =0 for all h € H.

Lemma 4.4.1. Suppose that F': Z" — C is Z"-finite, and let p > 0. Then the
restriction of |F(z)|? to N" is summable if and only |x(z)| < 1 for all nonzero
x € N" and y associated to F'.

Now let V' be a vector space over R, L a lattice in V, and f1,..., f, elements of
the dual lattice which form a basis for the linear forms on V. Let I = {1,2,...,n}
and for each J C I, and each ¢ = (¢y,...,¢,) € R" with all ¢; > 0 let

1% = {veV| fiv)=0foralli e J};
LJ = LN VJ;
% = {’UEV’ fi(v) > 0for alli};
VJ+ = VJ N V+;
M = the sublattice spanned by the L;, as J
ranges over all subsets of [ with card(J) =n — 1;
Vi) = {UGV‘OSfi(U)<Ci forieJ};

" _ filv) > ¢ foriel~J
JV (C) - {UEV’ OSfZ(U)<CZ forie J '

8Reference?
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Define ;LT (c) as ;V*(¢), etc. The vector subspace V; has dimension equal to (n —
card(J)), so that if card(J) = n — 1, L; has rank one over Z. The lattice M is of
finite index in L, and each M7 is isomorphic to N7—eadl) The vector space V itself
is Vp, and for any ¢ as above V7 is equal to the disjoint union of the ;V*(¢) as J
ranges over all subsets of I. The group L; acts on the set ;V (c).

Lemma 4.4.2. For each J C I and ¢ € R" with all ¢; > 0, there exists a finite set
A such that ;LT (c) = [Lea(A + M;T).

The above two results combine to give:

Lemma 4.4.3. Let F': ;L*(c) — C be the restriction to ;L*(c) of an L -finite
function on ;L(c), p > 0. Then |F|? is summable on ;LT (c) if and only if for each
nonzero x € L; and x associated to F, |x(z)| < 1.

For the rest of this section, I continue the notation of §4.3.

Proposition 4.4.4. Let © be asubset of A, 0 < e <1,p>0. Let [': gA;(¢) — C
be such that

(a) I is the restriction to oA, (¢€) of an Ae-finite function;
(b) there exists a unitary character w: Ay — C* such that R,F = w(a)F for
all a € An;
(c) there exists an open subgroup 2 C Ay(O) such that R,F' = F for all a € 2.
Then |[F|P is summable on oA, (¢)/AAA if and only if |x(a)| < 1 for every a €
Ag . Ay(O)A, and every character x of Ag associated to F'.

Proof. Let L be the lattice Ag/Ap(O)Aa, V = L ® R, and define for each a € A a
function f,: Ay — Z by fo(a) = —log, |a(a)|, where ¢ is the order of the residue
field. To this situation one may apply the previous results—for example, each ;L™ (c)
may be identified with some oA, (€)/Ap(O)Aa. Now the function |F| may be con-
sidered as a function on g Ay (€)/AAx, which fibres naturally over Ay (€)/Ap(O)Aa
with finite fibres. The proposition follows therefore from an immediate generalization
of 44.3. O

Corollary 4.4.5. Let © be a subset of A, 0 < e <1, p > 0, K a compact open
subgroup of G. Let F' be a function on K - g A (€) - K whose restriction ® to oA (¢)
satisfies (a) and (b) of 4.4.4. Then |F'|P is integrable mod Zg if and only if for every
character y associated to ® and a € Ag ~ Ag(O)AL, |x6?(a)| < 1.

This follows from 4.4.4 together with 1.5.2. (Note that condition (c) of 4.4.4
automatically holds here?.)

If P is a parabolic subgroup of G' and (7, V') an admissible representation of G,
then according to 3.3.1 the representation (my, Vy) is admissible as well. By 2.1.9
this representation is a direct sum of subrepresentations (Vi )y,00, X ranging over a

9In other words, F' is automatically uniformly locally constant. Is this obvious?
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set of characters of the center of M. I call the restriction to A of the characters x
such that (Vi)yeo # 0 the central characters of m with respect to P. (These are
what Harish-Chandra calls exponents in [20].) If 7 is an w-representation for the
character w of Zg, then x|anz, = w|anz, for any central character x. If P, C P, are
two parabolics then my, = (7n,)nyn,, SO that if y; is a central character of m with
respect to P then xi|4, is a central character with respect to Ps.

Theorem 4.4.6. Let w be a character of Z¢. If (m, V') is an admissible w-representation
of G, then it is square-integrable if and only if
(a) w is unitary;
(b) for every © C A, if x is a central character of 7 with respect to Pg then
X0, *(a)] < 1 for all a € Ag ~ Ay(O)A,.

Proof. The condition (a) is trivially necessary. Suppose it then to hold.

Let I' be a subgroup of G as in 1.4.6 such that

(i) I'/Aa is compact;

(i) Ag(O) € T;

(iii) G =TA,T.
Let v € V, U € V be given, and consider ¢, =(g) = (7(g)v,). Let K be a compact
open subgroup of GG, normal in I'; such that v, U are fixed by K. If {~;} is a set of
representatives of I'/ K Ax, then G = [T Kv; Ay, K, so that |c, 7| is square-integrable
on G/Z if and only if it is on each K~;A;7;K/Aa. In order to prove that the
conditions imply square-integrability, one may therefore replace v, v by the ~v,v, ;" %
in turn and consider only ¢, on KAy K/Ax. But to this one may apply 4.3.4 and
4.4.5. O
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5. ABSOLUTELY CUSPIDAL REPRESENTATIONS

5.1. An admissible representation (m, V') is said to be absolutely cuspidal (or, by
Harish-Chandra in [20], super-cuspidal) if for any proper parabolic subgroup P = M N
in G, V =V(N) and hence Vy = 0. If P, C P, are two parabolic subgroups, then
Ny C Ny and V(Ny) C V(Vy), so that in order to check this condition, it suffices to
consider only maximal proper parabolics. If P; and P, are conjugate then V' (Vp) is
conjugate to V(Ns), so that it also suffices to consider only a fixed element of each
conjugacy class.

Proposition 5.1.1. If (7, V) is an admissible representation of G, then it is abso-
lutely cuspidal if and only if for any proper parabolic subgroup P and any admissible
representation (o, U) of M one has Homg(V,i% o) = 0.

Proof. The necessity follows from 3.2.5. The sufficiency follows from 3.2.4 and 3.3.1,

since one always has a G-morphism from V to i& (7TN5;1/ ?) which is non-trivial if
Vv #0. O

Theorem 5.1.2 (Jacquet). If (7, V) is an irreducible admissible representation of
G, then there exists a parabolic subgroup P and an irreducible absolutely cuspidal
representation (o, U) of M such that (7, V) may be embedded into i% o.

Proof. Let r be the semisimple k-rank of G. We proceed by induction on r. For
r = 0, G has no proper parabolic subgroups, so all admissible representations are
absolutely cuspidal. (Note that when r =0, G/Z is compact.)

Assume r > 0. If (7, V) is absolutely cuspidal, one is through. If not, then there
exists some parabolic P with Vi # 0. The representation 7y is both admissible and
finitely generated by 3.3.1, so that it possesses a non-trivial irreducible admissible
quotient (p, W). By 3.2.4, there exists an embedding of 7 into i (p5;1/2). Now the
semisimple rank of M is less than r, so that by the induction hypothesis there exists a
parabolic subgroup ) of M, with Levi decomposition () = MgNg, and an irreducible

admissible representation (o, U) of M such that p5;1/ ? may be embedded into ig o.
Apply 2.4.4 and 2.4.5 to prove the theorem. [

5.2. The following is also due to Jacquet:

Theorem 5.2.1. Suppose that (7, V) is an absolutely cuspidal representation of G.

For v € V, v € V, the matrix coefficient ¢, 7 has compact support on G modulo Z.

Proof. Let Py be a minimal parabolic subgroup of G, A the set of positive simple roots
corresponding to Py, I' the group given in 1.4.6. Note that by 2.1.3, any admissible
representation of G is I'-finite.

Since the split component A of the center of G is equal to the connected compo-
nent of N,ea ker(a), the theorem will follow from this claim: There exists € > 0 such
that for all g € T'al’ with |a(a)| < € for some o € A, ¢,5(g) = 0.
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To prove this claim: Let a be an element of A, P the standard parabolic subgroup
corresponding to A \ {a}. It is a maximal proper parabolic subgroup. Since (m, V)
is absolutely cuspidal, V = V(N). Fixv eV, v € YN/, and choose N7 C N, compact
open subgroups of N such that for every v € T, 7(y)v € V(N,) and n(y)o € V.
Choose ep > 0 such that if a € A; and |a(a)| < ep, then aNya™t C Ny. If g = yias,
with a € Aj (ep), then one can apply Jacquet’s Second Lemma (4.1.2) to see that'

(m(g)v,v) = (7(1a72)v, D)
= (m(a)m(y2)v, 7 (1 )D)
=0.

(One could also apply 4.3.3 here.)
Let € be the minimum of the e€p thus chosen, as P ranges over the set of all standard
maximal proper parabolic subgroups of G. The claim is clearly satisfied by €. [

Lemma 5.2.2. There is no Lemma 5.2.2.

Corollary 5.2.3. Suppose that (m,V') is an irreducible absolutely cuspidal w-rep-
resentation of G, where w is a unitary character of Z. Then (7, V') is unitary.

Proof. A matrix coefficient of compact support modulo Z is obviously square-integ-
rable modulo Z. The result follows from 2.5.4. O

Proposition 5.2.4. If (7, V) is an irreducible absolutely cuspidal'’ representation
of GG, then there exists a real constant d, > 0 such that for any u,v € V, u,v € V,
one has

| in(@yu,a)n(g™)0,5) dg = d*(u,5) v, D).
/Z

Proof. Note that the integral makes sense by 5.2.1.
For each vy € V', 1g € V, the pairing which takes u € V and v € V to

L@y tio) (g™ o, ) dg
/Z

is, as one can check, G-invariant, hence a multiple ¢(vg, @) of the canonical pairing.
Furthermore, the pairing taking v € V and @ € V to c¢(v,u) is also bilinear and
G-invariant, hence some multiple of the canonical pairing. Thus, one has

L, @, (g™, ) dg = exfu, 5} o, )

for some constant c,.

10Perhaps this will be clearer if we cite 4.1.3.
" This result and its proof are valid for square-integrable representations.
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Assume for the moment that w is unitary. Then by 5.2.3, (7, V) is unitary as well,
say with inner product u-v. Fix @, v for the moment and let ug, vg € V' be such that
forallz € V, 2 uy = (z,4) and x-vy = (z,v). The formula already established gives

(i) (v w) = [ ((g)u-uo)(wlg ™o w) dg

= G/Z(W@)U “ o) (m(g)vo - v) dg

(which is the usual Schur orthogonality for unitary representations). One sees that
cr > 0 by setting u = vy and v = uy.

Before completing the proof, we’ll need the following result:

Lemma 5.2.5. If (7, V) is any smooth w-representation of G, then there exists a
unique positive real-valued character xy of GG such that the restriction of 7 ® x to Z
is unitary.

Proof. What must be shown is that there exists a unique positive character y of G
such that w- (x|z) is a unitary character of Z. Now G has a maximum torus quotient
T'; the canonical morphism from G to T induces an isogeny of Z. If Z, and Tj are
the maximal compact subgroups of Z and T, then the groups Z/Z, and T'/Tj are free
modules over Z of the same rank, and the canonical map from Z/Z, to T/Tj is an
injection with finite cokernel. The character |w| on Z/Z, therefore extends uniquely
to a positive character of T'/Ty. Take y to be its inverse. [

To complete the proof of 5.2.4, let (7, V') be given, and choose x so 7 ® x is unitary.
The constant c.g, will work for 7 as well as ™ ®x, and is positive. Let d. = c;éx. O

The constant d, in 5.2.4 is called the formal degree of (w, V). It depends only on
7 and on the normalization of Haar measure. Harish-Chandra has recently'? shown
that if the characteristic of the field of definition of G is 0, then one may normalize
the measure on G such that d, € N for every absolutely cuspidal 7.

5.3. I give here some new characterizations of absolutely cuspidal representations.
Theorem 5.3.1. Let (7, V') be an admissible representation of G. The following are
equivalent:
(a) (m, V) is absolutely cuspidal;
(b) (7, V) is absolutely cuspidal;
(c) foreveryv € V, v € V the matrix coefficient ¢, 7 has compact support modulo
Z.

12Not recently. PS will find a reference.
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Proof. The equivalence of (a) and (b) is immediate from Theorem 4.2.3.

That (a) implies (c) is just 5.2.1. For the converse: Suppose that for every v € V|
vevV, ¢,7 has compact support modulo Z. Then for every v € V, v € V, and every
parabolic subgroup P in G, there exists € > 0 such that (7(a)v,?v) =0 for a € A~ (e).
Fix for the moment a compact open subgroup Ky with an Iwahori factorization with
respect to P. Then there exists € > 0 such that for every v € Vo 3 € Vo and
a € A= (€), we have (m(a)v,v) = 0, and this in turn implies that for every v € VKo
and a € A~ (€), we have Py, (m(a)v) = 0. This implies that V; (see §4) is zero.
Thus, letting K, vary and applying 4.1.4, we see that Vi = 0. Since P was arbitrary,
(m, V) is absolutely cuspidal. O

5.4. Recall from §2 that if w is a character of Z, then the smooth w-representations
of G form an abelian category.

Theorem 5.4.1. If (7, V) is an absolutely cuspidal w-representation, then it is pro-
jective and injective in this category.

Proof. 1 shall first prove projectivity, and start with the case where (m,V) is irre-
ducible. Let (o,U) be any smooth w-representation, F': U — V a G-surjection. I
must show that there exists a G-morphism ®: V' — U splitting F.

Choose nonzero vy € V and vy € V such that (v, 0y) = d, (see 5.2.4). For
any v € V, let I, be the function c,; : g (7(g)v,%). Because 7 is an w-
representation, it follows from 2.5.1 and 5.2.1 that v —— I';, is a G-morphism from
(m, V) to (R, H,-1(G)). Identify V with its image in H,-1(G). Define the projection
P:H,1 — V by the formula Pf(y) = (I'y, * f)(y). Then

Pily) = [ Tul@)f@y)ds

= [, Tn(a)f @) dr

= [, FEDERL) )

The last formula shows that P(H,-1) C V; the first implies that P is a G-morphism:
P(R,f) = R,(Pf). Furthermore, if f =T, lies in V, then

Pily) = [, (@), @) (m(ey)o, o) da

= d;*{vo, To) (m(y)v, To)
(m(y)v, vo)
=Iy(y)
by 5.2.4 and the choice of vg, 9. In other words, Pf = f for f € V.
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Recall (o,U) and F': U — V. Choose uy € U with F(ug) = vp. Let II be the
map from H,-1 to U, taking f to o(f)ug, where for any f € H,-1 (or C*(G), for
that matter) f(z) = f(z™!). One can check easily that this is a G-morphism. And

one can also check that the diagram

H,—1

U r v

is commutative, which implies that the composition & =IloI': V — U splits F.
Now assume (7, V') to be an arbitrary absolutely cuspidal w-representation. Let K
be some compact open subgroup of G, V; the G-stable subspace generated by V5.
This is finitely generated, hence has an irreducible (absolutely cuspidal) quotient,
which is in fact isomorphic to a summand of Vi by the case we have just dealt with.
An induction argument implies that V) is a finite direct sum of irreducible absolutely
cuspidal representations. If one applies Zorn’s Lemma, letting K vary, one obtains:

Proposition 5.4.2. Any absolutely cuspidal w-representation is a countable direct
sum of irreducible absolutely cuspidal representations.

This clearly implies projectivity for all absolutely cuspidal w-representations.

For injectivity: Let (o,U) be any smooth w-representation and F': V — U a G-
injection. I must construct ®: U — V' splitting F'. But now one has a dual map
F: U — V, which splits by what I have just shown, say by a map ®. But then one
alsohas ®: U — V splitting F:V — U. However, 1:/ = V and one has a canonical
embedding of U into U, so that one may define  as <T>|U. O

Corollary 5.4.3. If P is a proper parabolic subgroup of G and (o, U) is an irreducible
admissible representation of M, then no irreducible composition factor of iG o is
absolutely cuspidal.

Proof. Let V; be a G-stable subspace of i& o, (7, V) an irreducible absolutely cuspidal
representation of G, and F': Vj — V a G-morphism. If F' # 0, then F' splits by 5.4.1.
But this implies that (7, V) is isomorphic to a subspace of i% o, a contradiction to
51.1. O

Corollary 5.4.4. Assume 7 to be an admissible representation of G of finite length,
whose composition series is multiplicity-free and whose irreducible composition fac-
tors are absolutely cuspidal. Then 7 is in fact isomorphic to the sum of its irreducible
composition factors.
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Proof. Applying 2.1.9, one may assume that for some character w of Z, each compo-
sition factor is an w-representation. By an induction argument, one is reduced to the
case where the length of 7 is two, i.e., one has an exact sequence

00— m —am— 1 —0

where 7 and 7y are both irreducible absolutely cuspidal w-representations, and my
and 7y are not isomorphic. Now for any z € Z, the map v — 7(2)v — w(z)v from
the space of 7 into itself factors through m; and defines in fact a G-morphism from 7y
to 7, which by assumption must be null. Therefore 7 itself is an w-representation,
and one can apply 5.4.1 to finish the proof. [
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6. COMPOSITION SERIES AND INTERTWINING OPERATORS I

I shall show here among other things that every finitely generated admissible rep-
resentation has finite length; this will fall out from an analysis of the Jacquet module
for a representation V' induced from a parabolic subgroup of GG. This analysis also
relates to G-morphisms between various induced representations and allows one a
refinement of the earlier criterion for square-integrability.

6.1. I shall first prove some fairly technical results, related to some results of Bruhat
in [11]. Let X be an analytic variety over the p-adic field k, Y an analytic subvariety
of X. Suppose H is a k-analytic group acting on X and taking Y to itself, such that

(i) H acts freely and properly on X and
(ii) for each x € X, the map h — h - x is an immersion of H.

Then by [9, §6.2], the quotient H\X of X by H exists and is also an analytic variety,
and contains the quotient H\Y as an analytic subvariety. The projection from X to
H\X makes X into a principal bundle with H as fibre. Local analytic sections of
this projection exist everywhere on H\X.

Suppose (o, U) is a smooth representation of H. Define I7°(0|H, X) to be the space
of locally constant sections, of compact support, of the vector bundle associated to
the H-space U and the principal bundle X. Explicitly, this consists of functions
f: X — U which are locally constant and of compact support modulo H, such
that f(hx) = o(h)f(z) for all h € H and x € X. One may also define spaces
[(c|H,X \Y) and [°(c]|H,Y).

Lemma 6.1.1. The sequence
0 — IX(c|H,X\Y) —I>X(|H,X) — I2|H,Y) — 0
is exact.

Proof. Injectivity is clear.

Suppose f € I2°(o|H, X) and f|Y = 0. Since f has compact support on X modulo
H, and is locally constant, there exists a finite set of compact open sets X; C X
such that supp(f) € HX; and f|X; is constant. Since f|Y = 0, one may assume
X;NY =0 for each i. Thus, f lies in [2°(c|H, X \Y).

Suppose f € I2°(c|H,Y). One has a finite disjoint set of compact open sets Y; C Y
such that supp(f) C U HY; and f|Y; is constant. The projection of each Y; onto H\Y
is open. Because local sections over H\Y exist, we may find disjoint compact sets
Z; CY such that

(i) the restriction of the projection from Y to H\Y is an isomorphism on each
(i) supp(f) € UH Z;;
(iii) f is constant on each Z;.
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One may then find disjoint compact open sets X; C X such that

(i) the restriction of the projection to each X is an isomorphism;
(iii) for each h € H, if hX; N X; is nonempty, then so is AY; NY;.
Extend f in the obvious way to X;, again to H X, then to U HX;. The function in
[°(o|H, X) one obtains then has image f in [2°(c|H,Y). O

6.2. In this section, let P be any locally compact group such that the compact open
subgroups form a basis of neighborhoods of the identity, let ) be a closed subgroup, N
a normal closed subgroup with arbitrarily large compact open subgroups, and assume
QN closed. In particular, N is unimodular. Let (o,U) be a smooth representation
of Q). Then one has the representation (ognn, Ugnn) of Q/CQ N N, which may also
be considered as a representation of QN/N C P/N since QN/N = Q/Q N N.

Let § be the modulus character of @ on @ N N\N. It is trivial on Q@ N N.

Proposition 6.2.1. One has
(c—Indg )N = c—Indgé\J,\;N oonNO.

Proof. In several stages:
(i) For w € U, let @ be its image in Ugny. Since any f € c—Indga has compact
support modulo @, for any p € P the function R, f|y has compact support modulo

QNN. Also, forqg € QNN,n € N, and p € P one has f(qnp) = o(q) f(np) = f(np).
Thus the integral

N p

)=, ., Fown
is well-defined.

_ (ii) For n € N, a change of variable in the integral shows that for all p € P,
f(np) = f(p). Thus, f may be considered as a function on P/N.

(iii) For q € @,

flap) = /Q " f(ngp) dn

= flg-q~'ng - p)dn
QNN\N

= 0onn (0)(q) f(p).

(iv) The function f clearly has compact support modulo QN on P.
(v) From (ii)~(iv) one sees that f — f is a map from c-Indg o to C—Indg%]v TQNN-
It is a P-morphism, clearly, and factors through a P/N-morphism from (C—Indg O)N-

(vi) Now to see that f —— f is surjective.
Let x € P be given. Let K be a compact open subgroup of P and u an element
of U fixed by zKz™' N Q. Then (zKz~' N Q)(Q N N) is the inverse image of the
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image of zKz~' N Q in Q/(N N Q); thus, if Ky C K is a compact open subgroup
small enough so that the image of (zKox™')NNQ in Q/(Q N N) is contained in that
of Kz N Q, one has (zKoz ' )NNQ C (zKz7' N Q)(Q N N). Choose such a K.
Define a function ¢: P — Ugnn to be 0 outside QNz Ky and equal to (cgnnd)(q)u
at qnrk € QNxzK,. The space C—Indgéj(VQﬂN) oonn0, with proper identifications, is
spanned by such elements, so it suffices to find f € C-Indg o with f = ¢. But now
define f to be 0 off Qx K, and equal to o(q)u at grk. Then for nz = gxk one has
q = nwk~'x™! hence, by assumption on Ky, ¢ € (xKz7! N Q)(Q N N), so that
f(nz) = o(q)u = u. Thus f is equal to some scalar multiple of ¢.
(vii) The map f —— f is injective. For this, we need a few preliminary results:

Lemma 6.2.2. If N, is any compact open subgroup of N and K is a compact sub-
group of P, then there exists a compact open subgroup of N containing N, and
normalized by K.

Proof. The set Uyex kNok™" is compact, hence by the assumption on N contained in
some compact open subgroup N; of N. The group Ngex kN1k~! contains Ny and is
thus open, but it is also clearly compact and K-stable. [

Corollary 6.2.3. The element f € C-Indga has image 0 in (c-Ind o)y (i.e., lies in
(c-Ind 0)(N)) if and only if for every p € P there exists a compact open subgroup
N, C N such that [y f(np)dn = 0.

Proof. The function f lies in (c-Ind 0)(N) if and only if there exists a compact open
subgroup Ny C N such that for every p € P

/No f(pn)dn = 0.

Therefore, if f € (c-Ind ¢)(N) one may choose N, = pNyp™'.

Conversely, let f be given and assume that for every p € P there exists an N, satis-
fying the conditions in 6.2.3. Choose K compact and open such that f € (c-Ind o).
For any p € P, the Lemma implies that one may find a compact open subgroup
No € N such that [y, f(pkn)dn = 0 for every k € K. If X is compact and f has
support on X, one may (again by the Lemma) find a compact open N; C N such
that [y, f(zn)dn = 0 for allz € X. But now consider the function fn, = [y, Rnf dn.
Since f has support on QX, fy, has support on QX N;. But by the construction
of Ny, for any x € X and n; € Ny, [y, f(znn)dn = 0. Hence fy, = 0 and
f € (c-Indo)(Ny). O

Now to attack the injectivity of f — f. Suppose f = 0. In particular, f(1) =0,

which means that [y (1) dn = 0. Choose a compact open subgroup No of N
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such that the support of f|y lies in (Q N N)Ny. Then

/ f(n)dn = / / f(ning) dny dny = 0,
No (NoN@)\No + NoNQ

which means that [y, f(n)dn lies in U(Q N N). Thus, [y, f(n)dn € U(N;) for some
compact open subgroup N; € @ N N. If one chooses a compact open subgroup
N} € N containing N; Ny, then one has Ing f(n)dn = 0.

This argument applies to R, f as well, which guarantees that the condition of 6.2.3
holds, and hence f € (c-Ind o)(N).

The proof of Proposition 6.2.1 is complete. [

Remark 6.2.4. The map f — f, and therefore the isomorphism of 6.2.1, depends
on the choice of a measure on (Q N N)\N. Otherwise, it is canonical.

6.3. Return to the notational conventions of §§3-5 (so that in particular G is the
group of rational points of a reductive group defined over the p-adic field k). Fix a
minimal parabolic Py and a maximal split torus Ag C Fj, and let A be the corre-
sponding set of simple roots.

Fix also for a while (through the proof of 6.3.6) subsets ©,Q2 C A. Given this
choice, let C(w) be the double coset Pow Py; recall that G is the disjoint union of the
C(w) as w ranges over [We\W/Wq| (as defined in §1.1). Define a partial ordering
on [We\W/Wq] as follows: = < y if C(x) is contained in the closure of C(y). Thus,
1 is minimal with respect to this ordering.

For each w € [Wo\W/Wg], let G,, be the union of the C(z) with z > w. It is open
in G, and if > y then G, C G,. For any subset R C [Wo\W/Wy], let G be the
open set U,er G- It is also the union of all sets C'(x) where x > w for some w € R.

If x is a minimal element of R, then the intersection of G with the closure of C'(x)
is just C'(z) itself, which is therefore closed in Gg. A subset S C R is said to be
minimal if all its elements are minimal; in this circumstance, the intersection of Gy
with the union of the closures of the C'(z) (z € ) is simply the union of the C(x)
(x € S), which is again closed in Gg.

For each w € [Wg\W/Wy], let d(w) be the dimension of the algebraic variety
Po\PowPy, over k. As a particular case of the above definitions, for n > 0 one may
take R to be the set of all w with d(w) > n. In this case we write G,, for Gg. Of
course, G,41 C G, and G = Gy.

Now let (0,U) be an admissible representation of Mg, and let I = I(0) be i%, 0.
For any w € [Wo\W/Wy] define I, to be the subspace of f € I with support on
G, and similarly define Ir for R C [Wo\W/Wg]. Each Iy is stable under P.
The subspaces I, define on I a decreasing filtration of FPy-spaces indexed by the
partially ordered set [We\W/Wq|. It is difficult to describe the whole space I as
a Pgo-module, which is unfortunately useful in many applications, but it is not so
difficult to determine the graded modules associated to the filtration.
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First of all, for each w € [Wg\W/Wq]| define J,, to be (in the notation of §6.1)

120(05(19/ ?|Po, PowPy). (Of course this definition depends in reality on the double
coset PowPqg.) Then letting H = Pg one may apply 6.1.1 and the above remarks
immediately to obtain:

Proposition 6.3.1. Let R be any subset of [We\W /W], S a minimal subset of R,
and let R = {z € [We\W/Wg] \ S’ x > w for some w € R}. Then the sequence

O—>IRr—>IR—>@Jw—>0

wesS
1s exact.

In particular one may take R = S = {w}, and then one obtains the exact sequence

0— @ J, — I, — J, — 0.
xTr>w

T#w

As another special case one may let R = {w’ d(w) > n} and S = {w’ d(w) = n}
In this case I write I as I,,. The proposition then gives a decreasing filtration {I,,}
indexed by N, with

L/l @ Jo

d(w)=n
Second, the spaces .J, may be described more explicitly. For each x € G, let
:)3‘1(05(19/2) be the representation of x7'Pex on the same space as that of o which
takes p to U(%/ 2(xpx‘l). The isomorphism class of this representation depends only
on the coset Pox, but the representation itself will in general depend on the particular
x, and it is important to keep this in mind.
Define for each x € G the representation J, of Py:

Jo=cInd® o a7 (06d),

There is a possibility of confusion with previous notation, but it is not too serious:

Proposition 6.3.2. Let w be an element of [We\W/Wg), z any element of Pow Py
The map taking f to ¢y, where

o5(p) = f(xp),

induces an isomorphism of .J,, with J,.

The proof of this is straightforward.

Propositions 6.3.1 and 6.3.2 together provide the description I have already men-
tioned of the graded Po-module associated to the filtration of I(o) by [We\W/Wq].
The next step is to determine the corresponding Jacquet modules.
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Proposition 6.3.3. Let w be an element of [Wo\W/Wg], x € N(Ap) representing
w. Then

(Jr)NQ = C'Indi{ﬂlP@xﬁMg UM@ﬂxNQx*151/27
where ¢ is the modulus of the unique rational character of x=! PoxN Mg which restricts
to
[ o® I o™
aEZJr\X% a§32+\2$
waeX N\Yg waeX g

on Ay, where m(«) is as defined in §1.6.

I shall first interpret this. The group Py N Mg is a minimal parabolic of Mg and
the corresponding set of simple roots is €. The group = !Pgx N Mj, is the standard
parabolic corresponding to w10 N 2, with radical 27 'Nex N Mg and reductive
component = Mgz N Mg (see 1.3.3). Similarly, the group xPoz~' N Mg is a standard
parabolic in Mg, corresponding to © Nw(, with radical x Noz~! N Mg and reductive
component tMqx~' N Mg. The representation OMenzNgz—! May be considered as
a representation of the latter, hence also of xPoz™' N Mg. Thus 27 (0pgnengz—1)
is to be considered as a representation of x~'Mgx N Mg or of = Pox N Mg, and
c-Ind™ oo 270y neNge—1)0? is at least of a familiar sort if the & factor makes
sense, which I shall show in a moment. In particular, Ind and c-Ind are the same.

The proof is not much longer than the statement. Let P = Py, Q = 2 ! Pox N Py,
N = Ng in 6.2.1. Note that QN/N = Q/(Q N N) = x 'Pgx N Mg and that
P/N = Mg. One obtains quickly that

(JZ‘)NQ = Indi\{QlP@fEmMQ x_l(O-M(—)ﬁxNﬂxfl)(w_léé/z)v

where 7y is the modulus character of 7! Pgx N Py acting on Ng /(27 Pex N Ng).
It remains only to examine the character (w‘lc%/ 2)7 more closely.
The character v is the norm of the rational character

det Adnﬂ/ det AdAd(xfl)p@ﬂnQ

where pg is the Lie algebra of Pg, ng that of Ng. The character (w‘léép)y is thus
the square root of the norm of the rational character equal to

H w™ lam(a) H a2m(a)

aext \EZ_S aext \X%
waeX T NEg
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on Ag (and by 1.6.1 this determines it as a rational character of 27! Poz N Mg). This
in turn is equal to

H a—m(a) H a2m(a)

aeXN\Xg aeEJr\E;g
waeX T N\Eg

- I @ [ am@

aext\uh agnt\xd
wa€¥X ~\Xg wa€¥X ~\Xg

which is the formula in the proposition. [
Corollary 6.3.4. Suppose o is absolutely cuspidal, w € [Wo\W/Wy], and z is an
element of N(Ap) representing w. Then

(a) one has (J,)ny, = 0 unless w™'0 C Q;
(b) when w™'0 C €, one has

. M, — 1/2
(Jo)va = (i g, #0)06 .

Proof. Part (a) is easy, since if o is absolutely cuspidal then oy npngz—1 = 0 unless
Mg N xNoz~! is trivial, and this is equivalent to the inclusions Mg C wMqz~! or
w™le C Q.
Part (b) is a matter of computing the o-factor correctly. By the definition of
normalized induction, what must be shown is that
(Jo)nvo = Indy ™ oy, (27 10)6 2,

where ¢ is now the norm of the rational character which restricts to
H m(a)
«

aEZJr\w*lZg

on Ag. Now if w™'© C Q then w™'¥{ C 3 and w™'Xg C Xj. Hence for a €
TN, wa € BTN 24 or X7\ Xg, and according to 6.3.3 the proper d-factor is
the norm of

H am(a) H a—m(a) H a—m(a)

aext zh a€XT\I, a€lg
wa €N \Yg wa€XT\Eg waeX \Yg

(note that there is no a € L) such that wa € X~ \ Xg)

= I om@ [ am@

aext~\uh aenh
waeX™ \Eg

— H am(a) H am(a) 0O

a62+\2$ aEE;g\wle]g
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The next result summarizes what the results so far say about the space Iy, when
o is absolutely cuspidal.

Theorem 6.3.5. Let ©,{2 be subsets of A, and let ¢ be an absolutely cuspidal
representation of Mg, I = ig(_) o. There exists a filtration

0Cl,C---Cly=1

by Pg-stable subspaces such that (1,/l+1)ng = (In)ng/(Int1)n, 1S isomorphic to
the direct sum @(Jy,)n,, the sum ranging over w € [Wo\W/Wq] with d(w) = n.

Furthermore:
~ 0 if w'O Z 0
iMe wle if w e C Q.

The use of elements of W rather than representing elements in N(Agp) is justified
because it is only a matter of isomorphism class.

The only new ingredient here is that a filtration of I gives one of I, as well, and in
such a way that Gr(Iy,,) = Gr(/)n,. This follows from the exactness of the functor
(3.2.3).

Theorem 6.3.6. Let ©,€) be subsets of A, and let o be an irreducible absolutely
cuspidal representation of Mg. If 7w is an irreducible composition factor of ig(_) o
and p an irreducible absolutely cuspidal representation of Mg such that = may be
embedded into i, p, then there exists w € W(0,Q) (i.e, w € N(Ap) such that
wMew = Mg) with w™lo & p.

Proof. The assumption on 7 implies, by Frobenius reciprocity (3.2.4), that there
exists a non-trivial Mq-morphism from 7y, to p(%/ ?. Therefore, p(%/ ? oceurs as a
composition factor of Iy, (where I = i, o), hence of some (J,)n,, with w™'0 C Q

(6.3.4). But (Jy)n,, is isomorphic to if‘f?lpeme@ w‘laéglz/z, so that by 5.4.3 if ,05;2/2

is a composition factor then w10 = Q and p X w™lo. O

Corollary 6.3.7. Let © be a subset of A, and let ¢ be an irreducible, absolutely
cuspidal representation of Mg. Then ig@ o has finite length. If 7 is an irreducible
composition factor then there exist Q@ C A and w € W(O,Q) such that = has an

embedding into i w™'o.

Proof. If m is an irreducible composition factor, then according to 5.1.2 there exist
2 C A and an irreducible, absolutely cuspidal representation p of Mg with © C igﬁ p-
Apply 6.3.6 to conclude the proof of the second claim.

To see that i (o) has finite length: If U & V are G-stable subspaces of I =i (o),
then there exists a finitely generated non-trivial subspace of V/U, and by Zorn’s
Lemma an irreducible quotient of that. Therefore if one is given an ascending chain
I C I, ... one can, if necessary, replace it by another Iy C J; C I, C J, C ... where
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J;/1; is irreducible. For any 2 C A one has a corresponding chain of Jacquet modules
(Ii)ng € (Ji)ng, and (Ji)ng/ (L) ng = (Ji/ 1) ng by 3.2.3. By 6.3.51f, this chain is of
finite length. If the original chain were infinite, then by 5.4.3 there would be some
2 C A for which the chain of associated Jacquet modules is of infinite length, and
this would be a contradiction. A similar argument shows that the descending chain
condition holds, so that I has a Jordan-Hoélder composition series. [

Corollary of the Corollary 6.3.8. Let P be any parabolic subgroup of G. If ¢ is
any admissible representation of M of finite length, then i& ¢ has finite length.

Proof. See 2.4.4 and 2.4.5. O

When o is irreducible and absolutely cuspidal, one can obtain easily from the
proof of 6.3.7 that the length of z]%‘@ o is bounded by the product of the number of
associates of © and the order of W(©, ©), but a stronger bound will be given later.
When © = (), however, the bound here is already the best possible one that can be
obtained by these techniques:

Corollary 6.3.9. If ¢ is an irreducible, admissible (hence, finite-dimensional) repre-
sentation of My, then

(a) the length of iIGpm o is at most the order of the Weyl group;
(b) if 7 is an irreducible composition factor of i}Gpm o then there exists w € W and
an embedding of 7 into z}%@ wo.

This was proven independently by Matsumoto [27] and Silberger [30] when o is
unramified. Other results of this section have been proved independently by Bernstein
and Zelevinskii [2].

Theorem 6.3.10. Any finitely generated admissible representation of G' has finite
length.

Proof. Let m be the given representation. By 2.1.9, there exists a finite composition
series for 7, each factor of which is an w-representation for some character w of Zg.
Thus, one may assume 7 itself to be an w-representation.

Proceed by induction on the rank of G4¢*. If this is 0, then G4 is compact and
any finitely generated admissible representation is finite-dimensional. For arbitrary
G, let P,..., P, be representatives of all the conjugacy classes of maximal proper
parabolics of GG, and 0; = 7my,. By 3.3.1, each of these is finitely generated and
admissible, hence by the induction assumption each is of finite M;-length. But then
by 6.3.8 each I; = iIGDZ_ o; has finite length. By Frobenius reciprocity there exists a
canonical G-morphism from 7 into each I;, hence one into @ I;. It remains to show
that the kernel of this map has finite length. This kernel, however, is absolutely
cuspidal, by remarks made in §3.2, and by 5.4.1 a summand of 7. Therefore it is
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finitely generated, and by 5.4.2 a finite direct sum of irreducible absolutely cuspidal
representations. [

To conclude this section, I mention a sort of converse to 6.3.7 (due, I imagine'®, to
Harish-Chandra):

Theorem 6.3.11. Suppose O, C A to be associate, ¢ a finitely generated abso-
lutely cuspidal representation of Mg, w € W (O,2). Then the irreducible composition
factors of %, o and i, w™'o are the same.

Proof. There are many possible proofs, but the briefest is to observe that the char-
acters are the same (see 2.3.3, [22, Theorem 9.2(iii)], and [19]). O
6.4. Let the notation be as in §6.3. Let (o,U) be an irreducible absolutely cuspidal
representation of Mg, I = iIG;@ 0. Because of Frobenius reciprocity, the structure of
In,, is related to G-morphisms from I to representations induced from FPq. I want to
make this more explicit.

Define W (o) to be {w € W(@,@)r wo = O’} and call o regular if W (o) = {1}.

(Indeed, for this definition ¢ need not be absolutely cuspidal.)

Proposition 6.4.1. Assume that ¢ is regular and that €2 is an associate of ©. Then
Iy, is isomorphic to the direct sum

Q
@ (w_10)5512/2.
weW (©,Q)
It is allowable to use elements of W rather than representatives in G' because it is
only a matter of isomorphism.

Proof. The proposition follows from 6.3.5, 6.3.6, and 5.4.4. [

In other words, the filtration of I, by the (I,,)n, splits, and Iy, is isomorphic to
the associated graded representation, when o is regular. (It is not necessary that o
be regular in order for 6.4.1 to hold, but there are certainly examples where o is not
regular and 6.4.1 does not hold. See §9.)

For the remainder of §6.4, assume o to be regular.

Let me be more precise and restate slightly results from §§6.1-6.3. Let €2 be an
associate of ©. Recall from §6.3 that G,, is then the union U,-,, PexPq, that I, is
the subspace of all f € I with support in G,,, and that J,, = Ié’o(aéép\P@, PowPy).
Restriction determines a canonical Po-morphism from [, to J,,, which is surjective.
Its kernel is > J, (z > w, x # w). This in turn determines an Mg-morphism
from (1,)n, to (Juw)n,. Recall that (J,)n, = 0 unless w € W(0,Q), and that if

w € W(O,Q) then there exists an isomorphism of (.J,,)n,, with (w_la)éflz/z. I want

13Can we find out?
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to describe this isomorphism explicitly because there are two choices to be made in
obtaining it which I want to keep track of.

The first choice is of an element x € N(Ay) representing w. This gives the iso-
morphism of J,, with J, given by f+— ¢;. The second choice is of a measure dn
on (r7'Ngz N Nq)\Nq, which is isomorphic to the group N,-1 (see §1.3). This
determines an isomorphism of (J;)y, with (:c_la)éél/ ?: it takes ¢ € J, to

/ R,édn.
(=1 NezNNq)\Nq

Let Ap-1an: (Lw)ng — (Jo)ng — (z7'0)6/% be the composition of the various
maps. Proposition 6.4.1 then says two things:

(1) the morphism A,-1 4, splits uniquely, so that (:c_la)églz/ % occurs as a subrepre-
sentation of (I,,)ng:

(2) the inclusion of (55_10)5(12/2 C (Iy)n, into Iy, also splits, so that there exists a
unique extension of A,-1 g, to all of (/)n,,. This, and the corresponding map
from I to (z710)8¢?, T shall also call A1 g,.

There is a relationship with results of Bruhat in [11]. Let C°(G,U) be the space
of all locally constant functions from G to U of compact support. There is an almost
canonical G-surjection from C°(G,U) to i, o

Pof(g) = [ o~'6"2(p)f(pg) dp.

Pe
The composition
C2(GU) — [ — Iy, — (27'0)0y
corresponds to a distribution on G with values in Homg (U, U) satisfying certain
equations concerning left and right multiplication by elements of Py and Py. Viewed
in these terms, the content of 6.4.1 is that a certain distribution defined initially only
on (G, actually extends covariantly to all of G.

Fix now measures on each N, (a € X) and hence on each product [TN,. I will
drop the subscripts referring to measure from now on.

For any = € N(Ap) with image w € W(0©,Q) define T,-1(c) (often just T,-1)
to be the G-morphism from i o = I(0) to i 2 'o corresponding to the Mgq-
morphism A,-1: I(0)y, — (:B_la)c%/2 (recall that o is assumed regular). On I,
A,-1 is defined by the formula

M) = [ -~ Janydn

and in fact it may be defined by this formula on a somwhat larger space. For each
w € [We\W/Wq] let G&F be the complement in G of the closure of PowP, and let
G, be the union of this with PowFy, itself. Define I* and I to be the subspaces
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of I(o) consisting of functions with support on G* and G, respectively. Because
PowFy is closed in G, the restriction of any f € I to Pow Py has compact support

modulo Pg. This remark together with 6.3.1 implies:
Lemma 6.4.2. For any f € [},

Aa(f) = [ -~ Janydn

The map A,-: induces an isomorphism of I} /I** with J,.

For the next results, recall first of all from 1.3.2 that if u and v are elements of W
with £(uv) = £(u) + £(v) and x € N(Ap) represents u, then the map

(Ny, Ny) — N2 ' N,

is a bijection of N, x N, with N,,. Recall, second, from §1.2 the notion of height and
its connection with length in . For any x € N(Ay) representing w € W, let d,(x) be
the Radon derivative or modulus factor of the transformation Ad(x): Ny, — Nya,
so that d(znz™t) = 6,(z) dn.

Lemma 6.4.3. Assume that ©, Q, and = are associates in A, u € W(©,Q), v €
W (€, Z) with ht(uv) = ht(u) + ht(v), and © € N(Ap) representing u. Then T,
takes I and I to I and I*, respectively.

Proof. By 1.3.5, PouvP=z = PouPq - PovP=, and similarly for their closures. For f
to be in I)% means that f = 0 on PouvP=. Hence for any g € PouPz, R,f = 0 on
PouPq, so that R, f lies in I;* and

Lo flg) = As(Byf) = [ flang)dn.
u—1
However, the restriction of R,f to N,-1 N PoguPq is zero and so is this integral, so
that 7,1 f € I'*. Something similar works for I*. O

Theorem 6.4.4. Assume that O, {2, and = are associates in A, let u € W(0, ) and
v e W(Q,Z) be such that ht(uv) = ht(u) + ht(v), and let z,y € N(Ap) represent u
and v. Then

Tyflefl = H 5a(y_1)_1Ty71m71.

a>0
ua <0

1 1

Proof. Since all G-morphisms from i% o to i% (y~'z~10) are scalar multiples of T,-1,-1,

it suffices to prove that for all f € i%o

Ty T f(1) = ] 6aly ™) 'Ty-10-1 f(1),

a>0
ua <0
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or that
Ayfl(Txflf): H 5a(y_1)_1Ay71x71(f).

a>0
ua <0

Furthermore, it suffices to prove this only for f € I . But for these (applying
6.4.3):

Ayi(Tyr f) = /N (T f) (ynr) di
- / Ag-i(Ryn, f) dis
N,
:/ dnl/ f(xznayny) dng
N, N, 1
which by 1.3.2 and the definition of the ¢, is

11 5a(y‘1)‘1/ f(zyn) dn

a>0 N'Uflufl
ua <0
= JI Galy™)'Ayrpa(f). O
a>0
ua <0

Remark 6.4.5. The operators T,-1(c) depend analytically on o. Recall first of all
that the set of unramified characters X,,,(M) has a complex analytic structure (§1.6)
and hence so does the set X, of representations of M of the form ox, x € X, (M).
The group W (O, ©) acts analytically on this, and the set of regular representations
X8 in this family is the complement of an analytic subset. The family ig(_) (ox) is
an analytic family over X, (§3.4) and so is the restriction to X! °¢. Furthermore, for
Q C A, the family i (o) N, 18 an analytic family of admissible representations of Mg
over X,, and all the filtrations of I,,(ox) are also analytic. Over X!°® one has an
analytic splitting of I(ox)n, as a direct sum of families isomorphic to w‘l(ax)églz/ 2
(w € W(0,0)) and hence the projections A,-1 are analytic as well. In more down-
to-earth terms: for a fixed f € C°(G,U) the image of f under the composition

00 F%X Az*1
CE(G,U) —= I(ox) — I(oxX)ng — U

varies holomorphically with y.

6.5. One consequence of the results so far in §6 is a refinement of the earlier criterion
for square-integrability. Continue the previous notation.

Theorem 6.5.1. Suppose that 7 is irreducible and embedded in i,GD(_) o, where o is an
absolutely cuspidal representation of Mg. Then in order for 7w to be square-integrable
mod Zg it is necessary and sufficient that
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(a) m|a, is unitary and
(b) for every 2 C A associate to © and every central character x of m with respect
to P, X0 12(a)] < 1 for all a € Ag \ Ay(O)A,.

Proof. According to 6.3.5, if 2 C A does not contain an associate of © then 7y, = 0.
If ©2 does contain an associate of ©, say =, then 6.3.5 implies that any central character
of m with respect to Py is also one for P=. Apply 4.4.6. O

Note that the case © = () is particularly simple.

6.6. I include here some relatively elementary consequences about irreducibility of
representations induced from parabolic subgroups. We retain the earlier notation.
The first result is due to Bruhat [11].

Theorem 6.6.1. If ¢ is an irreducible, unitary, regular admissible representation of
Me (not necessarily absolutely cuspidal) then i3, o is irreducible.

Proof. Because o is unitary, so is I = i (¢). Any G-subspace is therefore a summand,
and it has only to be shown that Endg (/) = C, or, by Frobenius reciprocity, that

Iy, contains 05(19/ 2 exactly once in its composition series. Now Proposition 6.3.3 gives
a composition series for Iy, whose factors are indexed by [We\W/Wg] but are not
necessarily irreducible: to w € [We\W/Wy], one associates the factor

(Jw)Ne = Indf‘u@)lP@wﬂM@ (w_1(71\/190101\7@10*1)51/2

where § is the modulus of the rational character v of w™!Mgw N Mg which restricts

to
I o™ J aom®
aext\xof agst\ud
wa€X ~\Xg wa€X NXg
on A@.

If 05(19/ ? is to occur as a composition factor, then since o] Ae 18 unitary, this rational
character must be ~g itself. Therefore:

H am(a) _ H am(a) H am(a)

aest\xf aest\nf agST\Ig

waeX ~\Eg wa62+\Eg
- e [ aw I e
aextuf aEEJr\Eg_E aGEg N
waEX TN wae LTI wa€ XN

] (C]

or

H am(a) — H am(a) )

acxt ot a€leo
wa € Xg © wao e Z]Jr\Eg
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But since roots in Yg are trivial on Ag, the right-hand side is also. The left-hand side
must therefore be trivial, which happens if and only if the set {a SDILEND I8 ‘ wa € Z@}
is empty. Thus w™'Xe C Ye, and since w0 > 0, w™ 'O = O.

The assumption of regularity now implies that w = 1, and this concludes the
proof. [

Assume now that ¢ is an irreducible, absolutely cuspidal, regular admissible repre-
sentation of Mg (not necessarily unitary). If w = wywy,e, then wO = O, the conjugate
of © in A; if © € N(Ap) represents w, then T,-1(z0)T,(0) is a G-morphism from
i (o) to itself, hence a scalar multiple, say v(o), of the identity.

Theorem 6.6.2. The representation i (o) is irreducible if and only if v(o) # 0.

Proof. Note that no T, is trivial, since it is constructed by Frobenius reciprocity from
a non-trivial Mg-morphism.

If (o) = 0, then T,,(c) cannot be an isomorphism, since otherwise 7},-1(zo) would
be trivial. Therefore either the kernel of T, (o) is a non-trivial subspace of i (¢), in
which case of course i (¢) is reducible, or its image is a non-trivial subspace of i (zo),
in which case the latter is reducible. We then apply 6.3.11 to see that i (o) is also
reducible.

If 7 (o) is reducible, then it has a non-trivial irreducible quotient, say m, which by
6.3.7 may be embedded in some i (y~'o), where y € N(Ay) represents an element u
of some W (0O, Q) for some 2 C A. The G-morphism

i(o):m—i(y o)
must be a scalar multiple of 7)1, and is neither trivial nor an isomorphism. Now
according to 1.2.9, ht(w) = ht(wu) + ht(u~1), so that by 6.4.4, T,, and T}, T,-1 agree

up to a nonzero scalar. Therefore T, is likewise neither trivial nor an isomorphism.
But then T,-1(z0)T,(0) cannot be an isomorphism, so y(o) =0. O

Note that by 6.4.5 the condition (o) = 0 is analytic. Furthermore, since by 6.6.1
~(0) # 0 for unitary o and since there will exist y € X,,,(Mg) such that oy is unitary,
the representations i (o) are generically irreducible.
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7. COMPOSITION SERIES AND INTERTWINING OPERATORS II

In this section I give refinements of the main theorems of §6. Fix a minimal
parabolic Pp.
The results of §§7.1-7.2 are entirely due to Harish-Chandra (correspondence, 1972).

7.1. Let P be a maximal proper parabolic, say corresponding to © = A N\ {a}.
Let P be the unique standard parabolic conjugate to P~, the opposite of P. It
will correspond to the subset © = —w;0, where w; is the longest element in W. If
wye is the longest element in Wg, then this subset is also w,w, 0. The element
w = (wpwpe)~! lies in W(O,0). There are two cases which must be considered:

either P = P, in which case P is said to be self-dual, or P # P. In either case, P
is associate to P by w, and P is the only associate of P by 1.2.3. In the first case,
W(©,0) = {1, w} while in the second W(0,0) = {w}.

The split torus A/AA is one-dimensional.

Let o be an irreducible absolutely cuspidal representation of M. The restriction

of o to A will be a scalar character. Let I = i§ 0.

Lemma 7.1.1. (a) If P = P, then Iy fits into an exact sequence
0— (w_10)5113/2 — Iy — 05113/2 — 0;

(b) If P # P, then Iy = ¢64* and Iy = (w™'o)0¥>.

Proof. This follows from 6.3.5. O

Corollary 7.1.2. The length of I is at most 2.

Proof. Suppose one has a composition series 0 G Iy G I, & Is = I. According to
6.3.7 and 1.2.3, if U is I, Iy/I;, or I3/I5, then by 3.2.4 either Uy or Uy is nonzero.
This is a contradiction, by 7.1.1 and 3.2.3. O

Proposition 7.1.3. Suppose that o|4 is unitary and that |o(a)] < 1 for a € A~
Ay(O)A,. Then any proper subrepresentation 7 C I is square-integrable mod Zg.
Proof. First suppose P = P. Since the quotient I /7 must have (I/7)y # 0 by
6.3.7 and 1.2.3, and there exists a non-trivial map from 7y to 05119/ 2 by Frobenius
reciprocity, one has Ty = 05,13/ ? by 7.1.1(a). The condition of 6.5.1 is thus satisfied.

Suppose P # P. Here, similar reasoning shows that my = 05,13/2 and 75 = 0, so
once again the condition of 6.5.1 holds. O

Theorem 7.1.4. Suppose P # P. Then I is irreducible.
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Proof. According to 5.2.5, one may as well assume that []4,, hence 0|4, is unitary.
Since I is irreducible if and only if T is, one may also assume that |o(a)| < 1 for
a € A" N Ay(O)A,. Then by 7.1.3 and its proof, if 7 is an irreducible subspace
of I, one has my # 0 and 7y = 0, and 7 is square-integrable, hence unitary. Thus
7 is isomorphic to the conjugate of 7. By 4.2.5, however, 7y~ is isomorphic to
the contragredient of 7y, hence is nonzero. But since N~ is conjugate to N, this
implies that 75 # 0, hence the conjugate of 7y is nonzero, and finally 75 # 0, a
contradiction. [J

Corollary 7.1.5. If P = P, then one has i%0 = i§w™'o for all irreducible abso-
lutely cuspidal o.

Proof. Since Iy = (w_la)5]15/ ?, there exists a non-trivial G-morphism from i (o) to
i (w™'o). By 7.1.4, it has no kernel and is surjective. [

7.2. Suppose Pg to be an arbitrary standard parabolic, corresponding to © C A,
and (o, U) an irreducible absolutely cuspidal representation of Meg.

Theorem 7.2.1. For (2 associate to © and w a primitive element of W (0, ), one
G 1

has z}%@ o= g, w0,
Proof. Applying 1.2.6, we can use 7.1.5. O

Corollary 7.2.2. If 7 is an irreducible composition factor of ige o, then there exists
w € W(0,0) such that 7 may be embedded into %, w™'o.

Proof. According to 6.3.7, there exist Pp and w € W(O,Q) such that = may be
embedding to i, w™'o. Apply 7.2.1. O

This is a refinement of 6.3.7. The promised refinement of 6.3.8 is:
Corollary 7.2.3. The length of i$, ¢ is at most the order of W (©,0).

Theorem 7.2.4. Let K, = Ny M,N, be an Iwahori factorization with respect to Pg
of a compact open subgroup of G, and assume that UM £ 0. If V is any composition
factor of i§, o, then V50 2£ 0.

Proof. This follows from 3.3.6 and 7.2.2. [
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7.3. For each ©® C A, let {©} be the equivalence class of subsets associate to ©.
If 7 is an irreducible admissible representation, it is said to be of type {©} if there
exists 2 € {©} and an irreducible absolutely cuspidal representation o of Mg such
that 7 has an embedding into 7§ 0. According to 7.2.1, this holds for all Q € {©}
if it holds for one. According to 6.3.6, the type of 7 is uniquely determined.
An arbitrary admissible representation of finite length is said to be of type {©} if
every irreducible composition factor is.

Theorem 7.3.1. If 7 is a finitely generated admissible representation, then there
exists a unique set of representations {W{@}}@gA such that

(a) ™= @Pmyey and

(b) each 7oy is of type {O}.
Proof. The argument is the same as that of Theorem 6.3.10; apply the above remarks
as well. [J

If P is the parabolic corresponding to © and ¢ is an irreducible representation
of M, let {o} be the equivalence class of representations {wo}yew@©,0). If 7 is an

irreducible admissible representation, I say that 7 is of type {o} if 7y has péllg/ ? as
a composition factor for some p € {o}. According to 6.3.6, then, all irreducible
composition factors of 7y are of this form.

If 7 is an arbitrary admissible representation of finite length, it is said to be of type
{0} if each irreducible composition factor is.

Theorem 7.3.2. If 7 is a finitely generated admissible representation of type {©},
then there exists a unique finite set of types {o} and a unique set of representations

{7‘(‘{0}} such that

(a) T= Py and
(b) each 7,y is of type {o}.

Proof. Apply the following result. O

Lemma 7.3.3. Suppose 7, mo, and 73 are all finitely generated admissible represen-
tations of type {©} fitting into an exact sequence

00— m — g —> m3 — 0.
Suppose that ; is of type {o} but that no factor of 73 is. Then the sequence splits.
Proof. Arguing as in 5.4.4, we conclude that the sequence
0 — (m)y — (m2)y — (m3)n — 0

splits, and in particular there exists a projection from (m5)x to (m1)y. Corresponding

to this is a morphism from my to % (m) Né}g/ ?. One can check that the image is
isomorphic to m; and the kernel to m3. [
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8. AN EXAMPLE: THE STEINBERG REPRESENTATION
Here I will justify the announcements in [14].

8.1. Fix a minimal parabolic Fy. For each © C A, define the G-representation mg
to be ,
~ G ¢—1/2
Cr(Po,G) =ip, 6 '~
For © C () one has a canonical inclusion 7 C mg. In particular, ma is the trivial
representation of G, contained in all other mg.

Lemma 8.1.1. One has
(mo)ny = D (w5 )5

we[W/We

Proof. From 6.3.5, one obtains a filtration of (7g)y, indexed by [W/We], with the

1/2
0

factor associated to w isomorphic to (w8, Y *)8,/%. This filtration splits since all

these characters of My are distinct. [

Note that this result is stated incorrectly in [14] (Proposition 2).
Define the Steinberg representation to be o = my/ Yg.¢ To.

Lemma 8.1.2. The Jacquet module oy, is isomorphic to dg.

Proof. From the injections of each mg into 7y, one has corresponding injections of
each (mg)n, into (my)n,, and oy, is the quotient of (my)y, by the sum of the images
for © # (). Since the only w € W such that wa < 0 for all @ € A is wy, 8.1.1 implies
the lemma. O

Theorem 8.1.3. The representation ¢ is irreducible and square-integrable mod Z.

Proof. Tt has no proper quotient by 6.3.7 and 8.1.2. It is square-integrable mod Zg
by 6.5.1. O
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9. ANOTHER EXAMPLE: THE UNRAMIFIED PRINCIPAL SERIES OF SL,

9.1. Let n be a generator of the prime ideal of O, and let ¢ be the order of the
residue field. Let

G:SLQ(]{Z),
oo 2 e
{2 oemer)
A1) -4
AN,

= N(A)/A={w,1} where w= <_(1) é)a

KzG(O)z{(Z Z)eG

po{( D en|ocs)

P(O) etc. = PN G(O) ete.
-1
The effect of w on A is to take <a 0_1> to <a O).
0 a 0 a
One also has various decompositions:

G = NAK (Iwasawa)
G = KA K (Cartan)
G = PwPUP (Bruhat)
K = BwBUB.

The subgroup B is called the Twahori subgroup of G, and has an Iwahori factorization
with respect to P.
I shall actually need an explicit form of the Bruhat decomposition:

Lemma 9.1.1. If ¢ # 0, then (with ad — bc = 1):

a6 el )

This gives not only the Bruhat decomposition for GG, but also the decomposition
K = BwB U B as well, and one step further:

a,b,c,de(’)};
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Corollary 9.1.2. One has K = P(O)wN(O) U B.

Since A & k*| the characters of A may (and will) be identified with the characters
of k*. In particular one has the modulus v: x — |z|, which turns out to be the

modulus 5113/ % as well, and its complex powers v°:  — |z|®. These complex powers
are precisely the unramified characters X,,(A). Since |z| = ¢~ if x = 1™, the true
parameter space of X, (A) is C/(2mi/logq)Z. The unitary characters correspond to
purely imaginary s. The element w € W acts on X,,,(A) by taking s to —s, and has as
fixed points s = 0 and s = 7i/log q. Corresponding to s = 0 is the trivial character of
A, and to s = 7i/log q the quadratic character sgn_ : 7" — (—1)" (which by class
field theory corresponds to the unramified quadratic extension of k).

9.2. I want to discuss in §9 the representations I, = i% v°. The first remark is that
they all have isomorphic restrictions to K:

Proposition 9.2.1. The restriction of I to K is isomorphic to the space of all locally
constant functions f: K — C such that f(pk) = f(k) for all p € P(O), k € K.

The K-morphism from one to the other is simply the restriction of functions in I
to K, which is an isomorphism because of the Iwasawa decomposition. (This result
is a special case of 3.1.1.)

Corollary 9.2.2. For any s, IX = C and 17 = C?.

The second isomorphism follows from the fact that K = P(O)wN(O) U B =
P(O)wB U B. Explicitly, one has the function ¢x = ¢k s
br(nak) =vt(a) forne N, ac A ke K
as a basis for IX, and the functions ¢, ¢y,
vitia) keB
k) —
P1(nak) {0 k¢ B

0 k ¢ BuB

bu(nak) = {I/s“(a) k € BwB,

as a basis for IZ. Another way to describe these elements is as follows: one has a
projection Py from C*(G) to Is:

P.f() = [ v ) (o) dp
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and

¢ K = PS(Ch K)

¢1 = PS(Ch B)

(bw = PS(CthB>'
Proposition 9.2.3. If (7, V) is any admissible representation of G, then the canon-
ical projection is an isomorphism of V? with V]? ©),
Proof. Surjectivity follows from 3.3.3. For injectivity, it suffices to prove that, in the
terminology of §4.1, V¥ = VE | or that for any a € A~ the operator 7(BaB) is
invertible. However, as one can easily check, in the Hecke algebra H(G, B) one has
the identity

ch,p —(¢ — 1) chpap —qchp =0

(assuming meas(B) = 1 for the moment), and this does it, since chp is the identity
element of the Hecke algebra. [

Corollary 9.2.4. If (7, V) is an irreducible admissible representation of G, then
VB = 0 if and only if 7 embeds into some I.

Proof. This follows from 9.2.3 and Frobenius reciprocity. [

Incidentally, the proof of injectivity in 9.2.3 (which works for more general groups)
is due to Borel.

9.3. A first result on the structure of (1) is an immediate corollary of the results
of §6.3:

Proposition 9.3.1. There is an exact sequence:

s+1 +1

0 — v " — ([i))y — v — 0.

As an exercise, one might try to prove this directly. I should mention that the map
from (I,)n to v**! is induced by f +—— f(1) and is therefore canonical, but that the
injection of v~*T! into (I,)x depends on several choices I have made. To be precise,
let I,, s be the subspace of I of functions with support on PwP; the map

Auslf) = [ flwn)dn

then induces the isomorphism of (I,, ;) y with the A-representation v~**!. T will need
later the observation that if D, s is the composition
C*(PwP) P, ws — v 5T

then
Dy s(f) = O () f(x) dz,

PwP
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where ® is the function on PwP = PwN defined by
®(nawn,) = v (a)

and the measure on PwP is the unique multiple of the measure induced by the Haar
measure on G (PwP is open in G) such that meas(P(O)wN(O)) = 1. The multiple
is therefore (¢ + 1)/q. In particular, the measure of B is now taken to be 1/q.

If v*® is regular, the exact sequence in 9.3.1 splits, and one has therefore

(1) an extension of A, ¢ to all of I;

(2) an extension of D, s to all of C°(G);

(3) a G-morphism T, s from I, to I_ such that

Tusf(1) = Aus(f)  (feL)

or

Tw,s<Psf><1) = Dw,s(f) (f S CSO(G»

The operator T, s is a G-morphism, in particular a K-morphism, so it takes ¢x s
to a scalar multiple of ¢k _s.

Proposition 9.3.2. For s regular, one has

Tows(9x) = c(8)dx

with
1-—s

1—q
os) =g =

Proof. Since T,, takes ¢ to a multiple of ¢, and ¢x (1) = 1, one only has to evaluate

Aw,s(¢K> = Dw,s(ChK>-

Furthermore, since A, s depends holomorphically on s, one only has to evaluate this
for an open subset of complex s.

Now what happens is that the integral above defining D,, s on C2°(PwP) actually
converges for all f € C°(G) as long as Re(s) > 1, and that this integral defines the
extension to all of C°(G) giving rise to T, ;. I shall not prove this explicitly, because
it will actually fall out of the calculation below:

Da.s(chg) = / O(z) de + o () da.

BwBNPwP BNPwP

Because (9.1.1) BwB = P(O)wN(O) C PwP and ® = 1 on P(O)wN(O) (9.1.1
again), the first integral is just meas(BwB) = 1. For the second, express B as the
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disjoint union of the sets B, = { (CCL Z) eB

B N PwP is exactly the union of the B,,, so one must evaluate

;/n O(x) dx.

Step (1): According to 9.1.1 once more, ® = |p~"|~*T! = ¢"(=**Y on B,. Step (2):
The set Uy, By is a subgroup of B of index ¢™ !, so that

ceP' N @"H}nzl and P(O). Then

—(n=1) _

meas B, = (q q " )meas B

= (¢ "V =g ™)(1/q)

=(q—1)/¢"""
Therefore, the above sum is
o n n\—s q— 1 —s S —ns
Y (a=1)/a" )¢ =——-a"D> ¢
n=1 q n=0
_ (=g g
1—qs
and
1— -1\,—s 1 — —1-s
C(S>:1+( ¢ _1—g

l—q=  1—gq=5 "
Corollary 9.3.3. If s is regular, then I is reducible only when s = +1.

This follows from 6.6.2, because (s) = ¢(s)c(—s) is 0 only when s = £1.

What happens at s = —1 has been discussed in §8. The representation /_; contains
the trivial representation and the quotient is the Steinberg representation. Since [ is
the contragredient of I_1, it contains the Steinberg representation and has the trivial
representation as quotient. Incidentally, the sequence

0—C—I1—St—0
does not split, as one can prove easily.

9.4. The case of s irregular is more delicate.

Let me continue to assume that s is regular at first. Since I? = (I,)y X vt @
vt there exist two elements f;, and f,  in IP” dual to the A, ,—i.e., such that
A, (fy) = 64y. The element f; s will depend on s, but it turns out that f,, s is in some
sense independent of s.

Lemma 9.4.1. For any regular s, f, s = ¢u,s-
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Proof. One has
A1(¢w) = ¢w(1> =0

Aw(qbw):/Nqbw(wn)dn:/N(o) dn=1. O

Lemma 9.4.2. For any regular s, one has
¢1 = fi+ (c(s) = 1) fu
(bw = fw-

Proof. The second equation is in 9.4.1. For the first, clearly A;(¢;) = 1, while to find
Ay (¢1) one merely notices that ¢; = ¢x — ¢y, and applies 9.3.2. O

Lemma 9.4.3. For any regular s and any a € A~, one has
ms(BaB) fy = v*(a) fy
ms(BaB) fo = v (a) fu
Proof. This follows from 4.1.1. O
Proposition 9.4.4. For any s at all and a € A™, one has
s(BaB)¢1 = v** (a)d1 + (c(s) — (™" (a) — v (a))du
7s(BaB) by, = v (a) .

Proof. Because the action of H(G, B) on I? varies holomorphically with s, it suffices
to prove this for regular s. But for regular s, one has

1= fi+(c(s) = 1) fuw

¢ = fo (9.4.2)
ms(BaB)gy = v (a) fi + (c(s) — v~ (a) fu
ms(BaB)dw = v (a) fu

and then uses 9.4.2 to express the f, in terms of the ¢, again. O

Let 11, 1, be the images in (Is)n of ¢1, ¢,. Because of 4.1.1, Proposition 9.4.4
tells what a € A~ does to ¢1, ¢,,. If one then specializes to the irregular s, one gets:

Proposition 9.4.5. With respect to the basis ¢, ¥, of (I;)x one has:
(a) When s =0,

B a 0},
my(a) = <2(1 —q)|al log, |al |a|> ’
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(b) When s = (7i/logq),
_ (lalsgny,(a) 0
@ = (15 )
Here sgn,, is the character corresponding to (7i/logq).

Corollary 9.4.6. The representation I is

(a) irreducible when s = 0;
(b) reducible, and in fact a direct sum of two irreducibles, when s = (7i/logq).

Proof. Since I is unitary in each case, it suffices to see whether or not Homg (I, I5) =
C in each case. By Frobenius reciprocity, one only has to decide whether or not (I)y
is a semi-simple representation of A, and 9.4.5 answers this. O
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