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0. Introduction

Let k be a non-archimedean locally compact field and G the group of k-rational
points of a reductive algebraic group defined over k. A (complex) admissible represen-
tation of G is a pair (π, V ) where V is a vector space over C and π is a homomorphism
from G to GLC(V ) such that

(a) each v ∈ V has an open isotropy subgroup — i.e., π is smooth, and
(b) for any open subgroup K, the space V K of K-fixed vectors has finite dimen-

sion.

It is my intention in this paper to lay a part of the foundations of the theory
of such representations (therefore complementing work of Harish-Chandra, Jacquet,
and Langlands—[20], [22], [23]).

If P is a parabolic subgroup of G with Levi decomposition P = MN and modulus
character δP , and (σ, U) is an admissible representation of M , then σ determines
as well a unique representation of P trivial on N since M = P/N . One defines
the (normalized) representation induced by σ from P to G to be the right regular
representation of G on the space i G

P σ of all locally constant functions f : G −→ U
such that f(pg) = σ(p)δP (p)1/2f(g) for all p ∈ P and g ∈ G. Because P\G is
compact, it is not difficult to show that i G

P σ is an admissible representation (2.4.1).
If π is an admissible representation, one may define its contragredient, which is

again admissible. The contragredient of i G
P σ is i G

P σ̃ (3.1.2).
There exists a form of Frobenius reciprocity: for any smooth G-representation π,

one has a natural isomorphism of HomG(π, i G
P σ) with HomP (π, σδ1/2

P ) (2.4.1).
If (π, V ) is any smooth G-representation and P = MN a parabolic subgroup of G,

one defines V (N) to be the subspace of V generated by {π(n)v − v : n ∈ N, v ∈ V },
and one defines VN to be V/V (N). This is the space of a smooth representation πN of
M , and it has a universal property: if U is any space on which N acts trivially, then
HomN(V, U) ∼= HomC(VN , U). This implies a second form of Frobenius reciprocity:

HomG(π, i G
P σ) ∼= HomM(πN , σδ1/2

P ) (3.2.4).

The VN -construction was used to some extent in Jacquet-Langlands [23], but first
seriously discussed in Jacquet’s Montecatini notes [22], at least for G = GLn, where
Jacquet falls only slightly short of proving that when π is admissible, so is πN (3.3.1).
Coupled with the more elementary observation that if π is finitely generated so is
πN , this becomes one of the cornerstones of the theory of admissible representations.

One basic fact is that the functor V ! VN is exact (3.2.3).
For the group G = PGL2, it was probably first realized by Mautner that there

are irreducible admissible representations of G which have no embeddings into an
i G

P σ (where P is here the Borel subgroup of G, and σ may be assumed to be one-
dimensional). Generalizing this phenomenon, one calls a finitely generated admis-
sible representation of arbitrary G absolutely cuspidal if there are no non-trivial G-
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morphisms into any representation of the form i G
P σ with P proper in G and σ an

admissible representation of M . Equivalently, (π, V ) is absolutely cuspidal if and
only if VN = 0 for all unipotent radicals N of proper parabolic subgroups.

The irreducible absolutely cuspidal representations may be characterized also as
those whose matrix coefficients have compact support modulo the center of G (5.3.1).
This fact may be used to show that they are both projective and injective in a suitable
category of G-modules (5.4.1).

In [22], Jacquet did prove (for G = GLn) that for any irreducible admissible repre-
sentation π there exists at least one P and one irreducible absolutely cuspidal σ such
that π may be embedded into i G

P σ (5.1.2).
The VN -construction also plays a role in the asymptotic behavior of matrix coef-

ficients. This is best expressed like this: let N− be the unipotent opposite to N .
Then there is a canonical non-degenerate pairing 〈 , 〉N of VN with ṼN− which is
characterized by the property that for v ∈ V and ṽ ∈ Ṽ with images u ∈ VN and
ũ ∈ ṼN− there exists ε > 0 such that for all a ∈ A−(ε) (see §1.4 for notation) one has
〈π(a)v, ṽ〉 = 〈πN(a)u, ũ〉N (§4.2).

This makes possible a criterion for square-integrability in terms of the spaces VN

(4.4.6), and also figures in the proof of the result mentioned earlier about the support
of the matrix coefficients of an absolutely cuspidal representation.

The main results of this paper depend on almost everything mentioned so far, and
are concerned with the composition series of the representation i G

P σ. If A is the
maximal split component of the center of M and WA is the Weyl group of A, then
the final result is this:

(a) If σ is an irreducible absolutely cuspidal representation of M , then the length
of i G

P σ is at most card(WA) (7.2.3);
(b) if π is any irreducible composition factor of i G

P σ then there exists w ∈ WA

and a G-embedding of π into i G
P wσ (7.2.2).

(The latter makes sense because WA is also N(M)/M , and for m ∈ M one has
mσ ∼= σ. In this rather strong form, this result is due to Harish-Chandra, although
others had proven weaker and related verions.) From this one deduces that any
finitely generated admissible representation has finite length as a G-module (6.3.10).

The proof of this main result is rather long and complicated. I first prove a weaker
result in §6 involving the associates of a parabolic, use this to prove the square-
integrability criterion (also in §6), and use this in turn to prove the final version in
§7. If G has semi-simple rank one, however, the argument is not so complicated, and
it may be instructive to sketch it here:

(1) There is only one conjugacy class of proper parabolic subgroups, of the form
P = MN where M is compact modulo its center. Thus, the representation σ
is finite-dimensional.

(2) Using the Bruhat decomposition G = PwP ∪ P , where w is the non-trivial
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element of the Weyl group, one has a filtration 0 ! Iw ! I = i G
P σ of I as a

P -space, where Iw is the subspace of functions in I vanishing along P . The
corresponding filtration of IN may be described explicitly; it fits into an exact
sequence

0 −→ (wσ)δ1/2
P −→ IN −→ σδ1/2

P −→ 0

of M-spaces.
(3) If π is an irreducible composition factor of I, then π cannot be absolutely

cuspidal, because if it were one could apply the projectivity of absolutely
cuspidals to obtain an embedding of π into I. Thus by Jacquet’s result, π has
an embedding into some i G

P ρ, and in particular, by Frobenius reciprocity, πN

has ρδ1/2
P as an M-quotient.

(4) But then by exactness of the functor π ! πN , ρδ1/2
P must be either σδ1/2

P or

(wσ)δ1/2
P , proving part of the main result.

(5) The same argument shows that if 0 ! I1 ! I2 ! I were a composition series,
then on the one hand (I1)N , (I2/I1)N , and (I/I2)N would all be nonzero, but
on the other hand only two are allowed to be non-trivial, a contradiction.

Another class of results contained in §6 concerns intertwining operators and irre-
ducibility of representations induced from parabolic subgroups.

As a minor application of the general theory, I include in §8 a discussion of the
Steinberg representation of G (thereby justifying claims made in an earlier paper
[14]).

In §9 I work out an elementary example, that of the unramified principal series of
SL2, in some detail.

Very few of the results in this paper are entirely mine. A number of the basic
ideas may be found in Jacquet-Langlands [23] and Jacquet [22]. Many results were
discovered independently by Harish-Chandra (and given in a course of lectures at the
Institute for Advanced Study, 1971-72; this course is partly summarized in [20], and
details will presumably appear eventually1). Others are completely his. For example,
the results of §§7.1–7.2 were communicated to me by him in correspondence; I would
like to thank him for allowing me to include them here. The idea of the canonical
liftings in §5 arose from my attempts to understand his theory of the constant term
in [20]. And I have incorporated suggestions of his throughout.

Several other points were also discovered independently by Bernstein and Zelevin-
skii (see [1] and [2]), Baris Kendirli [24], Hideya Matsumoto ([26], [27]), Olshanskii
[28], Allan Silberger [30], Graham Williams [31], and Norman Winarsky [32].

I would like to thank James Arthur, Armand Borel, Roger Howe, Hervé Jacquet,
Robert Langlands, Rimhak Ree, and Allan Silberger for invaluable advice and sugges-
tions. I hope I have given them the proper credit in the body of the paper. Finally,

1We should cite Silberger here.
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thanks are due to both Matsumoto and Deligne for pointing out errors in earlier
versions.

The first version of this paper was written in the spring of 1974 while at the
Institute for Advanced Study in Princeton, where I was supported by a National
Science Foundation grant, and a second was written one year later in Bonn, where I
was supported partly by the Sonderforschungsbereich at the Mathematisches Institut
and partly by the National Research Council of Canada. I am grateful to all these
organizations.
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1. Preparation

1.1. Let a be any finite dimensional real vector space, and further let

a∗ = the real dual of a;
Σ = a reduced root system in a∗ (assumed to span a∗);
Σ+ = a choice of a set of positive roots in Σ

(I write α > 0 for α ∈ Σ+);
Σ− = −Σ+;
∆ = the simple roots in Σ+;

S = the set
{
wα

∣∣∣ α ∈ ∆
}

of reflections
corresponding to the elements of ∆;

W = the Weyl group of Σ (acting on both
a and a∗ and generated by S);

For each Θ ⊆ Σ, let aΘ be
{
x ∈ a

∣∣∣ α(x) = 0 for all α ∈ Θ
}

(and if Θ = {α}, write

aα, and call this a root hyperplane). We will write Θ > 0 if α > 0 for each α ∈ Θ.
For Θ ⊆ ∆, let

ΣΘ = the subset of Σ of linear combinations of the roots in Θ;
Σ+
Θ = Σ+ ∩ ΣΘ;

Σ−
Θ = Σ− ∩ ΣΘ;

WΘ = the subgroup of W generated by
{
wα

∣∣∣ α ∈ Θ
}
.

Every element of ΣΘ vanishes on aΘ, so that ΣΘ may be identified with a subset
of (a/aΘ)∗, and in fact it defines a root system in this space. Every element of WΘ

acts trivially on aΘ, and therefore acts naturally on a/aΘ, and in fact WΘ is the
Weyl group of ΣΘ. (Use [10] for a general reference.)

For every w ∈ W , let Σw be the set
{
α ∈ Σ+

∣∣∣ w−1α < 0
}
. The cardinality of Σw

is also the length '(w) of w — i.e., the length of a minimal expression for w as a
product of elements of S [10, Cor. 2, p. 158]. Note that w is determined by Σw (by
5.2 of [5]).

Lemma 1.1.1. For any w1, w2 ∈ W the following are equivalent:

(a) '(w1w2) = '(w1) + '(w2);
(b) Σw1w2

= w1Σw2
∪ Σw1

;
(c) Σw1

⊆ Σw1w2
and w1Σw2

> 0.

Proof. The equivalence of (a) and (b) is Lemma 3.4 of [5]. That (b) implies (c) is
immediate, and the converse is almost as elementary.

The set Σw has a geometrical meaning: one knows that the open cone

C =
{
x ∈ a

∣∣∣ α(x) > 0 for all α ∈ ∆
}
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is a fundamental domain for W , or more precisely that as w ranges over W the
cone wC ranges over the connected components of areg (the regular points of a) =
a " ∪α∈Σaα. Now each aα is in fact determined by exactly one positive α, and the
correspondence α *→ aα is a bijective correspondence between Σw and the set of root
hyperplanes separating wC from C. In particular, the number of these separating
hyperplanes is equal to '(w).

Lemma 1.1.2. Let Θ be a non-empty subset of ∆. There exists in any left coset of
WΘ in W a unique element w characterized by any of these properties:

(a) For any x ∈ WΘ, '(wx) = '(w) + '(x);
(b) wΘ > 0;
(c) The element w is of least length in wWΘ.

This is Proposition 3.9 of [5].

Proposition 1.1.3. Let Θ,Ω be non-empty subsets of ∆. In every double coset in
WΘ\W/WΩ there exists a unique w characterized by any of these properties:

(a) The element w has least length in WΘwWΩ;
(b) It has least length in WΘw and also in wWΩ;
(c) w−1Θ > 0 , wΩ > 0.

Proof. Exercise 3, p. 57, of [10] says that every double coset has an element of least
length, and also that (a) and (b) are equivalent. Lemma 1.1.2 implies that (b) and
(c) are equivalent.

The previous two results say that the projections from W to W/WΩ, WΘ\W , and
WΘ\W/WΩ all have canonical splittings. Let [W/WΩ], etc., be their images. Thus,

[W/WΩ] =
{
w ∈ W

∣∣∣ wΩ > 0
}
, [WΘ\W ] =

{
w ∈ W

∣∣∣ w−1Θ > 0
}
, and [WΘ\W/WΩ] =

[W/WΩ] ∩ [WΘ\W ].
For each Θ ⊆ ∆, let w",Θ = w",Θ

−1 be the longest element in WΘ (and let w" be
w",∆). The element w"w",Θ clearly lies in [W/WΘ], and in fact it is the longest element
there. More precisely:

Proposition 1.1.4. Let Θ be a subset of ∆, write w0 for w"w",Θ, and let Θ be
w0(Θ) ⊆ ∆. Then

(a) Σw0
= Σ+ " Σ+

Θ
;

(b) For any w ∈ [W/WΘ], '(w0) = '(w0w−1) + '(w).

Proof. Since w0(Θ) = Θ, it is clear that Σw0
⊆ Σ+ " Σ+

Θ
. But 1.1.2a, implies that

'(w0) = '(w")+'(w",Θ), while that same result together with [10, Cor. 4, p. 20] (which
says the length of an element in WΘ is the same in W as in WΘ) imply that this in
turn is equal to the cardinality of Σ+ " Σ+

Θ
, and this proves (a).

To prove (b), apply 1.1.1(c). If wΘ > 0, then ww−1
0 (Θ) > 0, so that Σw0w−1 ⊆

Σ+ " Σ+
Θ

= Σw0
, which is the first half of the criterion. To prove w0w−1Σw > 0:
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α ∈ Σw if and only if α > 0 and w−1α < 0. But w−1α < 0 if and only if w−1α ∈
Σ− " Σ−

Θ or w−1α ∈ Σ−
Θ; if w−1α ∈ Σ−

Θ then α ∈ wΣ−
Θ ⊆ Σ−, a contradiction. Thus

w−1α ∈ Σ− " Σ−
Θ and w0w−1α > 0 by (a).

If Θ is a subset of ∆, the subset Θ = w"w",Θ(Θ) = w"(−Θ) is called its conjugate
in ∆.

1.2. Continue the notation of §1.1. If Θ and Ω are subsets of ∆, they are called
associates if the set W (Θ,Ω) =

{
w ∈ W

∣∣∣ wΩ = Θ
}

is not empty. For any Θ ⊆ ∆,

let {Θ} be the set of its associates.
What I shall do now is describe the connected components of each areg

Θ = aΘ "
∪α∈Σ!ΣΘ

(aα ∩ aΘ) and at the same time show how one can express the elements of
W (Θ,Ω) in a manner analogous to the way in which one expresses elements of W
as a product of elements in S. These results, as far as I know, are essentially due to
Langlands — see Lemma 2.13 of [25] — but I learned them, more or less in the form
in which I present them, from James Arthur.

Let me first recall some extremely elementary ideas from [10] (exercises at the end
of IV). Let V be a finite dimensional vector space, H a set of hyperplanes passing
through the origin such that V " ∪H∈HH is a union of simplicial cones. The con-
nected components of V " ∪H∈HH are called chambers of V associated to H. An
(irredundant) gallery in V is a sequence of chambers C0, C1, . . . , Cn such that no
two successive chambers are the same, but the pair does share a common face. The
integer n is the length of the gallery, and it is said to be a gallery between C0 and
Cn. A minimal gallery is one of least length between its ends. The distance between
chambers is the length of a minimal gallery between them, and is also equal to the
number of hyperplanes in H separating them.

I apply these ideas to the spaces aΘ (Θ ⊆ ∆) and the hyperplanes of the form

aΘ ∩ aα (α ∈ Σ " ΣΘ). The cone CΘ =
{
x ∈ aΘ

∣∣∣ α(x) > 0 for all α ∈ ∆ " Θ
}

is
a chamber in aΘ, and the height of any other chamber is defined to be its distance
from CΘ. The cone CΘ lies on the boundary of the cone C defined after §1.1 (which
now becomes C∅) and more generally the closure of CΘ is the disjoint union of the
CΩ with Θ ⊆ Ω.

Observe that if w ∈ W (Θ,Ω) then w takes aΩ to aΘ and chambers to chambers.

Proposition 1.2.1. Subsets Θ,Ω ⊆ ∆ are associate if and only if there exists w ∈ W
with waΩ = aΘ.

Proof. One way is of course trivial. For the other, suppose waΩ = aΘ, and let w0

be the element of least length in the coset WΘwWΩ. Then since WΩ acts trivially on
aΩ, w0aΩ = aΘ as well, hence w0ΣΩ = ΣΘ. Now by 1.1.2, w0Ω ⊆ Σ+

Θ, and hence
w0Σ

+
Ω ⊆ Σ+

Θ; similarly, w0
−1Σ+

Θ ⊆ Σ+
Ω , so that w0Σ

+
Ω is actually equal to Σ+

Θ. But
Θ consists precisely of the indecomposable elements of Σ+

Θ and similarly for Ω and
Σ+
Ω.



THEORY OF ADMISSIBLE REPRESENTATIONS—DRAFT 1 May 1995 9

Proposition 1.2.2. Let Θ be a subset of ∆. Every chamber of aΘ is equal to wCΩ
for a unique associate Ω of Θ and w ∈ W (Θ,Ω).

Proof. First suppose that C is a chamber of aΘ distinct from CΘ but sharing a face
with it. Since the closure of CΘ is the union of the CΦ with Θ ⊆ Φ, this face equals
CΦ where Φ = Θ ∪ {α} for some α ∈ ∆ " Θ. Let Ω be the conjugate of Θ in Φ and
let w0 be w",Φw",Θ (so that w0

−1aΩ = aΘ). I claim that C = w0
−1(CΩ). In order

to prove this I must show (i) w0
−1CΩ and CΘ have the face CΦ in common and (ii)

w0
−1(CΩ) += CΘ. The first holds simply because w0 ∈ WΦ and hence takes CΦ to itself.

For the second, let x ∈ CΘ be given, so that α(x) > 0. Since α ∈ Φ " Θ, w0α < 0
(1.1.4(a)), and hence −w0α lies in Σ+ " Σ+

Ω . Therefore (−w0α)(w0x) = −α(x) < 0
and w0x cannot lie in CΩ and therefore x +∈ w0

−1CΩ.
The proof proceeds by induction on the height of the chamber C. If ht(C) > 1,

then there will exist C1 sharing a face with C such that ht(C1) = ht(C) − 1. By
the induction assumption, there exist w1 and Ω1 such that C1 = w1CΩ1

. But then
w−1

1 C1 = CΩ1
and w−1

1 C lies in aΩ1
sharing a face with, but not equal to, CΩ1

. By
what I have just done, w−1

1 C = wCΩ for suitable w and Ω. Hence C = w1wCΩ.
For uniqueness, suppose Ω1 and Ω2, w1 and w2 are such that w1CΩ1

= w2CΩ2
.

Then w−1
1 w2CΩ2

= CΩ1
and w−1

1 w2Ω2 = Ω1. This implies that w−1
1 w2α > 0 for every

α > 0, which in turn implies that w−1
1 w2 = 1 and w1 = w2.

Corollary 1.2.3. If Θ is maximal proper in ∆, then Θ and Θ are the only associates
of Θ.

Proof. In this case aΘ is a line; CΘ is half of it and (w"w",Θ)−1CΘ is the other half.

If Θ is a maximal proper subset of Ω ⊆ ∆, then I call the element w",Ωw",Θ the
corresponding elementary conjugation. The proof of 1.2.2 also shows:

Lemma 1.2.4. Let Θ be a subset of ∆. If w1CΩ1
and w2CΩ2

are neighboring but
distinct chambers of aΘ, then Ω1 is maximal proper in Φ = Ω1∪Ω2, Ω2 is its conjugate
in Φ and w−1

1 w2 is the corresponding elementary conjugation.

Let CΘ = C0, C1, . . . , Cn be a gallery in aΘ with (say) Ci = wiCΩi
. If xi = w−1

i−1wi

for i > 0, then each xi is an elementary conjugation, by 1.2.4, and clearly wn =
x1 . . . xn. The proof of 1.2.2 in fact even shows:

Proposition 1.2.5. For a given w ∈ W (Θ,Ω), the above correspondence is a bijec-
tion between the set of galleries between CΘ and wCΩ and the representations of w
as a product of elementary conjugations. In particular, w has such a representation
of minimal length equal to the height of wCΩ.

If C0, C1, . . . , Cn is a gallery between CΘ and wCΩ with (say) Ci = wiCΩi
, I call

the corresponding representation of w primitive if Ωi is never equal to Ωi−1.
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Corollary 1.2.6. If Θ and Ω are associates, then there exists at least one element
in W (Θ,Ω) with a primitive representation as a product of elementary conjugations.

Proof. If w = x1x2 . . . xn and Θi = Θi−1 for some i then x1 . . . x̂i . . . xn also lies in
W (Θ,Ω).

Does there ever exist more than one primitive element in W (Θ,Ω)?
For w ∈ W (Θ,Ω), define the height ht(w) of w to be that of wCΩ. (This depends

on Θ, not just w or W (Θ,Ω). Example: Θ = ∆ or ∅.)

Proposition 1.2.7. Let Θ1,Θ2,Θ3 be associates, w = w2w1 with w1 ∈ W (Θ1,Θ2),
w2 ∈ W (Θ3,Θ2). If ht(w) = ht(w2) + ht(w1) then '(w) = '(w2) + '(w1).

Proof. It suffices to proceed by induction, and assume that w1 is an elementary
conjugation.

For any w in some W (Θ,Ω), let Ψw for the moment be the set of those hyperplaces
in aΘ separating CΘ from wCΩ. Then in analogy with 1.1.1, one has ht(w2w1) =
ht(w2) + ht(w1) if and only if Ψw2

∪ w2Ψw1
⊆ Ψw2w1

. Applying 1.1.1 itself, what I
want to show is that (i) any root hyperplane separating w2C∅ from C∅ also separates
w2w1C∅ from C∅ and (ii) if H is a root hyperplane separating w1C∅ from C∅ then
w2H separates w2w1C∅ from C∅.

Lemma 1.2.8. Let Θ and Ω be associates in ∆, and let w ∈ W (Θ,Ω).

(a) If α ∈ Σ+"Σ+
Θ is such that aΘ∩aα separates wCΩ from CΘ, then aα separates

wC∅ from C∅.
(b) If α ∈ Σ+ is such that aα separates wC∅ from C∅, then either α ∈ Σ+

Θ or
α ∈ Σ+ " Σ+

Θ and aΘ ∩ aα separates wCΩ from CΘ.

This is elementary, and the proofs of claims (i) and (ii) follow directly from it.
One can prove similarly:

Proposition 1.2.9. Let Θ,Ω ⊆ ∆ be associates, w ∈ W (Θ,Ω). Then ht(w"w",Ω) =
ht(w"w",Ωw−1) + ht(w).

Note that this at least makes sense because w"w",Ω takes Ω to its conjugate Ω in
∆. The geometric interpretation of 1.2.9 is that w"w",Ω takes CΩ to −CΩ.

1.3. In this section, suppose k to be any field. I shall refer to algebraic groups
defined over k by boldface2 letters with k as subscript, and the group of k-rational
points of that group by the same letter in ordinary type, again with k as subscript.
When confusion is unlikely, I shall drop the subscript. Thus Gk or G and Gk or G.

Let G be a connected reductive group defined over k. If P is a parabolic subgroup,
I shall let NP be the unipotent radical of P , MP a reductive subgroup of P with
P = NP MP a Levi decomposition, P− the opposite of P , N−

P the unipotent radical

2Between here and 1.3.1, I’m not sure just which letters should be in boldface.
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of P−. AP the maximal split torus in the centre of MP . I again often drop the
subscripts.

If P∅ is a minimal parabolic of G and A∅ a maximal split torus of P∅, recall that a
root of G with respect to A∅ is any non-trivial rational character α of A∅ such that
the eigenspace gα =

{
x ∈ g

∣∣∣ Ad(a)x = α(a)x} for all a ∈ A∅

}
in the Lie algebra g of

G is not trivial. It is said to be positive with respect to P∅ if gα ⊆ n , the Lie algebra
of N∅. The roots may be considered to be embedded in the vector space X(A∅)⊗R,
where X(A∅) is the group of rational characters of A∅, and these form a root system.
Let Σ be the reduced set of roots corresponding to this — i.e. those α such that
α += β2 for any root β — and Σ+ = Σ+

P∅
the set of positive roots in Σ (with respect

to P∅), ∆ the set of simple roots in Σ+, etc.
For Θ ⊆ ∆, let AΘ be the connected component of the identity in ∩α∈Θ ker(α),

MΘ = ZG(AΘ), PΘ the standard parabolic corresponding to Θ, NΘ its unipotent
radical. Thus P∆ = G and A∆ is the maximal split torus in the centre of G. The
Weyl group of Σ is naturally isomorphic to N(A∅)/M∅, and each WΘ (notation as in
§1.1) is naturally isomorphic to (N(A∅)∩MΘ)/M∅. Note that MΩ sits canonically in
MΘ for Ω ⊆ Θ.

Proposition 1.3.1. If Θ,Ω are subsets of ∆, then one has a disjoint union decom-
position

G =
∐

PΘwPΩ

where w ranges over the set [WΘ\W/WΩ].

Recall from §1.1 that [WΘ\W/WΩ] is a particularly good choice of representatives
in N(A∅), but here this is of little importance.

Proof. One knows that (G, P∅, N(A∅), S) form a Tits system. Lemma 1.1.3 and [10,
Remark 2, p. 28] imply the proposition.

Recall from section 3 of [4] that associated to each reduced root α is a subgroup
Nα of G whose Lie algebra is gα + g2α (of course g2α may be trivial) and such that
N∅ is the product of all the Nα (α ∈ Σ+), in any order. The unipotent radical of
each PΘ is equal to

∏
Nα (α ∈ Σ+ " Σ+

Θ) and N∅ ∩ MΘ is equal to
∏

Nα (α ∈ Σ+
Θ).

For any Θ,Ω ⊆ ∆ and w ∈ W the canonical projection induces an isomorphism
∏

α∈Σ+
!Σ+

Ω

w−1α %∈Σ+
!Σ+

Θ

Nα
∼−→ (wNΘw−1 ∩ NΩ)\NΩ.

In the case where Θ = Ω = ∅, I write this last as Nw, which is also equal to
∏

Nα

(α ∈ Σw). It follows from the remarks of section 3.2 of [5] that for w ∈ [WΘ\W/WΩ]



12 W. CASSELMAN—DRAFT 1 May 1995

the product map induces an isomorphism

PΘ × {w} ×
∏

α∈Σ+
!Σ+

Ω

w−1α %∈Σ+
!Σ+

Θ

Nα
∼−→ PΘwPΩ.

It follows immediately from the proceeding remarks and 1.1.1 that:

Proposition 1.3.2. If u, v are elements of W with '(uv) = '(u)+'(v) and x ∈ N(A∅)
represents u, then the map (nu, nv) *→ xnvx−1nu is a bijection between Nu ×Nv and
Nuv.

It also follows immediately that:

Proposition 1.3.3. Let Θ,Ω ⊆ ∆ be subsets of ∆, w ∈ [WΘ\W/WΩ].

(a) The subgroup (w−1PΘw ∩ PΩ)NΩ is the standard parabolic corresponding to
w−1Θ ∩ Ω;

(b) Its radical is generated by NΩ and w−1NΘw ∩N∅, and w−1NΘw ∩N∅, and its
reductive component is w−1MΘw ∩ MΩ;

(c) The group w−1PΘw ∩MΩ is parabolic in MΩ with radical w−1NΘw ∩MΩ and
reductive component w−1MΘw ∩ MΩ.

Two parabolic subgroups of G are called associates if their reductive components
are conjugate.

Proposition 1.3.4. Let Θ,Ω be subsets of ∆. The following are equivalent:

(a) The groups PΘ and PΩ are associate;
(b) The groups AΘ and AΩ are conjugate;
(c) The sets Θ and Ω are associate;

Proof. Conditions (a) and (b) are clearly equivalent. That (c) implies (b) is trivial. If
(b) holds, and gAΘg−1 = AΩ, then by [2, Corollary 4.22] one may assume g ∈ N(A∅).
Apply 1.2.1 to the image of g in W .

It will be useful to observe that if w ∈ W (Θ,Ω) then Σw is equal to the set Σ+"Σ+
Θ,

since w−1Σ±
Θ ⊆ Σ±

Ω.

Proposition 1.3.5. Let Θ,Ω,Γ be associates in ∆, u ∈ W (Θ,Ω), v ∈ W (Ω,Γ),
ht(uv) = ht(u) + ht(v). Then PΘuPΩ · PΩvPΓ = PΘuvPΓ.

Proof. This follows from the remark just made, one of the remarks made just after
1.3.1, and 1.3.2.
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1.4. For the rest of section 1, and indeed most of this paper, let k be a non-
archimedean locally compact field, O its integers, and ℘ its prime ideal, and G a
connected reductive group defined over k.

Let P∅ be a minimal parabolic in G (and assume notation as in section §1.3). For
each ε in (0, 1] and each Θ ⊆ ∆ define A−

Θ(ε) to be
{
a ∈ AΘ

∣∣∣ |α(a)| ≤ ε for all α ∈ ∆ " Θ
}
.

I write simply A−
Θ for A−

Θ(1). Of course A−
Θ(ε1) ⊆ A−

Θ(ε2) for ε1 ≤ ε2, and one has
therefore in some sense a nested set of neighborhoods of AΘ “at 0”. If P is any
parabolic of G, choose g ∈ G such that gPg−1 = PΘ for Θ ⊆ ∆, and define A−(ε) to
be g−1A−

Θ(ε)g. Since the conditions gPg−1 = P , gAg−1 = A imply that g ∈ M , this
definition is independent of the choice of g.

Lemma 1.4.1. If N is any unipotent group defined over k, then there exist in N
arbitrarily large compact open subgroups.

Proof. This is clearly true of the subgroup of GLn consisting of unipotent upper
triangular matrices, and any other unipotent group has an embedding into this one
for a suitable n.

Proposition 1.4.2. Suppose ' to be a finite extension of k, G" = Gk × ', P a
parabolic subgroup of G and P" = Pk × ', etc. Then A−

k = A"∩Ak, and furthermore:

(a) For any ε1 there exists ε2 such that A−
k (ε2) ⊆ A−

" (ε1) ∩ Ak;
(b) For any ε1 there exists ε2 such that A−

" (ε2) ∩ Ak ⊆ A−
k (ε1).

Proof. Define groups A−
Θ(ε)∗ similar to the A−

Θ(ε):

A−
Θ(ε)∗ =

{
a ∈ A

∣∣∣ |α(a)| for all α ∈ Σ+ " Σ+
Θ

}
.

(They will only be used in this proof.) It is clear that A−
Θ(1)∗ = A−

Θ(1), that A−
Θ(ε)∗ ⊆

A−
Θ(ε), and that for every ε1 there exists ε2 such that A−

Θ(ε2) ⊆ A−
Θ(ε1)∗. Furthermore,

because the restrictions of the α in Σ+ " Σ+
Θ are precisely the eigencharacters of the

representations of AΘ on nΘ (the Lie algebra of NΘ), it is clear that, in the present
terminology, A−

Θ,k(ε)
∗ = A−

Θ,"(ε)
∗ ∩ Ak. The proposition is immediate from these

remarks.

Proposition 1.4.3. If P is a parabolic subgroup of G and N1 and N2 are two open
compact subgroups of N , then there exists ε > 0 such that a ∈ A−(ε) implies
aN2a−1 ⊆ N1.

Proof. First assume G to be split over k, P∅ a minimal parabolic, P = PΘ for some
Θ ⊆ ∆. Then N =

∏
Nα (α ∈ Σ+ " Σ+

Θ), and since A = AΘ acts via α on each Nα,
the proposition is clear.

In general, let ' be a finite extension of k such that G" = Gk × ' is split; let
P" = Pk × ', etc. By 1.4.2 one can find N2," compact and open in N" containing N2;
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let N1," be compact and open in N" such that N1," ∩Nk ⊆ N1. By the preceding case
one can find ε∗ such that whenever a ∈ A−

" (ε∗), aN2,"a−1 ⊆ N1,". Apply 1.4.2(a).

If P is a parabolic subgroup of G and K is a compact open subgroup, one says
that K has an Iwahori factorization with respect to P if (i) the product map is an
isomorphism of N−

K ×MK ×NK with K, where N−
K = N−∩K, etc., and (ii) for every

a ∈ A−, aNKa−1 ⊆ NK , a−1N−
Ka ⊆ N−

K .

Proposition 1.4.4. Let P∅ be a minimal parabolic subgroup of G. There exists a
collection {Kn}n≥0, which forms a neighborhood basis of the identity such that

(a) Every Kn is a normal subgroup of K0;
(b) If P is parabolic subgroup containing P∅ then Kn has an Iwahori factorization

with respect to P ;
(c) If P = MN is a parabolic subgroup containing P∅ then MK has an Iwahori

factorization with respect to M ∩ P∅.

Proof. Assume first that G is split over k. Then according to [16, XXV.1.3], there
exists a smooth group scheme GO over Spec(O) such that G ∼= GO ×Spec(k). If R is
any ring supplied with a homomorphism from O to R, let G(R) be the group of R-
valued points on GO, and similarly for any group subscheme of GO. For each integer
n ≥ 0, let G(℘n) be the kernel of the reduction homomorphism: G(O) −→ G(O/℘n),
and similarly for any group subscheme of GO. (I take ℘0 to be O.)

Let P∅,O be a minimal parabolic group subscheme of GO, K0 the inverse image
in G(O) of P∅(O/℘). It is essentially proven in [21] (in the proof of Theorem 2.5),
that K0 has an Iwahori factorization with respect to any parabolic P containing P∅.
More precisely, K0 = N−

1 M0N0 where N−
1 = N−

1 (℘), N0 = N(O), and M0 is the
inverse image in M0 of (P∅ ∩ M)(O/℘). The same is true of every Kn = G(℘n),
with N−

n = N−(℘n), etc., and therefore this sequence satisfies the conditions of 1.4.4.
Since every parabolic subgroup of G is conjugate to one obtained from GO, this proves
1.4.4 in this case.

Now let G be the k-points of an arbitrary reductive group defined over k, P a
minimal parabolic subgroup. Let '/k be a finite Galois extension with Galois group
Gal('/k) such that G × ' = G" is split over '. Let {K",n} be a sequence satisfying
1.4.4 for P" = P × ', and define Kn to be K",n ∩ G. The sequence {Kn} is clearly a
basis of the neighborhoods of 1 in G.

Proof of (a): for k ∈ Kn, one has k = n−mn with n ∈ N",n, etc. But then for
σ ∈ Gal('/k), k = kσ = (n−)σmσnσ. Since P is defined over k, so is N−, etc. Since
N−

" ∩M"N" = {1} one has (n−)σ = n−, etc. This implies that n−, etc., are in fact in G,
hence in G∩K",n, and shows that Kn satisfies property (i) of an Iwahori factorization.
The remainder of 1.4.4 is proved similarly (using 1.4.2 at one point).
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One can use results from [13] to obtain finer results, but at the cost of complication.
Other elementary derivations of 1.4.4 have been given by Harish-Chandra and also
by Deligne [17].

Lemma 1.4.5. Suppose that the center of G is anisotropic. Then there exists a
maximal compact subgroup K ⊆ G such that (a) G = PK for any parabolic subgroup
P ; (b) A∅(O) ⊆ K; and (c) G = KA−

∅ K, with the map a *→ KaK establishing a
bijection between K\G/K and A−

∅ /A∅(O).

Proof. Set A = A∅ for convenience. Let G̃ be the simply connected covering of the
derived group of G, φ : G̃ −→ G the canonical projection, Ã the maximal split torus
of G̃ over A. By assumption φ|Ã is an isogeny. Define Ñ to be N(Ã)/Ã(O). Let B

be an Iwahori subgroup in G̃ compatible with Ã (see [12] and [13] for notation and
statements I give here).

Since the bornology of G̃ is that of compact subsets, 3.5.1 of [13] implies that φ is
B-adapted (see 1.2.13 of [13]).

Since the canonical morphism from the direct product of the center of G and G̃
into G is both central and surjective, 3.19 of [6] together with its proof imply that
Z(A)/φ(Z(Ã))Z ∼= G/φ(G̃)Z, and this implies that φ is Ñ -adapted (see 1.2.13 of
[13]).

The group G acts on the building associated to (G̃, B̃, Ñ). Let N be the stabilizer
of the apartment A corresponding to Ã — i.e., N is the normalizer of Ã in G, which
amounts as well to the normalizer of φ(Ã) in G. But since the Zariski closure of
φ(Ã) is A, and φ(Ã) is Zariski-dense in A, this is also the normalizer of A in G. This
implies that φ is of connected type (see 4.1.3 of [13]).

The remarks in 4.4.5 of [13] together with the proposition in 4.4.6 of [13] imply
that if K is the stabilizer of a special point in A (see 1.3.7 of [13]) it satisifies the
conditions of the proposition.

Proposition 1.4.6. Let G be arbitrary. There exists an open subgroup Γ ⊆ G such
that

(a) G = ΓA−
∅ Γ;

(b) A∅(O) ⊆ Γ; and
(c) Γ/(Γ ∩ Z) is compact.

Proof. Let G = G/A∆, ψ : G −→ G. Then ψ induces an isomorphism G/A∆
∼= G

by 15.7 of [3], and the group G satisfies the hypotheses of 1.4.5. Let K be the group
given there, and defined Γ to be ψ−1(K).

Note that Γ fits into an exact sequence

1 −→ A∆ −→ Γ −→ K −→ 1

and that furthermore Γ even contains all of Z.
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1.5. If P = MN is any parabolic subgroup of G, let δP be its modulus character:
P −→ C∗, p *−→ | detAdn(p)|, where n is the Lie algebra of N . It is trivial on N ,
hence essentially a character of M .

Assign G a Haar measure.

Lemma 1.5.1. If P is a parabolic subgroup of G and K0 a compact open sub-
group with an Iwahori factorization with respect to P , then for a ∈ A− one has
measK0aK0 = δ−1

P (a)measK0.

Proof. The map k1ak2 *−→ k1 induces an isomorphism between the sets K0aK0/K0

and K0/(K0 ∩ aK0a−1). But since a ∈ A−, K0 ∩ aK0a−1 = N−
0 M0(aN0a−1) and

[K0 : K0 ∩ aK0a−1] = [N0 : aN0a−1] = δ−1
P (a).

Proposition 1.5.2. Let P be a parabolic of G, K any compact open subgroup.
There exist constants C2 ≥ C1 > 0 such that for any a ∈ A− one has

C1δ
−1
P (a) ≤ meas(KaK) ≤ C2δ

−1
P (a)

Proof. Let K0 be an open subgroup of K with an Iwahori factorization with respect
to P , and let C be [K : K0]. Assume for convenience that meas(K0) = 1.

First: meas(KaK) ≤ Cδ−1
P (a). This follows from

meas(KaK) = [K : K ∩ aKa−1]

≤ [K : K0 ∩ aK0a
−1]

= [K0 : K0 ∩ aK0a
−1][K : K0]

= Cδ−1
P (a)

by 1.5.1.
Next: meas(KaK) ≥ C−1δ−1

P (a). One has an injection from K0/(K0 ∩ aKa−1)
into K/K ∩ aKa−1, so that meas(KaK) ≥ [K0 : K0 ∩ aKa−1]. But one also has
1 ≤ [K0∩aKa−1 : K0∩aK0a−1] ≤ C which together with 1.5.1 implies the claim.

1.6. Let P∅ be a fixed minimal parabolic of G, etc.
A rational character of G is a k-morphism from G to Gm, and of course determines

a map on k-rational points G −→ k×. For any G let X(G) be its group of rational
characters.

Lemma 1.6.1. Any rational character of G is determined by its restriction to A∆.

Recall that A∆ is the maximal split torus in the center of G.

Proof. Let Gder be the derived group of G, T the torus quotient G/Gder, and Ts the
maximal split quotient of T (see [18, XXII.6]). Any rational character of G factors
through the projection G −→ Ts, and the restriction of this projection to A∆ is
an isogeny. The map from X(T) to X(A∆) is thus an injection of one lattice into
another.
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For each Θ ⊆ ∆, let γΘ be the rational modulus character of PΘ: γΘ(p) =
det AdnΘ

(p). If for each α ∈ Σ one lets m(α) be the dimension of the α-eigenspace
gα in g, then according to 1.6.1 and the definition of the roots, γΘ is characterized
as the unique rational character of MΘ restricting to

∏
αm(α) (α > 0) on AΘ. Since

AΘ is the connected component of ∩α∈Θ ker(α):

Proposition 1.6.2. For Θ ⊆ Ω ⊆ ∆, the restriction of γΘ to MΩ is equal to γΩ.

A complex character of G is a continuous homomorphism from G to C×. (If I
write of a character without qualification, I shall mean a complex one. Note that
I do not require a character to be unitary — i.e., have its image in the unit cir-
cle). If γ : G −→ Gm is a rational character of G and β : k× −→ C× is a complex
character of k×, then the composition is a complex character of G which I shall call
β · γ : G −→ k× −→ C×. In particular one may choose β to be the modulus x *→ |x|,
and one thus obtains the norm or modulus |γ| of γ : x *−→ |γ(x)|. For example, the
modulus δΘ of PΘ is the usual modulus one refers to in connection with Haar measure
on PΘ.

One can describe the group of complex characters of G to some extent by means of
results in [6]. Let Gu be the subgroup of G, hence of Gder, generated by the elements
in the unipotent radicals of the minimal parabolics in G ([6] 6.2). Then the restriction
of any complex character of G to Gu is trivial ([6] 6.4) so that it must factor through
the projection: G −→ G/Gu.

Let E = G/Gu. I claim now that there exists in E a maximal compact subgroup
E0 such that the quotient E/E0 is a free abelian group of rank equal to the dimension
of the maximal split quotient Ts of G. First of all, one knows ([6] 6.14) that Gu is
closed in G and that Gder/Gu is compact. Further, one has the exact sequences

1 −→ Gder −→ G −→ T −→ 1

1 −→ T0 −→ T −→ T/T0 −→ 1

where T0 is maximal compact in T, and T/T0 is a lattice of rank equal to the dimension
of Ts. Define E0 to be the inverse image in E of T0.

A complex character of G is said to be unramified if it is trivial on E0. A choice of
basis for E/E0 gives an isomorphism of the group Xnr(G) of unramified characters of
G with (C×)r (r = dim Ts) so that Xnr(G) has naturally the structure of a complex
analytic group of dimension r (and this structure is of course independent of the
choice of basis). The unitary characters of Xnr(G) form a real analytic subgroup of
this isomorphic to a product of r unit circles.
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2. Elementary results about admissible representations

Throughout this section, let G be an arbitrary locally compact Hausdorff group
such that the compact open subgroups form a basis for the neighborhoods of the
identity. This condition is satisfied if and only if G has compact open subgroups and
they are all profinite. It is also satisfied for any closed subgroup of G, in particular
for its center Z.

See §3 of [3] for related matter.

2.1. Let F be an arbitrary field of characteristic 0. Let (π, V ) be a representation
of G on a vector space V defined over F . If K is any subgroup of G, define V K to
be

{
v ∈ V

∣∣∣ π(k)v = v for all k ∈ K
}
. Define (π, V ) to be a smooth representation if

every v ∈ V lies in V K for some open subgroup K. This is equivalent to the condition
that π be continuous with respect to the discrete topology on V .

Define (π, V ) to be admissible if it is smooth and if in addition V K has finite
dimension for every open subgroup K; irreducible if there are no proper G-stable
subspaces; finitely generated if there exists a finite subset X ⊆ V such that the
smallest nonzero G-stable subspace containing X is all of V .

If H is a subgroup of G, then a representation of G is said to be H-finite if every
vector is contained in a finite-dimensional H-stable subspace.

If X is any subset of V , then the G-space generated by X is the smallest G-
stable subspace containing X, and is also the subspace of vectors in V of the form∑

ciπ(gi)xi, with gi ∈ G and xi ∈ X.
If ε is an involution of F , then (π, V ) is said to be unitary with respect to ε if there

exists a G-invariant anisotropic form on V , Hermitian with respect to ε. If F = C,
then the involution will be understood to be conjugation.

There are a number of smooth representations associated to the action of the
group on itself. Define C∞(G, F ) to be the space of all locally constant functions
f : G −→ F ; C∞

u (G, F ) to be those f ∈ C∞(G, F ) such that for some compact open
subgroup K, f(k1gk2) = f(g) for all k1, k2 ∈ K, g ∈ G (these are the uniformly locally
constant functions.) Define C∞

c (G, F ) to be
{
f ∈ C∞(G, F )

∣∣∣ f has compact support
}
.

One has C∞
c ⊆ C∞

u , clearly. For f ∈ C∞(G, F ) and g ∈ G, define Rgf and Lgf by
the respective formulas

(Rgf)(x) = f(xg) and (Lgf)(x) = f(g−1x).

These operators define smooth representations of G, called respectively the right
regular and left regular representations, on both C∞

u (G, F ) and C∞
c (G, F ).

From §3 on, I shall assume F to be C (or, occasionally, R), but this is mostly a
matter of convenience in notation, as will be explained later, and it is probably worth
something to know that results may be formulated without this assumption. I should
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add that the possibility of using quite general fields of definition has not been, as far
as I know, seriously exploited (see, however, [16] and [29]).

If (π, V ) is a representation over F , then for any field extension E/F one obtains
the obvious extended representation (π, V ⊗F E).

Proposition 2.1.1. If (π, V ) is a representation of G over F and E/F is a field
extension, then (π, V ) is

(a) smooth;
(b) admissible;
(c) finitely generated;

if and only if (π, V ⊗ E) is.

Proof. The basic observation is that if K is any subgroup of G, then

(V ⊗ E)K = V K ⊗ E.

Certainly, the right-hand side is contained in the left. For the opposite inclusion, let∑
vi ⊗ xi be fixed by K. One may assume the xi to be linearly independent over F .

But then π(k)(
∑

vi ⊗ xi) =
∑

vi ⊗ xi implies that
∑

(π(k)vi − vi) ⊗ xi = 0, which in
turn implies that π(k)vi = vi.

From this, the proposition is clear.

A representation (π, V ) is said to be absolutely irreducible if for every extension
E/F , (π, V ⊗ E) is irreducible.

Proposition 2.1.2. If π is smooth, then it is K-finite for every compact open sub-
group K.

Proof. For every v ∈ V , there exists a subgroup K1 of finite index in K such that
v ∈ V K1 . Thus, K · v is a finite set, and generates a finite-dimensional K-stable
subspace.

Proposition 2.1.3. If H is any closed subgroup of G such that H/H∩Z is compact,
then any admissible representation of G is H-finite. In particular, any admissible
representation is Z-finite.

Proof. If (π, V ) is an admissible representation of G, then for each compact open
subgroup K, V K is finite-dimensional and Z-stable. This proves the last statement.
If H satisfies the hypotheses of the proposition and K is any compact open subgroup
of G, then the image of K ∩H in H/H ∩Z has finite index. Thus the space spanned

by the elements
{
h · v

∣∣∣ h ∈ H, v ∈ V K
}

is finite-dimensional.
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Assign G a rational Haar measure, i. e., one such that for some (hence any) com-
pact open subgroup K one has meas(K) ∈ Q. (Without further mention, all Haar
measures will be assumed to be rational.) If (π, V ) is a smooth representation of G
and K is a compact open subgroup, define the operator PK by the formula

PK(v) =

∫
K π(k)v dk

measK
.

The smoothness of π implies that this is essentially a finite sum, hence makes sense.
The operator PK is the projection of V onto V K . If V (K) is the kernel of PK , then
it may also be described as the space spanned by the vectors of the form π(k)v − v.
One has V = V K ⊕

V (K) as representations of K.

Proposition 2.1.4. Let (π, V ) be a smooth representation and K a compact open
subgroup of G. Then π is admissible if and only if the restriction of π to K is a
direct sum of irreducible finite-dimensional representations, each isomorphism class
occurring with finite multiplicity.

Proof. Assume π admissible. If K1 is an open normal subgroup of K, one has V =
V K1

⊕
V (K1), each summand being K-stable. The group K1 of course acts trivially

on V K1, which may then be considered a representation of K/K1, hence a direct
sum with finite multiplicities of irreducible representations of K. An application
of Zorn’s Lemma then enables one to decompose V as a direct sum of irreducible
finite-dimensional smooth representations of K.

Finite multiplicity follows from the fact that any given smooth finite-dimensional
representation must have some normal open K1 in its kernel.

The converse is clear.

Proposition 2.1.5. If (π, V ) is admissible and unitary, with Hermitian form (u, v),
and U is any G-stable subspace of V , then U⊥ =

{
v ∈ V

∣∣∣ (u, v) = 0 for all u ∈ U
}

is also G-stable, and V = U
⊕

U⊥.

The proof is straightforward.

Proposition 2.1.6. The categories of smooth and admissible representations of G
are abelian categories.

This is trivial.

Proposition 2.1.7. Let (πi, Vi) (i = 1, 2, 3) be smooth G-representations, K a com-
pact open subgroup of G. If V1 −→ V2 −→ V3 is an exact sequence of G-morphisms,
then the sequence V K

1 −→ V K
2 −→ V K

3 is exact as well.

Proof. Given v ∈ V K
2 whose image in V3 is 0, choose v1 ∈ V1 with image v in V2.

Then PK(v1) lies in V K
1 and still has image v.
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Proposition 2.1.8. If (πi, Vi) (i = 1, 2, 3) are smooth representations of G and the
sequence of G-morphisms

0 −→ V1 −→ V2 −→ V3 −→ 0

is exact, then π2 is admissible if and only if π1 and π3 are.

Proof. By 2.1.7.

Define now a character of G to be a smooth one-dimensional representation. It
thus amounts to a homomorphism from G to F×, with open kernel. (Since any
homomorphism from G to C× continuous with respect to the usual topology on C
has this property, the definition here does not contradict that in 1.6.2.) If ε is an
involution of F , then the character χ : G −→ F× is unitary if and only if χ(G) ⊆{
x ∈ F

∣∣∣ xxε = 1
}
. If (π, V ) is any smooth representation and χ is a character, one

defines (π⊗χ, V ), or sometimes (π ·χ, V ), to be the representation of G on the same
space, taking g to π(g) · χ(g).

If (π, V ) is Z-finite and ω is a character of Z, then for each integer n ≥ 1 define

Vω,n =
{
v ∈ V

∣∣∣ (π(z) − ω(z))nv = 0 for all z ∈ Z
}
,

and also define

Vω,∞ =
⋃

n∈N

Vω,n,

Vω = Vω,1.

Each Vω,n is G-stable. The representation (π, V ) is called an ω-representation if
V = Vω.

Proposition 2.1.9. Assume that F is algebraically closed and that V is Z-finite.
Then

(a) One has a direct sum decomposition V =
⊕

Vω,∞;
(b) If V is finitely generated, then there are only a finite number of ω with Vω,∞ +=

0, and there exists n such that Vω,∞ = Vω,n for each ω.

Proof. By standard facts about commuting families of operators on finite-dimensional
spaces.

Proposition 2.1.9(b) implies that there exists a finite filtration of V whose factors
are ω-representations for certain ω.

For a given ω, the smooth and admissible ω-representations clearly form abelian
categories, in analogy with 2.1.6.

If (π, V ) is any smooth representation of G, define its dual (π̂, V̂ ) to be the repre-
sentation tπ(g−1) on the algebraic dual V̂ of V , and define its contragredient (π̃, Ṽ )
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to be the restriction of π̂ to the subspace Ṽ of elements of V̂ fixed by some open sub-
group. Thus, π̃ is smooth. For any compact open subgroup K, V̂ K is the algebraic
dual of V K , and of course also equal to Ṽ K . This proves:

Proposition 2.1.10. The following are equivalent:

(a) π is admissible;
(b) π̃ is admissible;
(c) the contragredient of π̃ is isomorphic to π.

Proof. Clear.

One has, of course, the canonical embedding of π into ˜̃π.

Proposition 2.1.11. The functor π ! π̃ is contravariant and exact.

If (π, V ) is smooth and U is any subset of V , define

U⊥ =
{
ṽ ∈ Ṽ

∣∣∣ ṽ(x) = 0 for all x ∈ U
}
.

Note that we had previously defined U⊥ to be a subspace of V in the case where π is
unitary. It turns out that our new definition is compatible with the old one: if (π, V )
is admissible and unitary, then the Hermitian form on V allows us to identify V with
Ṽ .

Proposition 2.1.12. Suppose (π, V ) to be an admissible representation and U a
G-stable subspace of V . Then U⊥ ⊆ Ṽ is isomorphic to the contragredient of V/U .

Corollary 2.1.13. The admissible representation π is irreducible if and only if π̃ is.

The proofs are straightforward.

Proposition 2.1.14. Suppose that (π, V ) is a unitary admissible representation of
G. Then it is G-isomorphic to a direct sum of irreducible admissible unitary rep-
resentations, each isomorphism class occurring with finite multiplicity. If G has a
countable basis of neighborhoods at the identity, then the direct sum is countable.

Proof. Let K be a compact open subgroup, and first assume that V is generated by
V K . We prove by induction on the dimension of V K that V is the direct sum of a
finite number of irreducible admissible representations. Since V is finitely generated,
an application of Zorn’s Lemma guarantees that it has some irreducible quotient U ,
which is generated by UK . The representation on V will then be (by Proposition
2.1.5) the direct sum of U1 and U⊥

1 , where U1 is the kernel of the natural map from
V to U , and we may apply induction to U1.

In the general case, the above implies that for each compact open subgroup K, the
subspace of V generated by V K is a finite direct sum of irreducible unitary admissible
representations. Another application of Zorn’s Lemma, letting K range over the set
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of compact open subgroups of G, will finish the proof of the first claim. The final
remark is elementary.

(The first application here of Zorn’s Lemma is unnecessary; instead one may apply
the considerations of §2.2.)

Proposition 2.1.15. If (π, V ) is irreducible, unitary, and admissible, then (up to
scalar multiplication) there is only one G-invariant Hermitian inner product on V .

2.2. For each compact open subgroup K define the Hecke algebra HF (G, K) to be
the space of all functions f : G −→ F of compact support such that f(k1gk2) = f(g)
for all k1, k2 ∈ K, g ∈ G. Assign to it the convolution product

(f1 ∗ f2)(g) =
∫

G
f1(gg−1

0 )f2(g0) dg0.

This algebra has as identity the element (measK)−1 chK (where chK is the charac-
teristic function of K). Define HF (G) to be

⋃
K HF (G, K). The convolution defines

a product on this, but there is no identity unless G is discrete. The space HF (G) is
the same as C∞

c (G, F ).
For each character ω of Z, define HF,ω(G, K) to be the space of functions f : G −→ F

such that f has compact support modulo Z, f is bi-K-invariant, and Lzf = ω(z)f
for all z ∈ Z. Convolution is defined by the formula

(f1 ∗ f2)(g) =
∫

G/Z
f1(gg−1

0 )f2(g0) dg0.

(Note that this is well-defined.) Define HF,ω(G) to be
⋃

K HF,ω(G, K).
If (π, V ) is any smooth representation of G, then the space V becomes an HF (G)-

module by the formula

π(f)v =
∫

G
f(g)π(g)v dg,

which makes sense because the integral is essentially a finite sum. The algebra
HF,ω(G) acts similarly on smooth ω-representations3.

We shall often drop the reference to F if confusion is unlikely.
Whenever A and B are smooth G-representations, HomG(A, B) will denote the set

of linear maps from A to B which commute with the action of G.

Proposition 2.2.1. If (πi, Vi) (i = 1, 2) are two smooth representations of G, then
the natural map induces an isomorphism of HomG(V1, V2) with HomH(G)(V1, V2). A
similar statement is true for ω-representations and Hω.

3From now on we will adopt the convention that if S is subset of G which is bi-invariant under
some compact open subgroup K of G, then π(S) denotes the action of chS as an element of HF (G).
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Proof. A G-morphism f : V1 −→ V2 is clearly an H(G)-morphism as well. Conversely,
suppose f : V1 −→ V2 is an H(G)-morphism. Suppose v ∈ V1 and g ∈ G. Choose a
compact open K such that v ∈ V K

1 , π1(g)v ∈ V K
1 , f(v) ∈ V K

2 , and π2(g)(f(v)) ∈ V K
2 .

Then π1(g)v = meas(KgK)−1π1(KgK)v, and

f(π1(g)v) =
f(π1(KgK)v)

meas(KgK)

=
π2(KgK)f(v)

meas(KgK)

= π2(g)f(v).

If (π, V ) is a smooth representation of G, and K is a compact open subgroup, then
the space V K is stable under H(G, K).

Proposition 2.2.2. Suppose (πi, Vi) (i = 1, 2) are smooth representations of G, and
K is a compact open subgroup of G. If

(i) V1 is generated as a G-space by V K
1 and

(ii) every nonzero G-stable subspace of V2 contains a non-zero vector fixed by K,

then
HomG(V1, V2) ∼= HomH(G,K)(V

K
1 , V K

2 ).

Proof. The map from left to right is the obvious one. The rest of the proof is word-
for-word the same as in [15, pp. 33–34]4. (I should mention that the argument there
was inspired by the proof of [23, Lemma 7.1].)

A result similar to that in 2.2.2 holds for ω-representations and Hω(G, K).
The following may make condition (ii) in 2.2.2 more reasonable:

Lemma 2.2.3. Suppose that (π, V ) is an admissible representation of G. Then V
is generated by V K as a G-space if and only if Ṽ satisfies the condition that every
non-zero G-stable subspace of Ṽ contains a non-zero vector fixed by K.

Proof. Suppose that V is generated as a G-space by V K , and let U be a G-stable

subspace of Ṽ such that UK = 0. If U⊥ is the annihilator of U in V ∼=
˜̃
V , then

(V/U⊥)K ∼= ŨK = 0. Thus by 2.1.7, V K = (U⊥)K , and since V K generates V ,
V = U⊥, and U = 0. The converse argument is similar.

Proposition 2.2.4. Let (π, V ) be a smooth representation of G, and K a compact
open subgroup. Then

(a) If (π, V ) is irreducible, then V K is an irreducible module over H(G, K);
(b) If V satisfies the conditions (i) and (ii) of Proposition 2.2.2 and V K is an

irreducible H(G, K)-module, then the representation (π, V ) is irreducible.

4Should we include the proof?
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Proof. Say (π, V ) is irreducible. Let U be any non-zero H(G, K)-stable subspace
of V K . Then U must generate V as a G-space, and every v ∈ V is of the form∑
π(gi)ui, with gi ∈ G, ui ∈ U . Now if u ∈ V K and g ∈ G, then PK(π(g)u) differs

from π(KgK)u only by a constant. Thus, with v as above,

PK(v) =
∑

PK(π(gi)ui) =
∑

(constant) · π(KgiK)ui,

which lies in U since U is H(G, K)-stable. Thus V K ⊆ U and in fact V K = U . This
proves (a).

Conversely, assume (i) and (ii) to hold and V K to be an irreducible H(G, K)-space.
If U is any non-zero G-stable subspace of V , then by (ii) UK += 0. By hypothesis,
UK = V K . But then by (i), U = V . This proves (b).

Remark 2.2.5. The same reasoning shows that a smooth representation (π, V ) is ir-
reducible if and only if there exists a set of compact open subgroups {Kα} forming
a basis of neighborhoods of the identity and such that each V Kα is an irreducible
H(G, Kα)-module.

Proposition 2.2.6. If F is algebraically closed and (π, V ) is a smooth irreducible
representation of G, then it is absolutely irreducible.

Proof. Let K be a compact open subgroup such that V K += 0. Then V K is an irre-
ducible H(G, K)-module by 2.2.4(a). If E/F is any field extension, then conditions
(i) and (ii) of Proposition 2.2.2 hold for V ⊗ E. Thus, by 2.2.4(b), in order to know
V ⊗E is irreducible, it suffices to show that (V ⊗E)K is irreducible over HE(G, K).
By [7, §1.2, Proposition 3, p. 9], the commutant of HE(G, K) in V K ⊗EK is E, since
that of HF (G, K) in V K is F . By the proof of 2.1.1, V K ⊗ EK = (V ⊗ E)K . Apply
[7, §7.3, Theorem 2, p. 87] to finish the proof.

This is due to A. Robert in [29].
The point of 2.2.6 is that from §3 on, where F will be C, one doesn’t have to worry

about the distinction between irreducibility and absolute irreducibility.

2.3. If (π, V ) is an admissible representation of G, then for every f ∈ H(G) the
operator π(f) has finite rank, and one may therefore speak of its trace. The functional
on H(G) which takes f to the trace of π(f) is called the distribution character of π,
and referred to as chπ. Of course, since the definition of π(f) depends on the choice
of a Haar measure for G, so does the definition of the distribution character.

Proposition 2.3.1. If {π1, π2, . . . , πn} is a set of inequivalent irreducible admissible
representations of G, then the functionals {chπ1

, . . . , chπn} are linearly independent.

Proof. This is [23, Lemma 7.1]. (Note that part of this proof already occurs in that
of 2.2.2.)
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Corollary 2.3.2. If (π1, V1) and (π2, V2) are two irreducible admissible representa-
tions with the same distribution character, then they are isomorphic.

Proof. Clear.

Corollary 2.3.3. Let (π1, V1) and (π2, V2) be two admissible representations of finite
length as G-spaces. Then they have the same irreducible composition factors (with
multiplicities) if and only if their distribution characters are the same.

Proof. One way is clear, since it is straightforward to show that if

0 −→ V1 −→ V −→ V2 −→ 0

is an exact sequence of admissible G-representations, then the distribution character
of V is the sum of those of V1 and V2.

If (π, V ) is now any admissible representation of finite length, define (πss, V ss) to
be the representation of G on the direct sum of the irreducible composition factors of
V . (It is a semisimple G-space.) Then π and πss have the same characters, by what
I have just remarked, and the conclusion of the corollary is merely that πss

1
∼= πss

2 .
Thus, it suffices to assume that π1 and π2 are semisimple. But in this cases one
may apply 2.3.2 and an inductive argument. (This is of course a rather well-known
argument.)

2.4. If H is a closed subgroup of G and (σ, U) a smooth representation of H , define
IndG

H σ to be the space of all functions f : G −→ U such that

(i) f(hg) = σ(h)f(g) for all h ∈ H , g ∈ G, and
(ii) for some compact open subgroup K of G, Rkf = f for all k ∈ K.

Define c-IndG
H σ to be the subspace of IndG

H σ of functions with compact support
modulo H . The group G acts on both of these by R (the right regular representation).

Theorem 2.4.1. Let H be a closed subgroup of G, (σ, U) a smooth representation
of H . Then

(a) IndG
H σ and c-IndG

H σ are smooth representations of G;
(b) the maps Λ: Ind σ −→ U and Λc : c-Ind σ −→ U , defined by f *−→ f(1G), are

surjective H-morphisms;
(c) the restriction of Λ (or Λc) to any non-trivial G-subspace of Ind σ (or c-Ind σ)

is non-trivial;
(d) if H\G is compact and (σ, U) is admissible, then Ind σ = c-Ind σ is admissible;
(e) (Frobenius reciprocity) if (π, V ) is any smooth G-representation, then compo-

sition with Λ induces an isomorphism of HomG(V, Ind σ) with HomH(V, U).

Proof. (a) is immediate from the definitions.
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For (b): One has Λ(Rhf) = f(h) = σ(h)Λ(f). To see that Λc (hence Λ) is
surjective, choose u ∈ U and let K be a compact open subgroup of G such that
u ∈ UK∩H . Define f on G by

f(g) =





σ(h)u if g = hk, h ∈ H , k ∈ K;

0 if g +∈ HK.

This lies in c-Ind σ and has u as its image under Λc.
For (c): If V is any nontrivial G-stable subspace of Ind σ, choose f += 0 in V . Then

f(g) += 0 for some g ∈ G, hence Λ(Rgf) += 0, but one also has Rgf ∈ V .
For (d): If K is any compact open subgroup of G, X a finite subset of G, and U0

a finite-dimensional subspace of U , define

I(K, X, U0) =
{
f ∈ (Ind σ)K

∣∣∣ f(X) ⊆ U0; f has support in HXK
}
.

This space clearly has finite dimension. Assume (σ, U) to be admissible. Let K be a
compact open subgroup of G, choose X such that HXK = G, let L =

⋂
x∈X xKx−1,

and let U0 = UL∩H . Then (Ind σ)K ⊆ I(K, X, U0), and hence Ind σ is admissible.
For (e): Composition with Λ gives a map from HomG(V, Ind σ) to HomH(V, U). To

define an inverse map, let f : V −→ U be an H-morphism. Define the G-morphism
Φ from V to Ind σ to be that which takes v ∈ V to Φv, where Φv(g) = f(π(g)v).
(Φv ∈ Ind σ since π is smooth.) It is clear that f *−→ Φ works, since Λ(Φv) = f(v).

Let δH be the modulus character H −→ Q×. Assume that G is unimodular.

Theorem 2.4.2. Let H be a closed subgroup of G, (σ, U) a smooth representation
of H . If π = c-IndG

H σ, then π̃ ∼= IndG
H σ̃δH .

Proof. For any f ∈ C∞
c (G), define the operator Pδ by the formula

(Pδf)(g) =
∫

H
δH(h)−1f(hg) drh,

where drh is a right Haar measure on H . The map Pδ is clearly a surjection from
C∞

c (G) to c-IndG
H δH . A slight modification of well-known results in [8] shows that

there exists on c-IndG
H δH a unique G-invariant functional Iδ such that for all f ∈

C∞
c (G), ∫

G
f(g) dg = Iδ(Pδf).

Since σ̃ ⊗ δH
∼= HomH(σ, δH) as an H-space, there is a pairing of σ with σ̃ ⊗ δH

giving rise to an H-morphism

σ ⊗ (σ̃ ⊗ δH) −→ δH .

Let 〈ω, ω̃〉∗ denote the image of (ω, ω̃) under this pairing. If φ ∈ V = c-Ind σ
and Φ ∈ Ind (σ̃ ⊗ δH), then define 〈φ,Φ〉∗ ∈ Ind δH by 〈φ,Φ〉∗(g) = 〈φ(g),Φ(g)〉∗.
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The map (φ,Φ) *−→ 〈φ,Φ〉 = Iδ(〈φ,Φ〉∗) is a G-invariant pairing, defining also a G-
morphism from IndG

H (σ̃ ⊗ δH) to Ṽ . To finish the proof, one may show quite easily
that this induces an isomorphism of (IndG

H (σ̃ ⊗ δH))K with Ṽ K for each compact
open K.

Corollary 2.4.3. HomG(c-IndG
H σ, F ) ∼= HomH(σ, δH).

Proof. This follows from the more general fact that if (σ, U) is any smooth H-
representation, then

(IndG
H σ)G ∼= UH .

The proofs of the following are trivial:

Proposition 2.4.4. Let H be a closed subgroup of G, (σi, Ui) (i = 1, 2) smooth
representations of H . To each H-morphism f : U1 −→ U2 is associated a canonical G-
morphism Ind (f) : Ind σ1 −→ Ind σ2. The map Ind (f) is a surjection, or an injection,
if and only if f is. The functor σ ! Ind σ is exact.

Proposition 2.4.5. Let H2 ⊆ H1 be closed subgroups of G, (σ, U) a smooth repre-
sentation of H2. Then IndG

H2
σ ∼= IndG

H1
(IndH1

H2
σ).

2.5. We have a natural pairing

〈 , 〉 : V ⊗ Ṽ −→ F

given by 〈v, ṽ〉 = ṽ(v).
Let (π, V ) be a smooth representation of G, v ∈ V , ṽ ∈ Ṽ . The matrix coefficient

of π associated to v and ṽ is the function cv,ṽ(g) = 〈π(g)v, ṽ〉.

Lemma 2.5.1. One has, for every g ∈ G:

cπ(g)v,ṽ = Rgcv,ṽ

cv,π̃(g)ṽ = Lgcv,ṽ

This is trivial.

Corollary 2.5.2. The function cv,ṽ is uniformly smooth. For a fixed ṽ ∈ Ṽ , the map
v *−→ cv,ṽ is a G-morphism from (π, V ) to (R, C∞

u (G)), and for a fixed v ∈ V the

map ṽ *−→ cv,ṽ is a G-morphism from (π̃, Ṽ ) to (L, C∞
u (G)).

Now assume F to be R or C. Let ω : Z −→ F× be a character. If (π, V ) is an
admissible ω-representation of G, it is said to be square-integrable modulo Z (but
later we will often just say “square-integrable”) if |ω(z)| = 1 for every z ∈ Z and if
for every v ∈ V and ṽ ∈ Ṽ , the function |cv,ṽ(g)| is square-integrable on G/Z.
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Proposition 2.5.3. If (π, V ) is an irreducible admissible ω-representation with |ω| =
1, then in order for it to be square-integrable modulo Z, it is necessary and sufficient
that for one nonzero v0 ∈ V and one nonzero ṽ0 ∈ Ṽ the matrix coefficient cv0,ṽ0

is
square-integrable on G/Z.

Proof. Let V0 be the space of all v such that cv,ṽ0
is square-integrable on G/Z. Then

V0 += 0 since v0 ∈ V0, and it is clearly G-stable, hence all of V . Treat Ṽ similarly.

This is a well-known result.

Proposition 2.5.4. If (π, V ) is an irreducible admissible square-integrable represen-
tation of G, then it is unitary.

Proof. Choose ṽ0 += 0 in Ṽ . Define an inner product by the formula

(u, v) =
∫

G/Z
〈π(g)u, ṽ0〉〈π(g)v, ṽ0〉 dg.

The integral converges by the Schwarz inequality, and clearly defines a G-invariant
positive definite inner product.

This is also well known.

2.6. If G1 and G2 are two topological groups, their direct product is locally profinite
if and only if each Gi is. Assume this to be the case, and let G = G1 × G2.

Lemma 2.6.1. If K1 ⊆ G1 and K2 ⊆ G2 are compact open subgroups and K =
K1 × K2, then H(G, K) is naturally isomorphic to H(G1, K1) ⊗H(G2, K2).

This is straightforward.

Lemma 2.6.2. Let (π1, V1) and (π2, V2) be smooth representations of G1 and G2,
respectively, and let (π, V ) = (π1 ⊗ π2, V1 ⊗ V2). Let K1 ⊆ G1 and K2 ⊆ G2 be
compact open subgroups and K = K1×K2. Then the natural injection of V K1

1 ⊗V K2

2

into V K is an isomorphism.

Proof. To see this, use the fact that V K = PK(V ).

Proposition 2.6.3. If (π1, V1) and (π2, V2) are irreducible (resp. absolutely5 irre-
ducible) smooth representations of G1 and G2, respectively, then (π1 ⊗ π2, V1 ⊗ V2)
is an irreducible (resp. absolutely irreducible) smooth representation of G.

5I still think this isn’t the right way to say it. What Casselman proves is exactly the proposition
with the word “absolute” deleted. His proof has nothing to do with absolute irreducibility. Maybe
we should have a remark that this result implies a similar one about absolute irreducibility. This
will also solve the problem of how to handle the numerous instances of “absolutely” in this and the
next proof.
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Proof. The smoothness is immediate.
If K1 ⊆ G1 and K2 ⊆ G2 are compact open subgroups and K = K1 ×K2, then by

2.6.2, (V1 ⊗V2)K ∼= V K1

1 ⊗V K2

2 as a module over H(G, K) ∼= H(G1, K1)⊗H(G2, K2).
By [7, §7.3, Theorem 2, p. 87], this is an irreducible module. Since the subgroups
K1 × K2 form a basis for the neighborhoods of 1 in G, one may apply Remark
2.2.5.

Proposition 2.6.4. If (π, V ) is an irreducible (resp. absolutely6 irreducible) admis-
sible representation of G, then there exist irreducible (resp. absolutely irreducible)
admissible representations (π1, V1) and (π2, V2) of G1 and G2 (respectively) such that
π ∼= π1 × π2.

Proof. Let K = K1 × K2 be a compact open subgroup such that V K += 0. By 2.2.4,
this is an irreducible module over H(G, K). It is finite-dimensional, so that by [7,
§7.3, Theorem 2, p. 87 and §7.7, Proposition 8, p. 93]7, there exists an irreducible
module U1 over H(G1, K1) such that V K ∼= U1 ⊗ HomH(G1,K1)(U1, V K) as a module
over H(G, K). Let U2 = HomH(G1,K1)(U1, V K).

Define (π2, V2) to be the obvious representation of G2 on HomH(G1,K1)(U1, V K1),
and define (π1, V1) to be that of G1 on HomG2

(V2, V ). Neither of these spaces is
trivial. There is a canonical non-trivial map from V1 ⊗ V2 to V .

It is immediate that since V is smooth, so is V2. Furthermore, for any compact open
subgroup L2 ⊆ G2, V L2

2
∼= HomH(G1,K1)(U1, V K1×L2), which by the results from [7]

already mentioned is an absolutely irreducible module over H(G2, L2), since V K1×L2

is absolutely irreducible over H(G, K1×L2). By Remark 2.2.5, then, V2 is absolutely
irreducible.

Let f : V2 −→ V be any element of V1, and choose v2 ∈ V2 nonzero. Then f(v2)
lies in some V L1 since V is smooth. But since V2 is irreducible, v2 generates V2

as a G2-module and f(V2) ⊆ V L1 as well. Therefore V1 is smooth, since V L1
1

∼=
HomG2

(V2, V L1).

6See previous footnote.
7It’s not obvious to me that the references say what Casselman says they say, although they are

certainly close. Here are the relevant results:
Theorem 2. Let A and B be K-algebras. Let M and N be nonzero modules over A and B,

respectively. Then

(a) M ⊗ N is simple (resp. semisimple) ⇒ M and N are simple (resp. semisimple).
(b) Let M and N be simple, E and F the “field commutants” of M and N (fields aren’t

necessarily commutative), S and T the centers of E and F . Then M ⊗N is simple ⇔ E⊗F
is a field.

Proposition 8. Let A and B be K-algebras, P a simple A ⊗ B-module of finite dimension
over K. Then there exist simple modules M and N (over A and B, respectively) such that P is
isomorphic to a quotient of M ⊗ N . M and N are uniquely determined up to isomorphism.

Casselman doesn’t just use the existence of M and N ; he assumes that N has a certain form.
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In particular, HomG2
(V2, V L1) += 0 for suitably small L1. Consider the restriction

map from this space to HomH(G2,K2)(U2, V L1×K2). It is an H(G1, L1)-morphism. It
is an injection, for if f : V2 −→ V L1 were 0 on U2 then f = 0, since V2 is irreducible.
But by [7] again, this latter H(G1, L1)-module is absolutely irreducible. Since this is
true for all suitably small L1, Remark 2.2.5 implies that V1 is absolutely irreducible.

Therefore V1 ⊗ V2 is irreducible over G and since the canonical map from V1 ⊗ V2

to V is non-trivial, it is an isomorphism.

2.7. Let X be any complex analytic space.
A holomorphic sheaf of admissible representations of G over X, or an analytic

family of such parametrized by X, consists of a pair (π,V) where V is an analytic
sheaf over X and π is a representation of G in the ring of analytic endomorphisms of
V such that

(a) the sheaf V is the direct limit of the subsheaves VK , as K ranges over the
compact open subgroups of G and

(b) each VK is coherent.

In this situation, each stalk Vx is the direct limit of the stalks VK
x and likewise the

fibre Vx = Vx/mxVx is the direct limit of the fibres V K
x = VK

x /mxV
K
x . Each fibre is

also, in the obvious way, the space of an admissible representation of G.
Each operator π(g) defines an analytic morphism from VK to VgKg−1

. For compact
K, the projection operator PK is an analytic morphism from V to VK . For each
f ∈ H(G, K) the endomorphism π(f) : VK −→ VK is an analytic morphism.



32 W. CASSELMAN—DRAFT 1 May 1995

3. Representations induced from parabolic subgroups

From now on, k will be a fixed locally compact non-archimedean field, G the group
of k-rational points of a connected reductive group G defined over k. Also, all of our
vector spaces will be complex.

I remark that by density results of [3], the center of G consists of the k-rational
points of the center of G.

3.1. Let P be a parabolic subgroup of G, with Levi decomposition P = MN . If
(σ, U) is a smooth representation of M , it defines as well a smooth representation
of P , since P/N ∼= M . In this situation, I shall define an induced representation
which differs slightly from the one I defined in §2. This is because I shall not be
concerned with the rationality of representations, and shall be concerned with a
certain symmetry which is rather awkward to express in the old notation.

Therefore, let δP be the modulus character P −→ M −→ C× of P (so that δP (mn) =
| detAdn(m)|, where n is the Lie algebra of N). Define i G

P σ now to be what I defined

as IndG
P (σδ1/2

P ) in §2.4, so that for every f ∈ i G
P σ one has Lpf = σ−1δ−1/2

P (p)f for
every p ∈ P . This is known as normalized induction.

If (σ, U) is admissible, then so is i G
P σ, by 2.4.1, since P\G is compact.

If P is a minimal parabolic subgroup and σ is irreducible (hence necessarily finite-
dimensional) then i G

P σ is said to be a representation in the principal series of G.
Suppose K to be a good compact subgroup of G, so that one has an Iwasawa

decomposition G = PK (see [10, §4.4]). Let KP = K ∩ P , and let (s, U) be the
restriction of (σ, U) to KP .

Proposition 3.1.1. The restriction of i G
P σ to K is isomorphic to i K

KP
s.

Proof. The K-isomorphism is given by the restriction of an element of i G
P σ to K.

This is surjective for obvious reasons, and injective because of the Iwasawa decom-
position.

Proposition 3.1.2. The contragredient of i G
P σ is isomorphic to i G

P σ̃.

Proof. This follows from 2.4.2 and the fact that P\G is compact.

Let K be a good compact subgroup of G, 〈u1, u2〉∗ the pairing of U with Ũ given
by

(σ ⊗ δ1/2
P ) ⊗ (σ̃ ⊗ δ1/2

P ) −→ δP .

Proposition 3.1.3. For f1 ∈ i G
P σ, f2 ∈ i G

P σ̃, one has

〈f1, f2〉 =
∫

K
〈f1(k), f2(k)〉∗ dk.
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Proof. Refer back to the proof of Theorem 2.4.2, where the fact that i G
P σ̃ is the

contragredient of i G
P σ was proven. From that proof, it clearly suffices to show that

for f ∈ i G
P δ1/2

P , Iδ(f) =
∫
K f(k) dk. But one may show easily that if one defines I∗

δ (f)
to be

∫
K f(k) dk for any f ∈ i G

P δ1/2
p , then for any f ∈ C∞

c (G) one has
∫

G
f(g) dg = I∗

δ (Pδf),

and this shows that I∗
δ = Iδ.

Proposition 3.1.4. The representation i G
P σ is unitary if σ is.

Proof. Since σ is unitary, σ is isomorphic to the contragredient of its conjugate, and
3.1.2 implies the same for i G

P σ. The fact that Iδ is a positive functional implies that
this isomorphism induces a positive definite Hermitian inner product on i G

P σ.

This explains the new normalization of induction.

3.2. I shall give now a new formulation of Frobenius reciprocity for P and G. First
of all, of course, one must take into account the new normalization of i G

P σ. But there
is also a second and less obvious point to introduce and I digress slightly to make it.

Assume N to be for the moment any locally compact group such that the compact
open subgroups form a basis of the neighborhoods of the identity, and possessing
arbitrarily large compact open subgroups as well. This means that if X is any
compact subset of N then there exists a compact open subgroup N0 containing X.
This condition is satisfied, for example, if N is the set of k-rational points of a
unipotent group defined over k.

Let (π, V ) be a smooth representation of N . For a compact subgroup N0 ⊆ N ,

define V (N0) to be
{
v ∈ V

∣∣∣
∫
N0

π(n)v dn = 0
}
. Define V (N) to be

⋃
V (N0), the

union over all compact open subgroups N0 of N . By the assumption on N , this is a
subspace of V .

Proposition 3.2.1. The space V (N) may also be characterized as the subspace of

V spanned by the elements
{
π(n)v − v

∣∣∣ n ∈ N, v ∈ V
}
.

Proof. The subspace is contained in V (N), for if n ∈ N and v ∈ V , then there exists
a compact open subgroup N0 with n ∈ N0, and π(n)v − v ∈ V (N0).

For the opposite inclusion, suppose v ∈ V (N), and choose two compact open
subgroups N0 ⊆ N1 such that v ∈ V N0 ∩ V (N1). Then

0 =
∫

N1

π(n)v dn = (constant) ·
∑

N1/N0

π(n)v

so that
v = (constant) ·

∑

N1/N0

(π(n)v − v).
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Define VN to be V/V (N).

Corollary 3.2.2. If U is any space on which N acts trivially, then the canonical
projection V −→ VN induces an isomorphism of HomN (V, U) with HomC(VN , U).

Proof. Clear.

If P is some group in which N is normal, and (π, V ) is a smooth representation of
P , the space VN becomes naturally the space of a representation (πN , VN) of P/N .
One might call this the Jacquet module of (π, V ) associated to P .

Proposition 3.2.3. If U −→ V −→ W is an exact sequence of smooth N -spaces,
then UN −→ VN −→ WN is also exact.

Proof. One may assume

0 −→ U −→ V −→ W −→ 0

exact. It is then elementary, applying 3.2.1, that

UN −→ VN −→ WN −→ 0

is exact, and it suffices to show that UN −→ VN is injective. This follows from the
fact that, by its definition, U(N) = U ∩ V (N).

This result really amounts to the claim that H1(N, U) = 0, where U is a smooth
N -space, since after all UN = H0(N, U).

Let now P be a parabolic subgroup of G with unipotent radical N , and (σ, U) a
smooth representation of M ∼= P/N .

Theorem 3.2.4 (Frobenius reciprocity). If (π, V ) is a smooth representation of

G, then the P -morphism Λ: (R, i G
P σ) −→ (σδ1/2

P , U) defined by f *−→ f(1) induces an
isomorphism of HomG(V, i G

P σ) with HomM(VN , U), where U is given the M-structure

σδ1/2
P .

Proof. This is immediate from 2.4.1(e) and 3.2.3.

Corollary 3.2.5. If there exists a non-zero G-morphism from (π, V ) to i G
P σ, then

VN += 0.

Proof. This follows from 3.2.4, or also from 2.4.1(c) and 3.2.3.
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3.3. The following result is one of the cornerstones of the subject. It was suggested
by a result of Harish-Chandra ([20, Theorem 4]); the original result leading to it is
Jacquet’s ([22, Theorem 5.1]); and the brief proof is due to Borel.

Theorem 3.3.1. Let P be a parabolic subgroup of G with Levi decomposition
P = MN , and let (π, V ) be a smooth representation of G. If (π, V ) is a finitely
generated (resp. admissible) representation of G, then (πN , VN) is a smooth and
finitely generated (resp. admissible) representation of M .

Proof. In either case, the smoothness of (πN , VN) is clear. Let X be a finite subset of
V generating it as a G-space. Let K be a compact open subgroup such that X ⊆ V K .
Let Γ be a finite subset of G such that PΓK = G. Then it is easy to see that since V
is the linear span of π(G)X, VN is generated as an M-space by the image of π(Γ)X.
Hence, (πN , VN) is finitely generated. This proves the first claim.

As an amplification, suppose that K is a good compact subgroup of G.

Proposition 3.3.2. If (π, V ) is any smooth representation of G, P a parabolic sub-
group of G, and U a K-stable subspace of V generating it as a G-space, then the
image of U generates VN as an M-space.

Proof. Clear, from the fact that G = PK.

Let us now prove the admissibility claim of 3.3.1. What I shall actually show is
something more precise. The claim is implied by 1.4.4 and this:

Theorem 3.3.3. Let (π, V ) be an admissible representation of G, K0 a compact
open subgroup of G with an Iwahori factorization K0 = N−

0 M0N0 with respect to P .
Then the canonical projection from V K0 to V M0

N is surjective.

I begin the proof of this with a useful technical result.

Theorem 3.3.4 (Jacquet’s First Lemma). With hypotheses as in 3.3.3, suppose
that v ∈ V M0N−

0 . Then v0 = PK0
(v) is also PN0

(v), and v − v0 ∈ V (N0).

Proof. Since K0 is compact and isomorphic to N0 × M0 × N−
0 , one has

v0 = (constant) ·
∫

N0

dn(
∫

M0N−
0

π(nm)v dm)

= (constant) ·
∫

N0

π(n)v dn

since π(m)v = v for m ∈ M0N
−
0 . The last claim follows immediately from the fact

that v0 = PN0
(v).

Corollary 3.3.5. Hypotheses as in 3.3.3. Then V K0 has the same image in VN as
V M0N−

0 .

Proof. This follows since v and v0 have the same image in VN .
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To return to the proof of 3.3.3: Let Ū be any finite-dimensional subspace of V M0

N ,
and let U ⊆ V M0 be any finite-dimensional subspace of V mapping onto Ū . One can
find a compact open subgroup N−

1 ⊆ N− such that U ⊆ V M0N−
1 . Choose a ∈ A such

that a−1N−
0 a ⊆ N−

1 (by 1.4.3). Then π(a)U ⊆ V M0N−
0 , since if u ∈ U and n ∈ N−

0 ,
one has π(n)π(a)u = π(a)π(a−1na)u = π(a)u. Hence the image of π(a)U , which
is πN (a)Ū , is contained in the image of V K0 by 3.3.5. This latter image, hence Ū ,
has dimension bounded by that of V K0 . Since (π, V ) is admissible, this dimension
is finite. Therefore, so is the dimension of V M0

N . Taking Ū to be V M0

N , we see that
πN(a)V M0

N is in the image of V K0. But πN(a)V M0

N = V M0

N . This proves 3.3.3 and also
3.3.1.

It is often useful to know:

Proposition 3.3.6. Let (σ, U) be an irreducible admissible representation of M ,
K0 = N−

0 M0N0 a compact open subgroup with an Iwahori factorization with respect
to P such that UM0 += 0. If V += 0 is a G-stable subspace of i G

P σ, then V K0 += 0.

Proof. Apply 2.4.1(c) to see that Λ: V −→ U is non-zero, hence a surjection. The
map ΛN : VN −→ U is therefore also a surjection, and by 3.3.3 the composition
V K0 −→ V M0

N −→ UM0 is surjective. Hence, V K0 += 0.

Corollary 3.3.7. With the hypotheses as in 3.3.6, the space Ĩ = i G
P σ̃ is generated

by ĨK0.

Proof. This follows from 2.2.3, 3.1.2, and 3.3.6.

3.4. Let P be a parabolic subgroup of G. Recall from §1.6 that the set Xnr(M) of
unramified characters of M possesses a natural complex analytic structure.

If (σ, U) is any admissible representaton of M , define a sheaf Iσ over Xnr(M)
by the condition that for any open X ⊆ Xnr(M) the space Γ(X, Iσ) is that of all
f : X × G −→ U such that

(a) for any χ ∈ X, g ∈ G, p ∈ P one has f(χ, pg) = σχδ1/2(p)f(g);
(b) there exists an open K ⊆ G such that for all χ ∈ X, g ∈ G, k ∈ K one has

f(χ, gk) = f(χ, g);
(c) if K is as in (b) then for every fixed g ∈ G the function χ *−→ f(χ, g) ∈ UgKg−1∩M

is analytic.

The group acts on this sheaf by right regular representations: Rgf(χ, x) = f(χ, xg).

Proposition 3.4.1. The sheaf Iσ with this action of G defines a holomorphic sheaf
of admissible representations of G whose fibre at χ ∈ Xnr(M) is isomorphic to i G

P σχ.

Proof. Straightforward.
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Since the representations i G
P σχ may be identified as K-representations (3.1.1), the

subsheaves IK
σ are not just coherent but in addition locally free, and isomorphic to

OXnr(M)(i G
P (σ)K).

Next comes what is in some sense a converse to this. If (π,V) is any holomor-
phic sheaf of admissible representations of G with base some space X, then since
the representation on each Γ(U,V) is smooth, the sheaf VN is defined by the formula
Γ(U,VN ) = Γ(U,V)N , and defines a holomorphic family, at least, of smooth repre-
sentations of M , whose fibre at x ∈ X is isomorphic to (Vx)N (where Vx is the fibre
of V at x). Substantially the same argument used to prove Theorem 3.3.1 together
with standard facts about coherent sheaves will then prove:

Theorem 3.4.2. The holomorphic sheaf (πN ,VN) of representations of M is admis-
sible.
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4. The asymptotic behavior of matrix coefficients

This section pursues a question suggested by the proof of Theorem 3.3.3 and some
results of Harish-Chandra.

4.1. Fix a minimal parabolic subgroup P∅ of G, let P be any parabolic subgroup
containing P∅, and let P = MN be a Levi factorization. Let (π, V ) be an admissible
representation of G. Let K0 be a compact open subgroup of G possessing an Iwahori
factorization K0 = N0M0N

−
0 with respect to P (according to 1.4.4, one can choose

arbitrarily small such groups). Assume a Haar measure on G such that meas(K0) = 1.

Lemma 4.1.1. If v ∈ V K0 has image u in VN , then for any a ∈ A− (as defined in
§1.4), the element PK0

(π(a)v) has image πN (a)u.

Proof. One has π(a)v ∈ V M0N−
0 . Therefore, by Jacquet’s First Lemma (3.3.4),

PK0
(π(a)v) = PN0

(π(a)v), so that π(a)v and PK0
(π(a)v) have the same image in

VN .

Theorem 4.1.2 (Jacquet’s Second Lemma). Let N0, N1 be compact open sub-
groups of N , v ∈ V (N1), and m ∈ M such that mN1m−1 ⊆ N0. Then PN0

(π(m)v) = 0.

Proof. One has

PN0
(π(m)v) = (constant) ·

∫

N0

π(n)π(m)v dn

= (constant) · π(m)
∫

m−1N0m
π(n)v dn

= 0

because N1 ⊆ m−1N0m.

Suppose now that N1 is a compact subgroup of N such that V K0 ∩V (N) ⊆ V (N1).

Corollary 4.1.3. If a ∈ A− is such that aN1a−1 ⊆ N0, then PK0
(π(a)v) = 0 for all

v ∈ V K0 ∩ V (N).

Proof. By Jacquet’s First Lemma (3.3.4), PK0
(π(a)v) = PN0

(π(a)v). By his Second,
this in turn is zero.

For each a ∈ A−, define V K0
a to be PK0

(π(a)V K0) = π(K0aK0)V . (To interpret the
right-hand side, recall that by our convention from §2.2, we really mean the action
via π of the characteristic function of K0aK0.)

Proposition 4.1.4. If a is in A−, then the projection from V K0
a to V M0

N is a surjec-
tion. If aN1a−1 ⊆ N0 then V K0

a ∩ V (N) = 0 and the projection is an isomorphism.
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Proof. Let u lie in V M0

N . Then πN (a−1)u also lies in V M0

N , and therefore by Theorem
3.3.3 there exists v ∈ V K0 with it as image in VN . By 4.1.1, then, PK0

(π(a)v) has
image u in VN .

Assume aN1a−1 ⊆ N0, and v ∈ V K0
a ∩ V (N), say v = PK0

(π(a)v0) with v0 ∈ V K0.
Then v lies in V (N1) and v = PN0

(π(a)v0), so that

0 =
∫

N1

π(n1)(
∫

N0

π(n0)π(a)v0 dn0) dn1

= (constant) ·
∫

a−1N0a
π(n)(

∫

N0

π(n0)π(a)v0 dn0) dn

= (constant) · π(a)
∫

a−2N0a2
π(n)(

∫

a−1N0a
π(n′)v0 dn′) dn

= (constant) · π(a)
∫

a−2N0a2
π(n)v0 dn.

Therefore v0 lies in V (N) as well, hence in V (N1), so that by 4.1.3,

v = PK0
(π(a)v0) = 0.

Lemma 4.1.5. For a1, a2 ∈ A− one has this identity in H(G, K0):

chK0a1K0
∗ chK0a2K0

= chK0a1a2K0
.

Proof. As sets, one has K0a1K0 ·K0a2K0 = K0a1a2K0 because for k0 = n0m0n
−
0 one

has
a1k0a2 = a1n0a

−1
1 · a1a2 · m0 · a

−1
2 n−

0 a2

which is in K0a1a2K0. But by 1.5.1 the measures agree as well. (For my purposes
here the agreement as sets is all that is required.)

Proposition 4.1.6. For all a ∈ A− with aN1a−1 ⊆ N0, the spaces V K0
a are identical.

Proof. For all a1, a2 satisfying the hypothesis, the product a1a2 also satisfies it. By
4.1.5, π(K0a1K0) takes V K0

a2
onto itself and into V K0

a1a2
. Hence V K0

a1a2
⊆ V K0

a2
. By 4.1.4,

the two spaces have the same dimension, hence are equal. Similarly, V K0
a1a2

= V K0
a1

.

Following this, define V K0

A− to be the subspace of V K0 equal to V K0
a for all a ∈ A−

with aN1a−1 ⊆ N0.

Lemma 4.1.7. For any a ∈ A−, π(K0aK0) is an isomorphism of V K0

A− with itself.

Proof. The space V K0

A− is stable under this map by 4.1.5. Since the space is finite-
dimensional, it suffices to prove that the map is an injection. Say, then, that
PK0

(π(a)v) = 0 for some v ∈ V K0

A− . The image of PK0
(π(a)v) in V M0

N is 0 as well,
but this is just πN(a) applied to the image of v by 4.1.1. Therefore the image of v in
V M0

N is 0 and by 4.1.4 v itself is 0.
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According to 4.1.4 the canonical projection from V to VN induces an isomorphism
of V K0

A− with V M0

N . The inverse of this isomorphism is called the canonical lifting from
V M0

N to V K0

A− . (Note that according to 1.4.3 there will exist ε > 0 such that a ∈ A−(ε)
implies aN1a−1 ⊆ N0.)

This “canonical lifting” is not independent of the choice of K0. More precisely, let
K ′

0 ⊆ K0 be two subgroups with Iwahori factorizations. Then it is not generally true

that V K0 ∩ V
K ′

0

A− = V K0

A− .

Proposition 4.1.8. If v ∈ V K0

A− and v′ ∈ V
K ′

0

A− have the same image in VN , then

v = PN0
(v′) = PK0

(v′).

Proof. Let N ′
1 be chosen large enough so that V (N) ∩ V K ′

0 ⊆ V (N ′
1), and choose

a ∈ A− so that aN ′
1a

−1 ⊆ N ′
0. According to 4.1.7, there exist v0 ∈ V K0

A− and v′
0 ∈ V

K ′
0

A−

such that v = PK0
(π(a)v0), v′ = PK ′

0
(π(a)v′

0). If v0 has image u0 and v′
0 has image u′

0

in VN , then v and v′ have images πN (a)u0 and πN(a)u′
0, by 4.1.1. Therefore u0 = u′

0,
and hence v0 − v′

0 ∈ V (N) ∩ V K ′
0 . But then by 4.1.3, PK ′

0
(π(a)v0 − π(a)v′

0) = 0, or

PK ′
0
(π(a)v0) = PK ′

0
(π(a)v′

0) = v′.

Since v0 is fixed by K0, π(a)v0 and hence PK ′
0
(π(a)v0) = v′ are both fixed by M0N

−
0 .

Jacquet’s First Lemma implies then that

PN0
(v′) = PK0

(v′)

= PK0
(PK ′

0
(π(a)v0)) = v.

4.2. Let P be a parabolic subgroup of G and (π, V ) an admissible representation
of G.

Note that for the representation (π̃, Ṽ ) and parabolic P−, the set A− must be
replaced by A+ = (A−)−1.

Lemma 4.2.1. If K0 is a subgroup with an Iwahori factorization with respect to P ,
v ∈ V K0

A− , and ṽ ∈ Ṽ K0 ∩ Ṽ (N−), then 〈v, ṽ〉 = 0.

Proof. Choose N1 so that V K0 ∩V (N) ⊆ V (N1), N−
1 so that Ṽ K0 ∩ Ṽ (N−) ⊆ Ṽ (N−

1 ),
and a ∈ A− so that a−1N−

1 a ⊆ N−
0 . Choose v0 ∈ V K0

A− such that v = PK0
(π(a)v0)

(4.1.7). Then

〈v, ṽ〉 = 〈PK0
(π(a)v0), ṽ〉

= 〈v0,PK0
(π(a−1)ṽ)〉

= 0

by 4.1.3 applied to Ṽ .
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Lemma 4.2.2. Suppose that K ′
0 ⊆ K0 are two subgroups with Iwahori factorizations

with respect to P , and v′ ∈ V
K ′

0

A− , ṽ′ ∈ Ṽ
K ′

0

A+ , v ∈ V K0

A− , ṽ ∈ Ṽ K0

A+ , and assume that
v − v′ ∈ V (N) and ṽ − ṽ′ ∈ Ṽ (N−). Then

〈v, ṽ〉 = 〈v′, ṽ′〉.

Proof. From 4.1.8, v = PN0
(v′). Therefore,

〈v, ṽ〉 = 〈PN0
(v′), ṽ〉

= 〈v′, ṽ〉

and

〈v, ṽ〉 − 〈v′, ṽ′〉 = 〈v′, ṽ − ṽ′〉

= 0

by 4.2.1.

One may thus define a canonical pairing of VN with ṼN− according to the formula

〈u, ũ〉N = 〈v, ṽ〉

where v, ṽ are any two canonical lifts of u, ũ.

Proposition 4.2.3. The canonical bilinear form on VN×ṼN− is characterized unique-
ly by the property that for any v ∈ V , ṽ ∈ Ṽ with images u ∈ VN , ũ ∈ ṼN− there
exists ε > 0 such that for any a ∈ A−(ε) one has

〈π(a)v, ṽ〉 = 〈πN(a)u, ũ〉N .

Proof. That the canonical bilinear form has this property follows from 4.2.1. To see
that it is uniquely determined by this property, let B be a bilinear form on VN × ṼN−

with this property, and suppose K0 to be a compact open subgroup possessing an
Iwahori factorization with respect to P . One can find ε > 0 such that

(i) for all v ∈ V K0, ṽ ∈ Ṽ K0 with images u ∈ VN , ũ ∈ ṼN− , and a ∈ A−(ε), one
has 〈π(a)v, ṽ〉 = 〈PK0

(π(a)v), ṽ〉 = B(πN (a)u, ũ) and
(ii) V K0

a = V K0

A− for a ∈ A−(ε).

But then PK0
(π(a)v) is a canonical lift of πN (a)u, and since πN (a) is surjective on

V M0

N this implies that for all u ∈ V M0

N and ũ ∈ Ṽ M0

N− with canonical lifts v ∈ V K0 and
ṽ ∈ Ṽ K0 one has B(u, ũ) = 〈v, ṽ〉.

Theorem 4.2.4. The canonical bilinear form on VN × ṼN− is M-invariant and non-
degenerate.
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Proof. For any m ∈ M the bilinear form B(u, ũ) = 〈πN (m)u, πN(m)ũ〉N has the
characteristic property of 4.2.3, thus is the same as the canonical form.

For the non-degeneracy: Suppose u ∈ VN to be such that 〈u, ũ〉N = 0 for all
ũ ∈ ṼN−. Let v ∈ V K0

A− be a canonical lift of u. Then 4.2.3 implies that 〈v, ṽ〉 = 0 for
every ṽ ∈ Ṽ K0, hence v = 0. Therefore u = 0 as well.

Corollary 4.2.5. The contragredient of the representation (πN , VN) of M is isomor-
phic to (π̃N− , ṼN−).

4.3. Let (π, V ) be an admissible representation of G. Let P∅ be a minimal parabolic
subgroup, ∆ a set of simple roots associated to A∅ and P∅. Let K0 be a compact open
subgroup of G possessing an Iwahori factorization with respect to all the parabolics
containing P∅ (arbitrarily small such K0 exist according to 1.4.4).

It is immediate that for any Θ ⊆ ∆ and ε > 0,

A−
Θ(ε) · A−

∅ ⊆
{
a ∈ A−

∅

∣∣∣ |α(a)| ≤ ε for all α ∈ ∆ " Θ
}
.

Conversely:

Lemma 4.3.1. Let Θ be a subset of ∆. For any ε1 > 0 there exists ε2 > 0 such that{
a ∈ A−

∅

∣∣∣ |α(a)| ≤ ε2 for all α ∈ ∆ " Θ
}

is contained in A−
Θ(ε1) · A

−
∅ .

Proof. Since the product morphism from AΘ × A∆!Θ to A∅ is an epimorphism, the
image of the product of the lattices AΘ/AΘ(O) × A∆!Θ/A∆!Θ(O) in A∅/A∅(O) has
finite index. One may therefore find a finite set a of representatives of the cokernel
lying in A−

∅ . If ε0 is the minimum value of |α(a)| as α ranges over ∆"Θ and a over a,

then the set
{
a ∈ A−

∅

∣∣∣ |α(a)| ≤ εε0 for all α ∈ ∆ " Θ
}

is contained in A−
Θ(ε) ·A−

∅ .

Lemma 4.3.2. Let Θ be a subset of ∆, P = PΘ. For any v ∈ V K0 there exists ε > 0
such that whenever a ∈ A−

∅ satisfies the condition |α(a)| ≤ ε for all α ∈ ∆"Θ, then
π(K0aK0)v ∈ V K0

A− .

Proof. Let ε1 > 0 be small enough so that V K0
a = V K0

A− for a ∈ A−(ε1), and let ε2 be
as in 4.3.1. Then for a ∈ A−

∅ such that |α(a)| ≤ ε2 for all α ∈ ∆ " Θ,

π(K0aK0)v ∈ π(K0A
−(ε1)K0)π(K0A

−
∅ K0)V (by 4.1.5)

⊆ π(K0A
−(ε1)K0)V = V K0

A− .

Theorem 4.3.3. Let Θ be a subset of ∆, P = PΘ, and let v ∈ V , ṽ ∈ Ṽ be given
with images u ∈ VN , ũ ∈ ṼN−. There exists ε > 0 such that whenever a ∈ A−

∅ satisfies
|α(a)| ≤ ε for all α ∈ ∆ " Θ, then 〈π(a)v, ṽ〉 = 〈πN(a)u, ũ〉N .

Proof. This follows immediately from the construction of the canonical pairing 〈 , 〉N
and 4.3.2.
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For each Θ ⊆ ∆ and ε in (0, 1], define ΘA−
∅ (ε) to be

{

a ∈ A∅

∣∣∣∣∣
|α(a)| ≤ ε for α ∈ ∆ " Θ,

ε < |α(a)| ≤ 1 for α ∈ Θ

}

.

This is a subset of A−
∅ stable under multiplication by A−

Θ, and for any ε one sees that
A−

∅ is the disjoint union of the ΘA−
∅ (ε) as Θ ranges over all subsets of ∆.

Corollary 4.3.4. Let v ∈ V , ṽ ∈ Ṽ be given. For Θ ⊆ ∆ let uΘ, ũΘ be their images
in VN

Θ
, Ṽ

N−
Θ

. There exists ε > 0 such that for any Θ ⊆ ∆ and a ∈ ΘA−
∅ (ε) one has

〈π(a)v, ṽ〉 = 〈πNΘ
(a)uΘ, ũΘ〉NΘ

.

Proof. Let ε be the minimum of the ε guaranteed by 4.3.3 as Θ ranges over all subsets
of ∆.

4.4. The next few results (4.4.1 through 4.4.3) are technical and elementary. I will
not give proofs8.

If X is a set on which a group H acts, then a function F : X −→ C is said to
be H-finite if it and its H-translates span a finite-dimensional subspace of the space
of all complex-valued functions on X. Suppose H is abelian. Then the characters
associated to an H-finite F are the generalized eigencharacters of the representation
of H on this finite-dimensional space. If χ1, . . . , χm are the characters associated to
F then there exist '1, . . . , 'm ∈ N such that

∏
(h − χi(h))"iF = 0 for all h ∈ H .

Lemma 4.4.1. Suppose that F : Zn −→ C is Zn-finite, and let p > 0. Then the
restriction of |F (x)|p to Nn is summable if and only |χ(x)| < 1 for all nonzero
x ∈ Nn and χ associated to F .

Now let V be a vector space over R, L a lattice in V , and f1, . . . , fn elements of
the dual lattice which form a basis for the linear forms on V . Let I = {1, 2, . . . , n}
and for each J ⊆ I, and each c = (c1, . . . , cn) ∈ Rn with all ci ≥ 0 let

VJ =
{
v ∈ V

∣∣∣ fi(v) = 0 for all i ∈ J
}
;

LJ = L ∩ VJ ;

V + =
{
v ∈ V

∣∣∣ fi(v) ≥ 0 for all i
}
;

VJ
+ = VJ ∩ V +;

M = the sublattice spanned by the LJ , as J
ranges over all subsets of I with card(J) = n − 1;

JV (c) =
{
v ∈ V

∣∣∣ 0 ≤ fi(v) < ci for i ∈ J
}
;

JV +(c) =

{

v ∈ V

∣∣∣∣∣
fi(v) ≥ ci for i ∈ I " J

0 ≤ fi(v) < ci for i ∈ J

}

.

8Reference?
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Define JL+(c) as JV +(c), etc. The vector subspace VJ has dimension equal to (n −
card(J)), so that if card(J) = n − 1, LJ has rank one over Z. The lattice M is of
finite index in L, and each M+

J is isomorphic to Nn−card(J). The vector space V itself
is V∅, and for any c as above V + is equal to the disjoint union of the JV +(c) as J
ranges over all subsets of I. The group LJ acts on the set JV (c).

Lemma 4.4.2. For each J ⊆ I and c ∈ Rn with all ci ≥ 0, there exists a finite set
Λ such that JL+(c) =

∏
λ∈Λ(λ + MJ

+).

The above two results combine to give:

Lemma 4.4.3. Let F : JL+(c) −→ C be the restriction to JL+(c) of an LJ -finite
function on JL(c), p > 0. Then |F |p is summable on JL+(c) if and only if for each
nonzero x ∈ LJ

+ and χ associated to F , |χ(x)| < 1.

For the rest of this section, I continue the notation of §4.3.

Proposition 4.4.4. Let Θ be a subset of ∆, 0 < ε ≤ 1, p > 0. Let F : ΘA−
∅ (ε) −→ C

be such that

(a) F is the restriction to ΘA−
∅ (ε) of an AΘ-finite function;

(b) there exists a unitary character ω : A∆ −→ C× such that RaF = ω(a)F for
all a ∈ A∆;

(c) there exists an open subgroup A ⊆ A∅(O) such that RaF = F for all a ∈ A.

Then |F |p is summable on ΘA−
∅ (ε)/AA∆ if and only if |χ(a)| < 1 for every a ∈

A−
Θ " A∅(O)A∆ and every character χ of AΘ associated to F .

Proof. Let L be the lattice A∅/A∅(O)A∆, V = L ⊗ R, and define for each α ∈ ∆ a
function fα : A∅ −→ Z by fα(a) = − logq |α(a)|, where q is the order of the residue
field. To this situation one may apply the previous results—for example, each JL+(c)
may be identified with some ΘA−

∅ (ε)/A∅(O)A∆. Now the function |F | may be con-
sidered as a function on ΘA−

∅ (ε)/AA∆, which fibres naturally over ΘA−
∅ (ε)/A∅(O)A∆

with finite fibres. The proposition follows therefore from an immediate generalization
of 4.4.3.

Corollary 4.4.5. Let Θ be a subset of ∆, 0 < ε ≤ 1, p > 0, K a compact open
subgroup of G. Let F be a function on K ·ΘA−

∅ (ε) ·K whose restriction Φ to ΘA−
∅ (ε)

satisfies (a) and (b) of 4.4.4. Then |F |p is integrable mod ZG if and only if for every
character χ associated to Φ and a ∈ A−

Θ " A∅(O)A∆, |χδ−1/p(a)| < 1.

This follows from 4.4.4 together with 1.5.2. (Note that condition (c) of 4.4.4
automatically holds here9.)

If P is a parabolic subgroup of G and (π, V ) an admissible representation of G,
then according to 3.3.1 the representation (πN , VN) is admissible as well. By 2.1.9
this representation is a direct sum of subrepresentations (VN)χ,∞, χ ranging over a

9In other words, F is automatically uniformly locally constant. Is this obvious?
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set of characters of the center of M . I call the restriction to A of the characters χ
such that (VN)χ,∞ += 0 the central characters of π with respect to P . (These are
what Harish-Chandra calls exponents in [20].) If π is an ω-representation for the
character ω of ZG, then χ|A∩ZG

= ω|A∩ZG
for any central character χ. If P1 ⊆ P2 are

two parabolics then πN1
∼= (πN2

)N1∩M2
, so that if χ1 is a central character of π with

respect to P1 then χ1|A2
is a central character with respect to P2.

Theorem 4.4.6. Let ω be a character of ZG. If (π, V ) is an admissible ω-representation
of G, then it is square-integrable if and only if

(a) ω is unitary;
(b) for every Θ ⊆ ∆, if χ is a central character of π with respect to PΘ then

|χδ−1/2
∅ (a)| < 1 for all a ∈ A−

Θ " A∅(O)A∆.

Proof. The condition (a) is trivially necessary. Suppose it then to hold.
Let Γ be a subgroup of G as in 1.4.6 such that

(i) Γ/A∆ is compact;
(ii) A∅(O) ⊆ Γ;
(iii) G = ΓA−

∅ Γ.

Let v ∈ V , ṽ ∈ Ṽ be given, and consider cv,ṽ(g) = 〈π(g)v, ṽ〉. Let K be a compact
open subgroup of G, normal in Γ, such that v, ṽ are fixed by K. If {γi} is a set of
representatives of Γ/KA∆, then G =

∐
KγiA

−
∅ γjK, so that |cv,ṽ| is square-integrable

on G/Z if and only if it is on each KγiA
−
∅ γjK/A∆. In order to prove that the

conditions imply square-integrability, one may therefore replace v, ṽ by the γjv, γ−1
i ṽ

in turn and consider only cv,ṽ on KA−
∅ K/A∆. But to this one may apply 4.3.4 and

4.4.5.
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5. Absolutely cuspidal representations

5.1. An admissible representation (π, V ) is said to be absolutely cuspidal (or, by
Harish-Chandra in [20], super-cuspidal) if for any proper parabolic subgroup P = MN
in G, V = V (N) and hence VN = 0. If P1 ⊆ P2 are two parabolic subgroups, then
N2 ⊆ N1 and V (N2) ⊆ V (N1), so that in order to check this condition, it suffices to
consider only maximal proper parabolics. If P1 and P2 are conjugate then V (N1) is
conjugate to V (N2), so that it also suffices to consider only a fixed element of each
conjugacy class.

Proposition 5.1.1. If (π, V ) is an admissible representation of G, then it is abso-
lutely cuspidal if and only if for any proper parabolic subgroup P and any admissible
representation (σ, U) of M one has HomG(V, i G

P σ) = 0.

Proof. The necessity follows from 3.2.5. The sufficiency follows from 3.2.4 and 3.3.1,
since one always has a G-morphism from V to i G

P (πNδ
−1/2
P ) which is non-trivial if

VN += 0.

Theorem 5.1.2 (Jacquet). If (π, V ) is an irreducible admissible representation of
G, then there exists a parabolic subgroup P and an irreducible absolutely cuspidal
representation (σ, U) of M such that (π, V ) may be embedded into i G

P σ.

Proof. Let r be the semisimple k-rank of G. We proceed by induction on r. For
r = 0, G has no proper parabolic subgroups, so all admissible representations are
absolutely cuspidal. (Note that when r = 0, G/Z is compact.)

Assume r > 0. If (π, V ) is absolutely cuspidal, one is through. If not, then there
exists some parabolic P with VN += 0. The representation πN is both admissible and
finitely generated by 3.3.1, so that it possesses a non-trivial irreducible admissible
quotient (ρ, W ). By 3.2.4, there exists an embedding of π into i G

P (ρδ−1/2
P ). Now the

semisimple rank of M is less than r, so that by the induction hypothesis there exists a
parabolic subgroup Q of M , with Levi decomposition Q = MQNQ, and an irreducible

admissible representation (σ, U) of MQ such that ρδ−1/2
P may be embedded into i M

Q σ.
Apply 2.4.4 and 2.4.5 to prove the theorem.

5.2. The following is also due to Jacquet:

Theorem 5.2.1. Suppose that (π, V ) is an absolutely cuspidal representation of G.
For v ∈ V , ṽ ∈ Ṽ , the matrix coefficient cv,ṽ has compact support on G modulo Z.

Proof. Let P∅ be a minimal parabolic subgroup of G, ∆ the set of positive simple roots
corresponding to P∅, Γ the group given in 1.4.6. Note that by 2.1.3, any admissible
representation of G is Γ-finite.

Since the split component A∆ of the center of G is equal to the connected compo-
nent of

⋂
α∈∆ ker(α), the theorem will follow from this claim: There exists ε > 0 such

that for all g ∈ ΓaΓ with |α(a)| < ε for some α ∈ ∆, cv,ṽ(g) = 0.
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To prove this claim: Let α be an element of ∆, P the standard parabolic subgroup
corresponding to ∆ " {α}. It is a maximal proper parabolic subgroup. Since (π, V )
is absolutely cuspidal, V = V (N). Fix v ∈ V , ṽ ∈ Ṽ , and choose N1 ⊆ N2 compact
open subgroups of N such that for every γ ∈ Γ, π(γ)v ∈ V (N2) and π(γ)ṽ ∈ Ṽ N1 .
Choose εP > 0 such that if a ∈ A−

∅ and |α(a)| < εP , then aN2a−1 ⊆ N1. If g = γ1aγ2,
with a ∈ A−

∅ (εP ), then one can apply Jacquet’s Second Lemma (4.1.2) to see that10

〈π(g)v, ṽ〉 = 〈π(γ1aγ2)v, ṽ〉

= 〈π(a)π(γ2)v, π̃(γ−1
1 )ṽ〉

= 0.

(One could also apply 4.3.3 here.)
Let ε be the minimum of the εP thus chosen, as P ranges over the set of all standard

maximal proper parabolic subgroups of G. The claim is clearly satisfied by ε.

Lemma 5.2.2. There is no Lemma 5.2.2.

Corollary 5.2.3. Suppose that (π, V ) is an irreducible absolutely cuspidal ω-rep-
resentation of G, where ω is a unitary character of Z. Then (π, V ) is unitary.

Proof. A matrix coefficient of compact support modulo Z is obviously square-integ-
rable modulo Z. The result follows from 2.5.4.

Proposition 5.2.4. If (π, V ) is an irreducible absolutely cuspidal11 representation
of G, then there exists a real constant dπ > 0 such that for any u, v ∈ V , ũ, ṽ ∈ Ṽ ,
one has ∫

G/Z
〈π(g)u, ũ〉〈π(g−1)v, ṽ〉 dg = d−1

π 〈u, ṽ〉〈v, ũ〉.

Proof. Note that the integral makes sense by 5.2.1.
For each v0 ∈ V , ũ0 ∈ Ṽ , the pairing which takes u ∈ V and ṽ ∈ Ṽ to

∫

G/Z
〈π(g)u, ũ0〉〈π(g−1)v0, ṽ〉 dg

is, as one can check, G-invariant, hence a multiple c(v0, ũ0) of the canonical pairing.
Furthermore, the pairing taking v ∈ V and ũ ∈ Ṽ to c(v, ũ) is also bilinear and
G-invariant, hence some multiple of the canonical pairing. Thus, one has

∫

G/Z
〈π(g)u, ũ〉〈π(g−1)v, ṽ〉 dg = cπ〈u, ṽ〉〈v, ũ〉

for some constant cπ.

10Perhaps this will be clearer if we cite 4.1.3.
11This result and its proof are valid for square-integrable representations.
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Assume for the moment that ω is unitary. Then by 5.2.3, (π, V ) is unitary as well,
say with inner product u · v. Fix ũ, ṽ for the moment and let u0, v0 ∈ V be such that
for all x ∈ V , x ·u0 = 〈x, ũ〉 and x · v0 = 〈x, ṽ〉. The formula already established gives

cπ(u · v0)(v · u0) =
∫

G/Z
(π(g)u · u0)(π(g−1)v · v0) dg

=
∫

G/Z
(π(g)u · u0)(π(g)v0 · v) dg

(which is the usual Schur orthogonality for unitary representations). One sees that
cπ > 0 by setting u = v0 and v = u0.

Before completing the proof, we’ll need the following result:

Lemma 5.2.5. If (π, V ) is any smooth ω-representation of G, then there exists a
unique positive real-valued character χ of G such that the restriction of π ⊗ χ to Z
is unitary.

Proof. What must be shown is that there exists a unique positive character χ of G
such that ω · (χ|Z) is a unitary character of Z. Now G has a maximum torus quotient
T ; the canonical morphism from G to T induces an isogeny of Z. If Z0 and T0 are
the maximal compact subgroups of Z and T , then the groups Z/Z0 and T/T0 are free
modules over Z of the same rank, and the canonical map from Z/Z0 to T/T0 is an
injection with finite cokernel. The character |ω| on Z/Z0 therefore extends uniquely
to a positive character of T/T0. Take χ to be its inverse.

To complete the proof of 5.2.4, let (π, V ) be given, and choose χ so π⊗χ is unitary.
The constant cπ⊗χ will work for π as well as π⊗χ, and is positive. Let dπ = c−1

π⊗χ.
The constant dπ in 5.2.4 is called the formal degree of (π, V ). It depends only on

π and on the normalization of Haar measure. Harish-Chandra has recently12 shown
that if the characteristic of the field of definition of G is 0, then one may normalize
the measure on G such that dπ ∈ N for every absolutely cuspidal π.

5.3. I give here some new characterizations of absolutely cuspidal representations.

Theorem 5.3.1. Let (π, V ) be an admissible representation of G. The following are
equivalent:

(a) (π, V ) is absolutely cuspidal;
(b) (π̃, Ṽ ) is absolutely cuspidal;
(c) for every v ∈ V , ṽ ∈ Ṽ the matrix coefficient cv,ṽ has compact support modulo

Z.

12Not recently. PS will find a reference.
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Proof. The equivalence of (a) and (b) is immediate from Theorem 4.2.3.
That (a) implies (c) is just 5.2.1. For the converse: Suppose that for every v ∈ V ,

ṽ ∈ Ṽ , cv,ṽ has compact support modulo Z. Then for every v ∈ V , ṽ ∈ Ṽ , and every
parabolic subgroup P in G, there exists ε > 0 such that 〈π(a)v, ṽ〉 = 0 for a ∈ A−(ε).
Fix for the moment a compact open subgroup K0 with an Iwahori factorization with
respect to P . Then there exists ε > 0 such that for every v ∈ V K0, ṽ ∈ Ṽ K0, and
a ∈ A−(ε), we have 〈π(a)v, ṽ〉 = 0, and this in turn implies that for every v ∈ V K0

and a ∈ A−(ε), we have PK0
(π(a)v) = 0. This implies that V K0

A− (see §4) is zero.
Thus, letting K0 vary and applying 4.1.4, we see that VN = 0. Since P was arbitrary,
(π, V ) is absolutely cuspidal.

5.4. Recall from §2 that if ω is a character of Z, then the smooth ω-representations
of G form an abelian category.

Theorem 5.4.1. If (π, V ) is an absolutely cuspidal ω-representation, then it is pro-
jective and injective in this category.

Proof. I shall first prove projectivity, and start with the case where (π, V ) is irre-
ducible. Let (σ, U) be any smooth ω-representation, F : U −→ V a G-surjection. I
must show that there exists a G-morphism Φ: V −→ U splitting F .

Choose nonzero ṽ0 ∈ Ṽ and v0 ∈ V such that 〈v0, ṽ0〉 = dπ (see 5.2.4). For
any v ∈ V , let Γv be the function cv,ṽ0

: g *−→ 〈π(g)v, ṽ0〉. Because π is an ω-
representation, it follows from 2.5.1 and 5.2.1 that v *−→ Γv is a G-morphism from
(π, V ) to (R,Hω−1(G)). Identify V with its image in Hω−1(G). Define the projection
P : Hω−1 −→ V by the formula Pf(y) = (Γv0

∗ f)(y). Then

Pf(y) =
∫

G/Z
Γv0

(x)f(x−1y) dx

=
∫

G/Z
Γv0

(yx)f(x−1) dx

=
∫

G/Z
f(x−1)(RxΓv0

)(y) dx.

The last formula shows that P (Hω−1) ⊆ V ; the first implies that P is a G-morphism:
P (Rgf) = Rg(Pf). Furthermore, if f = Γv lies in V , then

Pf(y) =
∫

G/Z
〈π(x)v0, ṽ0〉〈π(x−1y)v, ṽ0〉 dx

= d−1
π 〈v0, ṽ0〉〈π(y)v, ṽ0〉

= 〈π(y)v, ṽ0〉

= Γv(y)

by 5.2.4 and the choice of v0, ṽ0. In other words, Pf = f for f ∈ V .
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Recall (σ, U) and F : U −→ V . Choose u0 ∈ U with F (u0) = v0. Let Π be the
map from Hω−1 to U , taking f to σ(f̌)u0, where for any f ∈ Hω−1 (or C∞(G), for
that matter) f̌(x) = f(x−1). One can check easily that this is a G-morphism. And
one can also check that the diagram

Hω−1

!!

Π

!!
!!

!!
!
!!

!!
!
!!

!

""

P

""
""

"
""

""
"

""
""

"

U ##F
V

is commutative, which implies that the composition Φ = Π ◦ Γ: V −→ U splits F .
Now assume (π, V ) to be an arbitrary absolutely cuspidal ω-representation. Let K

be some compact open subgroup of G, V0 the G-stable subspace generated by V K .
This is finitely generated, hence has an irreducible (absolutely cuspidal) quotient,
which is in fact isomorphic to a summand of V0 by the case we have just dealt with.
An induction argument implies that V0 is a finite direct sum of irreducible absolutely
cuspidal representations. If one applies Zorn’s Lemma, letting K vary, one obtains:

Proposition 5.4.2. Any absolutely cuspidal ω-representation is a countable direct
sum of irreducible absolutely cuspidal representations.

This clearly implies projectivity for all absolutely cuspidal ω-representations.
For injectivity: Let (σ, U) be any smooth ω-representation and F : V −→ U a G-

injection. I must construct Φ: U −→ V splitting F . But now one has a dual map
F̃ : Ũ −→ Ṽ , which splits by what I have just shown, say by a map Φ̃. But then one

also has
˜̃
Φ:

˜̃
U −→

˜̃
V splitting

˜̃
F :

˜̃
V −→

˜̃
U . However,

˜̃
V ∼= V and one has a canonical

embedding of U into
˜̃
U , so that one may define Φ as

˜̃
Φ|U .

Corollary 5.4.3. If P is a proper parabolic subgroup of G and (σ, U) is an irreducible
admissible representation of M , then no irreducible composition factor of i G

P σ is
absolutely cuspidal.

Proof. Let V0 be a G-stable subspace of i G
P σ, (π, V ) an irreducible absolutely cuspidal

representation of G, and F : V0 −→ V a G-morphism. If F += 0, then F splits by 5.4.1.
But this implies that (π, V ) is isomorphic to a subspace of i G

P σ, a contradiction to
5.1.1.

Corollary 5.4.4. Assume π to be an admissible representation of G of finite length,
whose composition series is multiplicity-free and whose irreducible composition fac-
tors are absolutely cuspidal. Then π is in fact isomorphic to the sum of its irreducible
composition factors.
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Proof. Applying 2.1.9, one may assume that for some character ω of Z, each compo-
sition factor is an ω-representation. By an induction argument, one is reduced to the
case where the length of π is two, i.e., one has an exact sequence

0 −→ π1 −→ π −→ π2 −→ 0

where π1 and π2 are both irreducible absolutely cuspidal ω-representations, and π1

and π2 are not isomorphic. Now for any z ∈ Z, the map v *−→ π(z)v − ω(z)v from
the space of π into itself factors through π1 and defines in fact a G-morphism from π2

to π1, which by assumption must be null. Therefore π itself is an ω-representation,
and one can apply 5.4.1 to finish the proof.
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6. Composition series and intertwining operators I

I shall show here among other things that every finitely generated admissible rep-
resentation has finite length; this will fall out from an analysis of the Jacquet module
for a representation V induced from a parabolic subgroup of G. This analysis also
relates to G-morphisms between various induced representations and allows one a
refinement of the earlier criterion for square-integrability.

6.1. I shall first prove some fairly technical results, related to some results of Bruhat
in [11]. Let X be an analytic variety over the p-adic field k, Y an analytic subvariety
of X. Suppose H is a k-analytic group acting on X and taking Y to itself, such that

(i) H acts freely and properly on X and
(ii) for each x ∈ X, the map h *−→ h · x is an immersion of H .

Then by [9, §6.2], the quotient H\X of X by H exists and is also an analytic variety,
and contains the quotient H\Y as an analytic subvariety. The projection from X to
H\X makes X into a principal bundle with H as fibre. Local analytic sections of
this projection exist everywhere on H\X.

Suppose (σ, U) is a smooth representation of H . Define I∞c (σ|H, X) to be the space
of locally constant sections, of compact support, of the vector bundle associated to
the H-space U and the principal bundle X. Explicitly, this consists of functions
f : X −→ U which are locally constant and of compact support modulo H , such
that f(hx) = σ(h)f(x) for all h ∈ H and x ∈ X. One may also define spaces
I∞c (σ|H, X " Y ) and I∞c (σ|H, Y ).

Lemma 6.1.1. The sequence

0 −→ I∞c (σ|H, X " Y ) −→ I∞c (σ|H, X) −→ I∞c (σ|H, Y ) −→ 0

is exact.

Proof. Injectivity is clear.
Suppose f ∈ I∞c (σ|H, X) and f |Y = 0. Since f has compact support on X modulo

H , and is locally constant, there exists a finite set of compact open sets Xi ⊆ X
such that supp(f) ⊆ HXi and f |Xi is constant. Since f |Y = 0, one may assume
Xi ∩ Y = ∅ for each i. Thus, f lies in I∞c (σ|H, X " Y ).

Suppose f ∈ I∞c (σ|H, Y ). One has a finite disjoint set of compact open sets Yi ⊆ Y
such that supp(f) ⊆

⋃
HYi and f |Yi is constant. The projection of each Yi onto H\Y

is open. Because local sections over H\Y exist, we may find disjoint compact sets
Zj ⊆ Y such that

(i) the restriction of the projection from Y to H\Y is an isomorphism on each
Zj;

(ii) supp(f) ⊆
⋃

HZj;
(iii) f is constant on each Zj.
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One may then find disjoint compact open sets Xj ⊆ X such that

(i) the restriction of the projection to each Xj is an isomorphism;
(ii) Xj ∩ Y = Zj ;
(iii) for each h ∈ H , if hXi ∩ Xj is nonempty, then so is hYi ∩ Yj.

Extend f in the obvious way to Xj, again to HXj, then to
⋃

HXj. The function in
I∞c (σ|H, X) one obtains then has image f in I∞c (σ|H, Y ).

6.2. In this section, let P be any locally compact group such that the compact open
subgroups form a basis of neighborhoods of the identity, let Q be a closed subgroup, N
a normal closed subgroup with arbitrarily large compact open subgroups, and assume
QN closed. In particular, N is unimodular. Let (σ, U) be a smooth representation
of Q. Then one has the representation (σQ∩N , UQ∩N) of Q/Q ∩ N , which may also
be considered as a representation of QN/N ⊆ P/N since QN/N ∼= Q/Q ∩ N .

Let δ be the modulus character of Q on Q ∩ N\N . It is trivial on Q ∩ N .

Proposition 6.2.1. One has

(c-IndP
Q σ)N

∼= c-IndP/N
QN/N σQ∩Nδ.

Proof. In several stages:
(i) For u ∈ U , let ū be its image in UQ∩N . Since any f ∈ c-IndP

Q σ has compact
support modulo Q, for any p ∈ P the function Rpf |N has compact support modulo
Q∩N . Also, for q ∈ Q∩N , n ∈ N , and p ∈ P one has f(qnp) = σ(q)f(np) = f(np).
Thus the integral

f̄(p) =
∫

Q∩N\N
f(np) dn

is well-defined.
(ii) For n ∈ N , a change of variable in the integral shows that for all p ∈ P ,

f̄(np) = f̄(p). Thus, f̄ may be considered as a function on P/N .
(iii) For q ∈ Q,

f̄(qp) =
∫

Q∩N\N
f(nqp) dn

=
∫

Q∩N\N
f(q · q−1nq · p) dn

= σQ∩N (q)δ(q)f̄(p).

(iv) The function f̄ clearly has compact support modulo QN on P .

(v) From (ii)–(iv) one sees that f −→ f̄ is a map from c-IndP
Q σ to c-IndP/N

QN/N σQ∩N .

It is a P -morphism, clearly, and factors through a P/N-morphism from (c-IndP
Q σ)N .

(vi) Now to see that f *−→ f̄ is surjective.
Let x ∈ P be given. Let K be a compact open subgroup of P and u an element

of U fixed by xKx−1 ∩ Q. Then (xKx−1 ∩ Q)(Q ∩ N) is the inverse image of the
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image of xKx−1 ∩ Q in Q/(N ∩ Q); thus, if K0 ⊆ K is a compact open subgroup
small enough so that the image of (xK0x−1)N ∩Q in Q/(Q∩N) is contained in that
of xKx−1 ∩ Q, one has (xK0x−1)N ∩ Q ⊆ (xKx−1 ∩ Q)(Q ∩ N). Choose such a K0.
Define a function φ : P −→ UQ∩N to be 0 outside QNxK0 and equal to (σQ∩Nδ)(q)ū

at qnxk ∈ QNxK0. The space c-IndP/N
Q/(Q∩N) σQ∩Nδ, with proper identifications, is

spanned by such elements, so it suffices to find f ∈ c-IndP
Q σ with f̄ = φ. But now

define f to be 0 off QxK0 and equal to σ(q)u at qxk. Then for nx = qxk one has
q = nxk−1x−1, hence, by assumption on K0, q ∈ (xKx−1 ∩ Q)(Q ∩ N), so that
f(nx) = σ(q)u = ū. Thus f̄ is equal to some scalar multiple of φ.

(vii) The map f *−→ f̄ is injective. For this, we need a few preliminary results:

Lemma 6.2.2. If N0 is any compact open subgroup of N and K is a compact sub-
group of P , then there exists a compact open subgroup of N containing N0 and
normalized by K.

Proof. The set
⋃

k∈K kN0k−1 is compact, hence by the assumption on N contained in
some compact open subgroup N1 of N . The group

⋂
k∈K kN1k−1 contains N0 and is

thus open, but it is also clearly compact and K-stable.

Corollary 6.2.3. The element f ∈ c-IndP
Q σ has image 0 in (c-Ind σ)N (i.e., lies in

(c-Ind σ)(N)) if and only if for every p ∈ P there exists a compact open subgroup
Np ⊆ N such that

∫
Np

f(np) dn = 0.

Proof. The function f lies in (c-Ind σ)(N) if and only if there exists a compact open
subgroup N0 ⊆ N such that for every p ∈ P

∫

N0

f(pn) dn = 0.

Therefore, if f ∈ (c-Ind σ)(N) one may choose Np = pN0p−1.
Conversely, let f be given and assume that for every p ∈ P there exists an Np satis-

fying the conditions in 6.2.3. Choose K compact and open such that f ∈ (c-Ind σ)K .
For any p ∈ P , the Lemma implies that one may find a compact open subgroup
N0 ⊆ N such that

∫
N0

f(pkn) dn = 0 for every k ∈ K. If X is compact and f has
support on QX, one may (again by the Lemma) find a compact open N1 ⊆ N such
that

∫
N1

f(xn) dn = 0 for all x ∈ X. But now consider the function fN1
=

∫
N1

Rnf dn.
Since f has support on QX, fN1

has support on QXN1. But by the construction
of N1, for any x ∈ X and n1 ∈ N1,

∫
N1

f(xn1n) dn = 0. Hence fN1
= 0 and

f ∈ (c-Ind σ)(N1).

Now to attack the injectivity of f *−→ f̄ . Suppose f̄ = 0. In particular, f̄(1) = 0,
which means that

∫
(Q∩N)\N f(n) dn = 0. Choose a compact open subgroup N0 of N
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such that the support of f |N lies in (Q ∩ N)N0. Then
∫

N0

f(n) dn =
∫

(N0∩Q)\N0

∫

N0∩Q
f(n1n2) dn1 dn2 = 0,

which means that
∫
N0

f(n) dn lies in U(Q ∩N). Thus,
∫
N0

f(n) dn ∈ U(N1) for some
compact open subgroup N1 ⊆ Q ∩ N . If one chooses a compact open subgroup
N ′

0 ⊆ N containing N1N0, then one has
∫
N ′

0
f(n) dn = 0.

This argument applies to Rpf as well, which guarantees that the condition of 6.2.3
holds, and hence f ∈ (c-Ind σ)(N).

The proof of Proposition 6.2.1 is complete.

Remark 6.2.4. The map f *−→ f̄ , and therefore the isomorphism of 6.2.1, depends
on the choice of a measure on (Q ∩ N)\N . Otherwise, it is canonical.

6.3. Return to the notational conventions of §§3–5 (so that in particular G is the
group of rational points of a reductive group defined over the p-adic field k). Fix a
minimal parabolic P∅ and a maximal split torus A∅ ⊆ P∅, and let ∆ be the corre-
sponding set of simple roots.

Fix also for a while (through the proof of 6.3.6) subsets Θ,Ω ⊆ ∆. Given this
choice, let C(w) be the double coset PΘwPΩ; recall that G is the disjoint union of the
C(w) as w ranges over [WΘ\W/WΩ] (as defined in §1.1). Define a partial ordering
on [WΘ\W/WΩ] as follows: x < y if C(x) is contained in the closure of C(y). Thus,
1 is minimal with respect to this ordering.

For each w ∈ [WΘ\W/WΩ], let Gw be the union of the C(x) with x > w. It is open
in G, and if x > y then Gx ⊆ Gy. For any subset R ⊆ [WΘ\W/WΩ], let GR be the
open set

⋃
w∈R Gw. It is also the union of all sets C(x) where x > w for some w ∈ R.

If x is a minimal element of R, then the intersection of GR with the closure of C(x)
is just C(x) itself, which is therefore closed in GR. A subset S ⊆ R is said to be
minimal if all its elements are minimal; in this circumstance, the intersection of GR

with the union of the closures of the C(x) (x ∈ S) is simply the union of the C(x)
(x ∈ S), which is again closed in GR.

For each w ∈ [WΘ\W/WΩ], let d(w) be the dimension of the algebraic variety
PΘ\PΘwPΩ over k. As a particular case of the above definitions, for n ≥ 0 one may
take R to be the set of all w with d(w) ≥ n. In this case we write Gn for GR. Of
course, Gn+1 ⊆ Gn, and G = G0.

Now let (σ, U) be an admissible representation of MΘ, and let I = I(σ) be i G
PΘ

σ.
For any w ∈ [WΘ\W/WΩ] define Iw to be the subspace of f ∈ I with support on
Gw, and similarly define IR for R ⊆ [WΘ\W/WΩ]. Each IR is stable under PΩ.
The subspaces Iw define on I a decreasing filtration of PΩ-spaces indexed by the
partially ordered set [WΘ\W/WΩ]. It is difficult to describe the whole space I as
a PΩ-module, which is unfortunately useful in many applications, but it is not so
difficult to determine the graded modules associated to the filtration.
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First of all, for each w ∈ [WΘ\W/WΩ] define Jw to be (in the notation of §6.1)

I∞c (σδ1/2
Θ |PΘ, PΘwPΩ). (Of course this definition depends in reality on the double

coset PΘwPΩ.) Then letting H = PΘ one may apply 6.1.1 and the above remarks
immediately to obtain:

Proposition 6.3.1. Let R be any subset of [WΘ\W/WΩ], S a minimal subset of R,

and let R′ =
{
x ∈ [WΘ\W/WΩ] " S

∣∣∣ x > w for some w ∈ R
}
. Then the sequence

0 −→ IR′ −→ IR −→
⊕

w∈S

Jw −→ 0

is exact.

In particular one may take R = S = {w}, and then one obtains the exact sequence

0 −→
⊕

x>w
x %=w

Jx −→ Iw −→ Jw −→ 0.

As another special case one may let R =
{
w

∣∣∣ d(w) ≥ n
}

and S =
{
w

∣∣∣ d(w) = n
}
.

In this case I write IR as In. The proposition then gives a decreasing filtration {In}
indexed by N, with

In/In+1
∼=

⊕

d(w)=n

Jw.

Second, the spaces Jw may be described more explicitly. For each x ∈ G, let
x−1(σδ1/2

Θ ) be the representation of x−1PΘx on the same space as that of σ which

takes p to σδ1/2
Θ (xpx−1). The isomorphism class of this representation depends only

on the coset PΘx, but the representation itself will in general depend on the particular
x, and it is important to keep this in mind.

Define for each x ∈ G the representation Jx of PΩ:

Jx = c-IndPΩ

x−1PΘx∩PΩ
x−1(σδ1/2

Θ ).

There is a possibility of confusion with previous notation, but it is not too serious:

Proposition 6.3.2. Let w be an element of [WΘ\W/WΩ], x any element of PΘwPΩ.
The map taking f to φf , where

φf(p) = f(xp),

induces an isomorphism of Jw with Jx.

The proof of this is straightforward.
Propositions 6.3.1 and 6.3.2 together provide the description I have already men-

tioned of the graded PΩ-module associated to the filtration of I(σ) by [WΘ\W/WΩ].
The next step is to determine the corresponding Jacquet modules.
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Proposition 6.3.3. Let w be an element of [WΘ\W/WΩ], x ∈ N(A∅) representing
w. Then

(Jx)NΩ
∼= c-IndMΩ

x−1PΘx∩MΩ
σMΘ∩xNΩx−1δ1/2,

where δ is the modulus of the unique rational character of x−1PΘx∩MΩ which restricts
to ∏

α∈Σ+
!Σ+

Ω

wα∈Σ−
!Σ−

Θ

αm(α)
∏

α %∈Σ+
!Σ+

Ω

wα∈Σ−
!Σ−

Θ

α−m(α)

on A∅, where m(α) is as defined in §1.6.

I shall first interpret this. The group P∅ ∩ MΩ is a minimal parabolic of MΩ and
the corresponding set of simple roots is Ω. The group x−1PΘx ∩ MΩ is the standard
parabolic corresponding to w−1Θ ∩ Ω, with radical x−1NΘx ∩ MΩ and reductive
component x−1MΘx∩MΩ (see 1.3.3). Similarly, the group xPΩx−1∩MΘ is a standard
parabolic in MΘ, corresponding to Θ∩wΩ, with radical xNΩx−1 ∩MΘ and reductive
component xMΩx−1 ∩ MΘ. The representation σMΘ∩xNΩx−1 may be considered as
a representation of the latter, hence also of xPΩx−1 ∩ MΘ. Thus x−1(σMΘ∩xNΩx−1)
is to be considered as a representation of x−1MΘx ∩ MΩ or of x−1PΘx ∩ MΩ, and
c-IndMΩ

x−1PΘx∩MΩ
x−1(σMΘ∩xNΩx−1)δ1/2 is at least of a familiar sort if the δ factor makes

sense, which I shall show in a moment. In particular, Ind and c-Ind are the same.
The proof is not much longer than the statement. Let P = PΩ, Q = x−1PΘx∩PΩ,

N = NΩ in 6.2.1. Note that QN/N ∼= Q/(Q ∩ N) ∼= x−1PΘx ∩ MΩ and that
P/N ∼= MΩ. One obtains quickly that

(Jx)NΩ
∼= IndMΩ

x−1PΘx∩MΩ
x−1(σMΘ∩xNΩx−1)(w−1δ1/2

Θ )γ

where γ is the modulus character of x−1PΘx ∩ PΩ acting on NΩ/(x−1PΘx ∩ NΩ).

It remains only to examine the character (w−1δ1/2
Θ )γ more closely.

The character γ is the norm of the rational character

det AdnΩ
/ detAdAd(x−1)pΘ∩nΩ

where pΘ is the Lie algebra of PΘ, nΘ that of NΘ. The character (w−1δ1/2
Θ )γ is thus

the square root of the norm of the rational character equal to
∏

α∈Σ+
!Σ+

Θ

w−1αm(α)
∏

α∈Σ+
!Σ+

Ω

wα∈Σ−
!Σ−

Θ

α2m(α)
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on A∅ (and by 1.6.1 this determines it as a rational character of x−1PΘx∩MΩ). This
in turn is equal to

∏

α∈Σ−
!Σ−

Θ

α−m(α)
∏

α∈Σ+
!Σ+

Ω

wα∈Σ−
!Σ−

Θ

α2m(α)

=
∏

α∈Σ+
!Σ+

Ω

wα∈Σ−
!Σ−

Θ

αm(α)
∏

α %∈Σ+
!Σ+

Ω

wα∈Σ−
!Σ−

Θ

α−m(α)

which is the formula in the proposition.

Corollary 6.3.4. Suppose σ is absolutely cuspidal, w ∈ [WΘ\W/WΩ], and x is an
element of N(A∅) representing w. Then

(a) one has (Jx)NΩ
= 0 unless w−1Θ ⊆ Ω;

(b) when w−1Θ ⊆ Ω, one has

(Jx)NΩ
∼= (i MΩ

x−1PΘx∩MΩ
x−1σ)δ1/2

Ω .

Proof. Part (a) is easy, since if σ is absolutely cuspidal then σMΘ∩xNΩx−1 = 0 unless
MΘ ∩ xNΩx−1 is trivial, and this is equivalent to the inclusions MΘ ⊆ xMΩx−1 or
w−1Θ ⊆ Ω.

Part (b) is a matter of computing the δ-factor correctly. By the definition of
normalized induction, what must be shown is that

(Jx)NΩ
∼= IndMΩ

x−1PΘx∩MΩ
(x−1σ)δ1/2,

where δ is now the norm of the rational character which restricts to
∏

α∈Σ+
!w−1Σ+

Θ

αm(α)

on A∅. Now if w−1Θ ⊆ Ω then w−1Σ+
Θ ⊆ Σ+

Ω and w−1Σ−
Θ ⊆ Σ−

Ω . Hence for α ∈
Σ+ " Σ+

Ω , wα ∈ Σ+ " Σ+
Θ or Σ− " Σ−

Θ, and according to 6.3.3 the proper δ-factor is
the norm of

∏

α∈Σ+
!Σ+

Ω

wα∈Σ−
!Σ−

Θ

αm(α)
∏

α∈Σ−
!Σ−

Ω

wα∈Σ−
!Σ−

Θ

α−m(α)
∏

α∈ΣΩ

wα∈Σ−
!Σ−

Θ

α−m(α)

(note that there is no α ∈ Σ+
Ω such that wα ∈ Σ− " Σ−

Θ)

=
∏

α∈Σ+
!Σ+

Ω

αm(α)
∏

α∈Σ+
Ω

wα∈Σ+
!Σ+

Θ

αm(α)

=
∏

α∈Σ+
!Σ+

Ω

αm(α)
∏

α∈Σ+
Ω

!w−1Σ+
Θ

αm(α).
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The next result summarizes what the results so far say about the space INΩ
when

σ is absolutely cuspidal.

Theorem 6.3.5. Let Θ,Ω be subsets of ∆, and let σ be an absolutely cuspidal
representation of MΘ, I = i G

PΘ
σ. There exists a filtration

0 ⊆ In"
⊆ · · · ⊆ I0 = I

by PΩ-stable subspaces such that (In/In+1)NΩ
∼= (In)NΩ

/(In+1)NΩ
is isomorphic to

the direct sum
⊕

(Jw)NΩ
, the sum ranging over w ∈ [WΘ\W/WΩ] with d(w) = n.

Furthermore:

(Jw)NΩ
∼=





0 if w−1Θ +⊆ Ω

i MΩ

w−1PΘw∩MΩ
w−1σ if w−1Θ ⊆ Ω.

The use of elements of W rather than representing elements in N(A∅) is justified
because it is only a matter of isomorphism class.

The only new ingredient here is that a filtration of I gives one of INΩ
as well, and in

such a way that Gr(INΩ
) ∼= Gr(I)NΩ

. This follows from the exactness of the functor
(3.2.3).

Theorem 6.3.6. Let Θ,Ω be subsets of ∆, and let σ be an irreducible absolutely
cuspidal representation of MΘ. If π is an irreducible composition factor of i G

PΘ
σ

and ρ an irreducible absolutely cuspidal representation of MΩ such that π may be
embedded into i G

PΩ
ρ, then there exists w ∈ W (Θ,Ω) (i.e., w ∈ N(A∅) such that

w−1MΘw = MΩ) with w−1σ ∼= ρ.

Proof. The assumption on π implies, by Frobenius reciprocity (3.2.4), that there

exists a non-trivial MΩ-morphism from πNΩ
to ρδ1/2

Ω . Therefore, ρδ1/2
Ω occurs as a

composition factor of INΩ
(where I = i G

PΘ
σ), hence of some (Jw)NΩ

with w−1Θ ⊆ Ω

(6.3.4). But (Jw)NΩ
is isomorphic to i MΘ

w−1PΘw∩MΘ
w−1σδ1/2

Ω , so that by 5.4.3 if ρδ1/2
Ω

is a composition factor then w−1Θ = Ω and ρ ∼= w−1σ.

Corollary 6.3.7. Let Θ be a subset of ∆, and let σ be an irreducible, absolutely
cuspidal representation of MΘ. Then i G

PΘ
σ has finite length. If π is an irreducible

composition factor then there exist Ω ⊆ ∆ and w ∈ W (Θ,Ω) such that π has an
embedding into i G

PΩ
w−1σ.

Proof. If π is an irreducible composition factor, then according to 5.1.2 there exist
Ω ⊆ ∆ and an irreducible, absolutely cuspidal representation ρ of MΩ with π ⊆ i G

PΩ
ρ.

Apply 6.3.6 to conclude the proof of the second claim.
To see that i (σ) has finite length: If U ! V are G-stable subspaces of I = i (σ),

then there exists a finitely generated non-trivial subspace of V/U , and by Zorn’s
Lemma an irreducible quotient of that. Therefore if one is given an ascending chain
I1 ⊆ I2 . . . one can, if necessary, replace it by another I1 ⊆ J1 ⊆ I2 ⊆ J2 ⊆ . . . where
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Ji/Ii is irreducible. For any Ω ⊆ ∆ one has a corresponding chain of Jacquet modules
(Ii)NΩ

⊆ (Ji)NΩ
, and (Ji)NΩ

/(Ii)NΩ
∼= (Ji/Ii)NΩ

by 3.2.3. By 6.3.5ff, this chain is of
finite length. If the original chain were infinite, then by 5.4.3 there would be some
Ω ⊆ ∆ for which the chain of associated Jacquet modules is of infinite length, and
this would be a contradiction. A similar argument shows that the descending chain
condition holds, so that I has a Jordan-Hölder composition series.

Corollary of the Corollary 6.3.8. Let P be any parabolic subgroup of G. If σ is
any admissible representation of M of finite length, then i G

P σ has finite length.

Proof. See 2.4.4 and 2.4.5.

When σ is irreducible and absolutely cuspidal, one can obtain easily from the
proof of 6.3.7 that the length of i G

PΘ
σ is bounded by the product of the number of

associates of Θ and the order of W (Θ,Θ), but a stronger bound will be given later.
When Θ = ∅, however, the bound here is already the best possible one that can be
obtained by these techniques:

Corollary 6.3.9. If σ is an irreducible, admissible (hence, finite-dimensional) repre-
sentation of M∅, then

(a) the length of i G
P∅
σ is at most the order of the Weyl group;

(b) if π is an irreducible composition factor of i G
P∅
σ then there exists w ∈ W and

an embedding of π into i G
P∅

wσ.

This was proven independently by Matsumoto [27] and Silberger [30] when σ is
unramified. Other results of this section have been proved independently by Bernstein
and Zelevinskii [2].

Theorem 6.3.10. Any finitely generated admissible representation of G has finite
length.

Proof. Let π be the given representation. By 2.1.9, there exists a finite composition
series for π, each factor of which is an ω-representation for some character ω of ZG.
Thus, one may assume π itself to be an ω-representation.

Proceed by induction on the rank of Gder. If this is 0, then Gder is compact and
any finitely generated admissible representation is finite-dimensional. For arbitrary
G, let P1, . . . , Pn be representatives of all the conjugacy classes of maximal proper
parabolics of G, and σi = πNi

. By 3.3.1, each of these is finitely generated and
admissible, hence by the induction assumption each is of finite Mi-length. But then
by 6.3.8 each Ii = i G

Pi
σi has finite length. By Frobenius reciprocity there exists a

canonical G-morphism from π into each Ii, hence one into
⊕

Ii. It remains to show
that the kernel of this map has finite length. This kernel, however, is absolutely
cuspidal, by remarks made in §3.2, and by 5.4.1 a summand of π. Therefore it is
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finitely generated, and by 5.4.2 a finite direct sum of irreducible absolutely cuspidal
representations.

To conclude this section, I mention a sort of converse to 6.3.7 (due, I imagine13, to
Harish-Chandra):

Theorem 6.3.11. Suppose Θ,Ω ⊆ ∆ to be associate, σ a finitely generated abso-
lutely cuspidal representation of MΘ, w ∈ W (Θ,Ω). Then the irreducible composition
factors of i G

PΘ
σ and i G

PΘ
w−1σ are the same.

Proof. There are many possible proofs, but the briefest is to observe that the char-
acters are the same (see 2.3.3, [22, Theorem 9.2(iii)], and [19]).

6.4. Let the notation be as in §6.3. Let (σ, U) be an irreducible absolutely cuspidal
representation of MΘ, I = i G

PΘ
σ. Because of Frobenius reciprocity, the structure of

INΩ
is related to G-morphisms from I to representations induced from PΩ. I want to

make this more explicit.
Define W (σ) to be

{
w ∈ W (Θ,Θ)

∣∣∣ wσ ∼= σ
}

and call σ regular if W (σ) = {1}.
(Indeed, for this definition σ need not be absolutely cuspidal.)

Proposition 6.4.1. Assume that σ is regular and that Ω is an associate of Θ. Then
INΩ

is isomorphic to the direct sum
⊕

w∈W (Θ,Ω)

(w−1σ)δ1/2
Ω .

It is allowable to use elements of W rather than representatives in G because it is
only a matter of isomorphism.

Proof. The proposition follows from 6.3.5, 6.3.6, and 5.4.4.

In other words, the filtration of INΩ
by the (In)NΩ

splits, and INΩ
is isomorphic to

the associated graded representation, when σ is regular. (It is not necessary that σ
be regular in order for 6.4.1 to hold, but there are certainly examples where σ is not
regular and 6.4.1 does not hold. See §9.)

For the remainder of §6.4, assume σ to be regular.
Let me be more precise and restate slightly results from §§6.1–6.3. Let Ω be an

associate of Θ. Recall from §6.3 that Gw is then the union
⋃

x>w PΘxPΩ, that Iw is

the subspace of all f ∈ I with support in Gw, and that Jw = I∞c (σδ1/2
Θ |PΘ, PΘwPΩ).

Restriction determines a canonical PΩ-morphism from Iw to Jw, which is surjective.
Its kernel is

∑
Jx (x > w, x += w). This in turn determines an MΩ-morphism

from (Iw)NΩ
to (Jw)NΩ

. Recall that (Jw)NΩ
= 0 unless w ∈ W (Θ,Ω), and that if

w ∈ W (Θ,Ω) then there exists an isomorphism of (Jw)NΩ
with (w−1σ)δ1/2

Ω . I want

13Can we find out?
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to describe this isomorphism explicitly because there are two choices to be made in
obtaining it which I want to keep track of.

The first choice is of an element x ∈ N(A∅) representing w. This gives the iso-
morphism of Jw with Jx given by f *−→ φf . The second choice is of a measure dn
on (x−1NΘx ∩ NΩ)\NΩ, which is isomorphic to the group Nw−1 (see §1.3). This

determines an isomorphism of (Jx)NΩ
with (x−1σ)δ1/2

Ω : it takes φ ∈ Jx to
∫

(x−1NΘx∩NΩ)\NΩ

Rnφ dn.

Let Λx−1,dn : (Iw)NΩ
→ (Jx)NΩ

−→ (x−1σ)δ1/2
Ω be the composition of the various

maps. Proposition 6.4.1 then says two things:

(1) the morphism Λx−1,dn splits uniquely, so that (x−1σ)δ1/2
Ω occurs as a subrepre-

sentation of (Iw)NΩ
;

(2) the inclusion of (x−1σ)δ1/2
Ω ⊆ (Iw)NΩ

into INΩ
also splits, so that there exists a

unique extension of Λx−1,dn to all of (I)NΩ
. This, and the corresponding map

from I to (x−1σ)δ1/2
Ω , I shall also call Λx−1,dn.

There is a relationship with results of Bruhat in [11]. Let C∞
c (G, U) be the space

of all locally constant functions from G to U of compact support. There is an almost
canonical G-surjection from C∞

c (G, U) to i G
PΘ

σ

Pσf(g) =
∫

PΘ

σ−1δ1/2(p)f(pg) dp.

The composition
C∞

c (G, U) −→ I −→ INΩ
−→ (x−1σ)δ1/2

Ω

corresponds to a distribution on G with values in HomC(U, U) satisfying certain
equations concerning left and right multiplication by elements of PΘ and PΩ. Viewed
in these terms, the content of 6.4.1 is that a certain distribution defined initially only
on Gw actually extends covariantly to all of G.

Fix now measures on each Nα (α ∈ Σ) and hence on each product
∏

Nα. I will
drop the subscripts referring to measure from now on.

For any x ∈ N(A∅) with image w ∈ W (Θ,Ω) define Tx−1(σ) (often just Tx−1)
to be the G-morphism from i G

PΘ
σ = I(σ) to i G

PΩ
x−1σ corresponding to the MΩ-

morphism Λx−1 : I(σ)NΩ
−→ (x−1σ)δ1/2

Ω (recall that σ is assumed regular). On Iw,
Λx−1 is defined by the formula

Λx−1(f) =
∫

Nw−1

f(xn) dn,

and in fact it may be defined by this formula on a somwhat larger space. For each
w ∈ [WΘ\W/WΩ] let G∗∗

w be the complement in G of the closure of PΘwPΩ and let
G∗

w be the union of this with PΘwPΩ itself. Define I∗∗
w and I∗

w to be the subspaces
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of I(σ) consisting of functions with support on G∗∗
w and G∗

w, respectively. Because
PΘwPΩ is closed in G∗

w, the restriction of any f ∈ I∗
w to PΘwPΩ has compact support

modulo PΘ. This remark together with 6.3.1 implies:

Lemma 6.4.2. For any f ∈ I∗
w,

Λx−1(f) =
∫

Nw−1

f(xn) dn.

The map Λx−1 induces an isomorphism of I∗
w/I∗∗

w with Jx.

For the next results, recall first of all from 1.3.2 that if u and v are elements of W
with '(uv) = '(u) + '(v) and x ∈ N(A∅) represents u, then the map

(Nu, Nv) −→ xNvx
−1Nu

is a bijection of Nu×Nv with Nuv. Recall, second, from §1.2 the notion of height and
its connection with length in W . For any x ∈ N(A∅) representing w ∈ W , let δα(x) be
the Radon derivative or modulus factor of the transformation Ad(x) : Nα −→ Nwα,
so that d(xnx−1) = δα(x) dn.

Lemma 6.4.3. Assume that Θ, Ω, and Ξ are associates in ∆, u ∈ W (Θ,Ω), v ∈
W (Ω,Ξ) with ht(uv) = ht(u) + ht(v), and x ∈ N(A∅) representing u. Then Tx−1

takes I∗
uv and I∗∗

uv to I∗
v and I∗∗

v , respectively.

Proof. By 1.3.5, PΘuvPΞ = PΘuPΩ · PΩvPΞ, and similarly for their closures. For f
to be in I∗∗

uv means that f = 0 on PΘuvPΞ. Hence for any g ∈ PΩvPΞ, Rgf = 0 on
PΘuPΩ, so that Rgf lies in I∗∗

u and

Tx−1f(g) = Λx−1(Rgf) =
∫

Nu−1

f(xng) dn.

However, the restriction of Rgf to Nu−1 ∩ PΘuPΩ is zero and so is this integral, so
that Tx−1f ∈ I∗∗

v . Something similar works for I∗.

Theorem 6.4.4. Assume that Θ, Ω, and Ξ are associates in ∆, let u ∈ W (Θ,Ω) and
v ∈ W (Ω,Ξ) be such that ht(uv) = ht(u) + ht(v), and let x, y ∈ N(A∅) represent u
and v. Then

Ty−1Tx−1 =
∏

α>0
uα<0

δα(y−1)−1Ty−1x−1 .

Proof. Since all G-morphisms from i G
P σ to i G

P (y−1x−1σ) are scalar multiples of Ty−1x−1,
it suffices to prove that for all f ∈ i G

P σ

Ty−1Tx−1f(1) =
∏

α>0
uα<0

δα(y−1)−1Ty−1x−1f(1),
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or that
Λy−1(Tx−1f) =

∏

α>0
uα<0

δα(y−1)−1Λy−1x−1(f).

Furthermore, it suffices to prove this only for f ∈ I∗
uv. But for these (applying

6.4.3):

Λy−1(Tx−1f) =
∫

Nv−1

(Tx−1f)(yn1) dn1

=
∫

Nv−1

Λx−1(Ryn1
f) dn1

=
∫

Nv−1

dn1

∫

Nu−1

f(xn2yn1) dn2

which by 1.3.2 and the definition of the δα is

∏

α>0
uα<0

δα(y
−1)−1

∫

Nv−1u−1

f(xyn) dn

=
∏

α>0
uα<0

δα(y−1)−1Λy−1x−1(f).

Remark 6.4.5. The operators Tx−1(σ) depend analytically on σ. Recall first of all
that the set of unramified characters Xnr(M) has a complex analytic structure (§1.6)
and hence so does the set Xσ of representations of M of the form σχ, χ ∈ Xnr(M).
The group W (Θ,Θ) acts analytically on this, and the set of regular representations
Xreg

σ in this family is the complement of an analytic subset. The family i G
PΘ

(σχ) is
an analytic family over Xσ (§3.4) and so is the restriction to Xreg

σ . Furthermore, for
Ω ⊆ ∆, the family i (σχ)NΩ

is an analytic family of admissible representations of MΩ

over Xσ, and all the filtrations of Iw(σχ) are also analytic. Over Xreg
σ one has an

analytic splitting of I(σχ)NΩ
as a direct sum of families isomorphic to w−1(σχ)δ1/2

Ω

(w ∈ W (Θ,Θ)) and hence the projections Λx−1 are analytic as well. In more down-
to-earth terms: for a fixed f ∈ C∞

c (G, U) the image of f under the composition

C∞
c (G, U)

Pσχ
−→ I(σχ) −→ I(σχ)NΩ

Λx−1

−→ U

varies holomorphically with χ.

6.5. One consequence of the results so far in §6 is a refinement of the earlier criterion
for square-integrability. Continue the previous notation.

Theorem 6.5.1. Suppose that π is irreducible and embedded in i G
PΘ

σ, where σ is an
absolutely cuspidal representation of MΘ. Then in order for π to be square-integrable
mod ZG it is necessary and sufficient that
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(a) π|A∆
is unitary and

(b) for every Ω ⊆ ∆ associate to Θ and every central character χ of π with respect
to PΩ, |χδ−1/2(a)| < 1 for all a ∈ A−

Ω " A∅(O)A∆.

Proof. According to 6.3.5, if Ω ⊆ ∆ does not contain an associate of Θ then πNΩ
= 0.

If Ω does contain an associate of Θ, say Ξ, then 6.3.5 implies that any central character
of π with respect to PΩ is also one for PΞ. Apply 4.4.6.

Note that the case Θ = ∅ is particularly simple.

6.6. I include here some relatively elementary consequences about irreducibility of
representations induced from parabolic subgroups. We retain the earlier notation.

The first result is due to Bruhat [11].

Theorem 6.6.1. If σ is an irreducible, unitary, regular admissible representation of
MΘ (not necessarily absolutely cuspidal) then i G

PΘ
σ is irreducible.

Proof. Because σ is unitary, so is I = i (σ). Any G-subspace is therefore a summand,
and it has only to be shown that EndG(I) ∼= C, or, by Frobenius reciprocity, that

INΘ
contains σδ1/2

Θ exactly once in its composition series. Now Proposition 6.3.3 gives
a composition series for INΘ

whose factors are indexed by [WΘ\W/WΩ] but are not
necessarily irreducible: to w ∈ [WΘ\W/WΩ], one associates the factor

(Jw)NΘ
∼= IndMΘ

w−1PΘw∩MΘ
(w−1σMΘ∩wNΘw−1)δ1/2

where δ is the modulus of the rational character γ of w−1MΘw ∩MΘ which restricts
to ∏

α∈Σ+
!Σ+

Θ

wα∈Σ−
!Σ−

Θ

αm(α)
∏

α %∈Σ+
!Σ+

Θ

wα∈Σ−
!Σ−

Θ

α−m(α)

on A∅.
If σδ1/2

Θ is to occur as a composition factor, then since σ|AΘ
is unitary, this rational

character must be γΘ itself. Therefore:
∏

α∈Σ+
!Σ+

Θ

αm(α) =
∏

α∈Σ+
!Σ+

Θ

wα∈Σ−
!Σ−

Θ

αm(α)
∏

α %∈Σ−
!Σ−

Θ

wα∈Σ+
!Σ+

Θ

αm(α)

=
∏

α∈Σ+
!Σ+

Θ

wα∈Σ−
!Σ−

Θ

αm(α)
∏

α∈Σ+
!Σ+

Θ

wα∈Σ+
!Σ+

Θ

αm(α)
∏

α∈ΣΘ

wα∈Σ+
!Σ+

Θ

αm(α)

or
∏

α∈Σ+
!Σ+

Θ
wα∈ΣΘ

αm(α) =
∏

α∈ΣΘ

wα∈Σ+
!Σ+

Θ

αm(α).
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But since roots in ΣΘ are trivial on AΘ, the right-hand side is also. The left-hand side
must therefore be trivial, which happens if and only if the set

{
α ∈ Σ+ " Σ+

Θ

∣∣∣ wα ∈ ΣΘ
}

is empty. Thus w−1ΣΘ ⊆ ΣΘ, and since w−1Θ > 0, w−1Θ = Θ.
The assumption of regularity now implies that w = 1, and this concludes the

proof.

Assume now that σ is an irreducible, absolutely cuspidal, regular admissible repre-
sentation of MΘ (not necessarily unitary). If w = w"w",Θ, then wΘ = Θ̄, the conjugate
of Θ in ∆; if x ∈ N(A∅) represents w, then Tx−1(xσ)Tx(σ) is a G-morphism from
i (σ) to itself, hence a scalar multiple, say γ(σ), of the identity.

Theorem 6.6.2. The representation i (σ) is irreducible if and only if γ(σ) += 0.

Proof. Note that no Tx is trivial, since it is constructed by Frobenius reciprocity from
a non-trivial MΘ-morphism.

If γ(σ) = 0, then Tx(σ) cannot be an isomorphism, since otherwise Tx−1(xσ) would
be trivial. Therefore either the kernel of Tx(σ) is a non-trivial subspace of i (σ), in
which case of course i (σ) is reducible, or its image is a non-trivial subspace of i (xσ),
in which case the latter is reducible. We then apply 6.3.11 to see that i (σ) is also
reducible.

If i (σ) is reducible, then it has a non-trivial irreducible quotient, say π, which by
6.3.7 may be embedded in some i (y−1σ), where y ∈ N(A∅) represents an element u
of some W (Θ,Ω) for some Ω ⊆ ∆. The G-morphism

i (σ) : π −→ i (y−1σ)

must be a scalar multiple of Ty−1 , and is neither trivial nor an isomorphism. Now
according to 1.2.9, ht(w) = ht(wu) + ht(u−1), so that by 6.4.4, Tx and TxyTy−1 agree
up to a nonzero scalar. Therefore Tx is likewise neither trivial nor an isomorphism.
But then Tx−1(xσ)Tx(σ) cannot be an isomorphism, so γ(σ) = 0.

Note that by 6.4.5 the condition γ(σ) = 0 is analytic. Furthermore, since by 6.6.1
γ(σ) += 0 for unitary σ and since there will exist χ ∈ Xnr(MΘ) such that σχ is unitary,
the representations i (σ) are generically irreducible.
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7. Composition series and intertwining operators II

In this section I give refinements of the main theorems of §6. Fix a minimal
parabolic P∅.

The results of §§7.1–7.2 are entirely due to Harish-Chandra (correspondence, 1972).

7.1. Let P be a maximal proper parabolic, say corresponding to Θ = ∆ " {α}.
Let P̄ be the unique standard parabolic conjugate to P−, the opposite of P . It
will correspond to the subset Θ̄ = −w"Θ, where w" is the longest element in W . If
w",Θ is the longest element in WΘ, then this subset is also w"w",ΘΘ. The element
w = (w"w",Θ)−1 lies in W (Θ, Θ̄). There are two cases which must be considered:
either P = P̄ , in which case P is said to be self-dual, or P += P̄ . In either case, P̄
is associate to P by w, and P̄ is the only associate of P by 1.2.3. In the first case,
W (Θ,Θ) = {1, w} while in the second W (Θ, Θ̄) = {w}.

The split torus A/A∆ is one-dimensional.
Let σ be an irreducible absolutely cuspidal representation of M . The restriction

of σ to A will be a scalar character. Let I = i G
P σ.

Lemma 7.1.1. (a) If P = P̄ , then IN fits into an exact sequence

0 −→ (w−1σ)δ1/2
P −→ IN −→ σδ1/2

P −→ 0;

(b) If P += P̄ , then IN
∼= σδ1/2

P and IN̄
∼= (w−1σ)δ1/2

P̄ .

Proof. This follows from 6.3.5.

Corollary 7.1.2. The length of I is at most 2.

Proof. Suppose one has a composition series 0 ! I1 ! I2 ! I3 = I. According to
6.3.7 and 1.2.3, if U is I1, I2/I1, or I3/I2, then by 3.2.4 either UN or UN̄ is nonzero.
This is a contradiction, by 7.1.1 and 3.2.3.

Proposition 7.1.3. Suppose that σ|A is unitary and that |σ(a)| < 1 for a ∈ A− "
A∅(O)A∆. Then any proper subrepresentation π ⊆ I is square-integrable mod ZG.

Proof. First suppose P = P̄ . Since the quotient I/π must have (I/π)N += 0 by

6.3.7 and 1.2.3, and there exists a non-trivial map from πN to σδ1/2
P by Frobenius

reciprocity, one has πN = σδ1/2
P by 7.1.1(a). The condition of 6.5.1 is thus satisfied.

Suppose P += P̄ . Here, similar reasoning shows that πN
∼= σδ1/2

P and πN̄ = 0, so
once again the condition of 6.5.1 holds.

Theorem 7.1.4. Suppose P += P̄ . Then I is irreducible.
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Proof. According to 5.2.5, one may as well assume that I|A∆
, hence σ|A∆

, is unitary.
Since I is irreducible if and only if Ĩ is, one may also assume that |σ(a)| < 1 for
a ∈ A− " A∅(O)A∆. Then by 7.1.3 and its proof, if π is an irreducible subspace
of I, one has πN += 0 and πN̄ = 0, and π is square-integrable, hence unitary. Thus
π is isomorphic to the conjugate of π̃. By 4.2.5, however, π̃N− is isomorphic to
the contragredient of πN , hence is nonzero. But since N− is conjugate to N̄ , this
implies that π̃N̄ += 0, hence the conjugate of π̃N̄ is nonzero, and finally πN̄ += 0, a
contradiction.

Corollary 7.1.5. If P = P̄ , then one has i G
P σ ∼= i G

P̄ w−1σ for all irreducible abso-
lutely cuspidal σ.

Proof. Since IN̄
∼= (w−1σ)δ1/2

P̄ , there exists a non-trivial G-morphism from i (σ) to
i (w−1σ). By 7.1.4, it has no kernel and is surjective.

7.2. Suppose PΘ to be an arbitrary standard parabolic, corresponding to Θ ⊆ ∆,
and (σ, U) an irreducible absolutely cuspidal representation of MΘ.

Theorem 7.2.1. For Ω associate to Θ and w a primitive element of W (Θ,Ω), one
has i G

PΘ
σ ∼= i G

PΩ
w−1σ.

Proof. Applying 1.2.6, we can use 7.1.5.

Corollary 7.2.2. If π is an irreducible composition factor of i G
PΘ

σ, then there exists
w ∈ W (Θ,Θ) such that π may be embedded into i G

PΘ
w−1σ.

Proof. According to 6.3.7, there exist PΩ and w ∈ W (Θ,Ω) such that π may be
embedding to i G

PΩ
w−1σ. Apply 7.2.1.

This is a refinement of 6.3.7. The promised refinement of 6.3.8 is:

Corollary 7.2.3. The length of i G
PΘ

σ is at most the order of W (Θ,Θ).

Theorem 7.2.4. Let K0 = N−
0 M0N0 be an Iwahori factorization with respect to PΘ

of a compact open subgroup of G, and assume that UM0 += 0. If V is any composition
factor of i G

PΘ
σ, then V K0 += 0.

Proof. This follows from 3.3.6 and 7.2.2.
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7.3. For each Θ ⊆ ∆, let {Θ} be the equivalence class of subsets associate to Θ.
If π is an irreducible admissible representation, it is said to be of type {Θ} if there

exists Ω ∈ {Θ} and an irreducible absolutely cuspidal representation σ of MΩ such
that π has an embedding into i G

PΩ
σ. According to 7.2.1, this holds for all Ω ∈ {Θ}

if it holds for one. According to 6.3.6, the type of π is uniquely determined.
An arbitrary admissible representation of finite length is said to be of type {Θ} if

every irreducible composition factor is.

Theorem 7.3.1. If π is a finitely generated admissible representation, then there
exists a unique set of representations

{
π{Θ}

}
Θ⊆∆ such that

(a) π ∼=
⊕
π{Θ} and

(b) each π{Θ} is of type {Θ}.

Proof. The argument is the same as that of Theorem 6.3.10; apply the above remarks
as well.

If P is the parabolic corresponding to Θ and σ is an irreducible representation
of M , let {σ} be the equivalence class of representations {wσ}w∈W (Θ,Θ). If π is an

irreducible admissible representation, I say that π is of type {σ} if πN has ρδ1/2
P as

a composition factor for some ρ ∈ {σ}. According to 6.3.6, then, all irreducible
composition factors of πN are of this form.

If π is an arbitrary admissible representation of finite length, it is said to be of type
{σ} if each irreducible composition factor is.

Theorem 7.3.2. If π is a finitely generated admissible representation of type {Θ},
then there exists a unique finite set of types {σ} and a unique set of representations{
π{σ}

}
such that

(a) π ∼=
⊕
π{σ} and

(b) each π{σ} is of type {σ}.

Proof. Apply the following result.

Lemma 7.3.3. Suppose π1, π2, and π3 are all finitely generated admissible represen-
tations of type {Θ} fitting into an exact sequence

0 −→ π1 −→ π2 −→ π3 −→ 0.

Suppose that π1 is of type {σ} but that no factor of π3 is. Then the sequence splits.

Proof. Arguing as in 5.4.4, we conclude that the sequence

0 −→ (π1)N −→ (π2)N −→ (π3)N −→ 0

splits, and in particular there exists a projection from (π2)N to (π1)N . Corresponding

to this is a morphism from π2 to i G
P (π1)Nδ

1/2
P . One can check that the image is

isomorphic to π1 and the kernel to π3.
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8. An example: the Steinberg representation

Here I will justify the announcements in [14].

8.1. Fix a minimal parabolic P∅. For each Θ ⊆ ∆, define the G-representation πΘ
to be

C∞
c (PΘ, G) ∼= i G

PΘ
δ−1/2
Θ .

For Θ ⊆ Ω one has a canonical inclusion πΩ ⊆ πΘ. In particular, π∆ is the trivial
representation of G, contained in all other πΘ.

Lemma 8.1.1. One has

(πΘ)N∅
∼=

⊕

w∈[W/WΘ]

(w−1δ−1/2
∅ )δ1/2

∅ .

Proof. From 6.3.5, one obtains a filtration of (πΘ)N∅
indexed by [W/WΘ], with the

factor associated to w isomorphic to (w−1δ−1/2
∅ )δ1/2

∅ . This filtration splits since all
these characters of M∅ are distinct.

Note that this result is stated incorrectly in [14] (Proposition 2).
Define the Steinberg representation to be σ = π∅/

∑
Θ %=∅ πΘ.

Lemma 8.1.2. The Jacquet module σN∅
is isomorphic to δ∅.

Proof. From the injections of each πΘ into π∅, one has corresponding injections of
each (πΘ)N∅

into (π∅)N∅
, and σN∅

is the quotient of (π∅)N∅
by the sum of the images

for Θ += ∅. Since the only w ∈ W such that wα < 0 for all α ∈ ∆ is w", 8.1.1 implies
the lemma.

Theorem 8.1.3. The representation σ is irreducible and square-integrable mod ZG.

Proof. It has no proper quotient by 6.3.7 and 8.1.2. It is square-integrable mod ZG

by 6.5.1.
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9. Another example: the unramified principal series of SL2

9.1. Let η be a generator of the prime ideal of O, and let q be the order of the
residue field. Let

G = SL2(k);

A =

{(
a 0
0 a−1

) ∣∣∣∣∣ a ∈ k×

}

;

A− =

{(
a 0
0 a−1

) ∣∣∣∣∣ 0 < |a| ≤ 1

}

;

N =

{(
1 x
0 1

) ∣∣∣∣∣ x ∈ k

}

;

P = AN ;

W = N(A)/A = {w, 1} where w =

(
0 1

−1 0

)

;

K = G(O) =

{(
a b
c d

)

∈ G

∣∣∣∣∣ a, b, c, d ∈ O

}

;

B =

{(
a b
c d

)

∈ K

∣∣∣∣∣ c ∈ ℘

}

;

P (O) etc. = P ∩ G(O) etc.

The effect of w on A is to take

(
a 0
0 a−1

)

to

(
a−1 0
0 a

)

.

One also has various decompositions:

G = NAK (Iwasawa)
G = KA−K (Cartan)
G = PwP ∪ P (Bruhat)
K = BwB ∪ B.

The subgroup B is called the Iwahori subgroup of G, and has an Iwahori factorization
with respect to P .

I shall actually need an explicit form of the Bruhat decomposition:

Lemma 9.1.1. If c += 0, then (with ad − bc = 1):
(
a b
c d

)

=

(
1 ac−1

0 1

) (
−c−1 0

0 −c

) (
0 1

−1 0

) (
1 dc−1

0 1

)

.

This gives not only the Bruhat decomposition for G, but also the decomposition
K = BwB ∪ B as well, and one step further:
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Corollary 9.1.2. One has K = P (O)wN(O) ∪ B.

Since A ∼= k×, the characters of A may (and will) be identified with the characters
of k×. In particular one has the modulus ν : x *−→ |x|, which turns out to be the

modulus δ1/2
P as well, and its complex powers νs : x *−→ |x|s. These complex powers

are precisely the unramified characters Xnr(A). Since |x| = q−n if x = ηn, the true
parameter space of Xnr(A) is C/(2πi/ log q)Z. The unitary characters correspond to
purely imaginary s. The element w ∈ W acts on Xnr(A) by taking s to −s, and has as
fixed points s = 0 and s = πi/ log q. Corresponding to s = 0 is the trivial character of
A, and to s = πi/ log q the quadratic character sgnnr : η

n *−→ (−1)n (which by class
field theory corresponds to the unramified quadratic extension of k).

9.2. I want to discuss in §9 the representations Is = i G
P νs. The first remark is that

they all have isomorphic restrictions to K:

Proposition 9.2.1. The restriction of Is to K is isomorphic to the space of all locally
constant functions f : K −→ C such that f(pk) = f(k) for all p ∈ P (O), k ∈ K.

The K-morphism from one to the other is simply the restriction of functions in Is

to K, which is an isomorphism because of the Iwasawa decomposition. (This result
is a special case of 3.1.1.)

Corollary 9.2.2. For any s, IK
s

∼= C and IB
s
∼= C2.

The second isomorphism follows from the fact that K = P (O)wN(O) ∪ B =
P (O)wB ∪ B. Explicitly, one has the function φK = φK,s:

φK(nak) = νs+1(a) for n ∈ N, a ∈ A , k ∈ K

as a basis for IK
s , and the functions φ1, φw:

φ1(nak) =





νs+1(a) k ∈ B

0 k +∈ B

φw(nak) =





0 k +∈ BwB

νs+1(a) k ∈ BwB,

as a basis for IB
s . Another way to describe these elements is as follows: one has a

projection Ps from C∞
c (G) to Is:

Psf(x) =
∫

P
ν−s+1(a)f(px) dp
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and

φK = Ps(chK)

φ1 = Ps(chB)

φw = Ps(chBwB).

Proposition 9.2.3. If (π, V ) is any admissible representation of G, then the canon-

ical projection is an isomorphism of V B with V A(O)
N .

Proof. Surjectivity follows from 3.3.3. For injectivity, it suffices to prove that, in the
terminology of §4.1, V B = V B

A−, or that for any a ∈ A− the operator π(BaB) is
invertible. However, as one can easily check, in the Hecke algebra H(G, B) one has
the identity

ch2
BaB −(q − 1) chBaB −q chB = 0

(assuming meas(B) = 1 for the moment), and this does it, since chB is the identity
element of the Hecke algebra.

Corollary 9.2.4. If (π, V ) is an irreducible admissible representation of G, then
V B += 0 if and only if π embeds into some Is.

Proof. This follows from 9.2.3 and Frobenius reciprocity.

Incidentally, the proof of injectivity in 9.2.3 (which works for more general groups)
is due to Borel.

9.3. A first result on the structure of (Is)N is an immediate corollary of the results
of §6.3:

Proposition 9.3.1. There is an exact sequence:

0 −→ ν−s+1 −→ (Is)N −→ νs+1 −→ 0.

As an exercise, one might try to prove this directly. I should mention that the map
from (Is)N to νs+1 is induced by f *−→ f(1) and is therefore canonical, but that the
injection of ν−s+1 into (Is)N depends on several choices I have made. To be precise,
let Iw,s be the subspace of Is of functions with support on PwP ; the map

Λw,s(f) =
∫

N
f(wn) dn

then induces the isomorphism of (Iw,s)N with the A-representation ν−s+1. I will need
later the observation that if Dw,s is the composition

C∞
c (PwP )

Ps−→ Iw,s −→ ν−s+1

then
Dw,s(f) =

∫

PwP
Φ(x)f(x) dx,
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where Φ is the function on PwP = PwN defined by

Φ(nawn1) = ν−s+1(a)

and the measure on PwP is the unique multiple of the measure induced by the Haar
measure on G (PwP is open in G) such that meas(P (O)wN(O)) = 1. The multiple
is therefore (q + 1)/q. In particular, the measure of B is now taken to be 1/q.

If νs is regular, the exact sequence in 9.3.1 splits, and one has therefore

(1) an extension of Λw,s to all of Is;
(2) an extension of Dw,s to all of C∞

c (G);
(3) a G-morphism Tw,s from Is to I−s such that

Tw,sf(1) = Λw,s(f) (f ∈ Is)

or

Tw,s(Psf)(1) = Dw,s(f) (f ∈ C∞
c (G)).

The operator Tw,s is a G-morphism, in particular a K-morphism, so it takes φK,s

to a scalar multiple of φK,−s.

Proposition 9.3.2. For s regular, one has

Tw,s(φK) = c(s)φK

with

c(s) =
1 − q−1−s

1 − q−s
.

Proof. Since Tw takes φK to a multiple of φK , and φK(1) = 1, one only has to evaluate

Λw,s(φK) = Dw,s(chK).

Furthermore, since Λw,s depends holomorphically on s, one only has to evaluate this
for an open subset of complex s.

Now what happens is that the integral above defining Dw,s on C∞
c (PwP ) actually

converges for all f ∈ C∞
c (G) as long as Re(s) > 1, and that this integral defines the

extension to all of C∞
c (G) giving rise to Tw,s. I shall not prove this explicitly, because

it will actually fall out of the calculation below:

Dw,s(chK) =
∫

BwB∩PwP
Φ(x) dx +

∫

B∩PwP
Φ(x) dx.

Because (9.1.1) BwB = P (O)wN(O) ⊆ PwP and Φ ≡ 1 on P (O)wN(O) (9.1.1
again), the first integral is just meas(BwB) = 1. For the second, express B as the
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disjoint union of the sets Bn =

{(
a b
c d

)

∈ B

∣∣∣∣∣ c ∈ ℘n " ℘n+1

}

n≥1 and P (O). Then

B ∩ PwP is exactly the union of the Bn, so one must evaluate
∞∑

n=1

∫

Bn

Φ(x) dx.

Step (1): According to 9.1.1 once more, Φ = |η−n|−s+1 = qn(−s+1) on Bn. Step (2):
The set

⋃
n≥m Bn is a subgroup of B of index qm−1, so that

measBn = (q−(n−1) − q−n)measB

= (q−(n−1) − q−n)(1/q)

= (q − 1)/qn+1.

Therefore, the above sum is
∞∑

n=1

((q − 1)/qn+1)(qn)−s+1 =
q − 1

q
· q−s

∞∑

n=0

q−ns

=
(1 − q−1)q−s

1 − q−s

and

c(s) = 1 +
(1 − q−1)q−s

1 − q−s
=

1 − q−1−s

1 − q−s
.

Corollary 9.3.3. If s is regular, then Is is reducible only when s = ±1.

This follows from 6.6.2, because γ(s) = c(s)c(−s) is 0 only when s = ±1.
What happens at s = −1 has been discussed in §8. The representation I−1 contains

the trivial representation and the quotient is the Steinberg representation. Since I1 is
the contragredient of I−1, it contains the Steinberg representation and has the trivial
representation as quotient. Incidentally, the sequence

0 −→ C −→ I−1 −→ St −→ 0

does not split, as one can prove easily.

9.4. The case of s irregular is more delicate.
Let me continue to assume that s is regular at first. Since IB

s
∼= (Is)N

∼= ν−s+1 ⊕
νs+1, there exist two elements f1,s and fw,s in IB

s dual to the Λx,s—i.e., such that
Λx(fy) = δxy. The element f1,s will depend on s, but it turns out that fw,s is in some
sense independent of s.

Lemma 9.4.1. For any regular s, fw,s = φw,s.
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Proof. One has

Λ1(φw) = φw(1) = 0

Λw(φw) =
∫

N
φw(wn) dn =

∫

N(O)
dn = 1.

Lemma 9.4.2. For any regular s, one has

φ1 = f1 + (c(s) − 1)fw

φw = fw.

Proof. The second equation is in 9.4.1. For the first, clearly Λ1(φ1) = 1, while to find
Λw(φ1) one merely notices that φ1 = φK − φw and applies 9.3.2.

Lemma 9.4.3. For any regular s and any a ∈ A−, one has

πs(BaB)f1 = νs+1(a)f1

πs(BaB)fw = ν−s+1(a)fw

Proof. This follows from 4.1.1.

Proposition 9.4.4. For any s at all and a ∈ A−, one has

πs(BaB)φ1 = νs+1(a)φ1 + (c(s) − 1)(ν−s+1(a) − νs+1(a))φw

πs(BaB)φw = ν−s+1(a)φw.

Proof. Because the action of H(G, B) on IB
s varies holomorphically with s, it suffices

to prove this for regular s. But for regular s, one has

φ1 = f1 + (c(s) − 1)fw

φ1 = fw (9.4.2)

πs(BaB)φ1 = νs+1(a)f1 + (c(s) − 1)ν−s+1(a)fw

πs(BaB)φw = ν−s+1(a)fw

and then uses 9.4.2 to express the fx in terms of the φx again.

Let ψ1, ψw be the images in (Is)N of φ1, φw. Because of 4.1.1, Proposition 9.4.4
tells what a ∈ A− does to φ1, φw. If one then specializes to the irregular s, one gets:

Proposition 9.4.5. With respect to the basis ψ1, ψw of (Is)N one has:

(a) When s = 0,

πN (a) =

(
|a| 0

2(1 − q−1)|a| logq |a| |a|

)

;



THEORY OF ADMISSIBLE REPRESENTATIONS—DRAFT 1 May 1995 77

(b) When s = (πi/ log q),

πN (a) =

(
|a| sgnnr(a) 0

0 |a| sgnnr(a)

)

.

Here sgnnr is the character corresponding to (πi/ log q).

Corollary 9.4.6. The representation Is is

(a) irreducible when s = 0;
(b) reducible, and in fact a direct sum of two irreducibles, when s = (πi/ log q).

Proof. Since Is is unitary in each case, it suffices to see whether or not HomG(Is, Is) =
C in each case. By Frobenius reciprocity, one only has to decide whether or not (Is)N

is a semi-simple representation of A, and 9.4.5 answers this.
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List of symbols

a, a∗ 6
Σ , Σ+, Σ− 6
∆ 6
W 6
S 6
aΘ, aα 6
ΣΘ, Σ+

Θ, Σ−
Θ 6

WΘ 6
Σw 6
'(w) 6
areg 7
[WΘ\W/WΩ] 7
w", w",Θ 7
Θ 8
W (Θ,Ω) 8
areg
Θ 8

ht(w) 10
AΘ, MΘ, PΘ, NΘ 11
A−
Θ(ε), A−

Θ 13
δP , δΘ 16
γΘ 17
m(α) 17
Xnr(G) 17
V K 18
C∞(G, F ), C∞

u , C∞
c 18

Rg, Lg 18
PK 20
U⊥ (unitary case) 20
Vω,n, Vω,∞, Vω 21
(π̃, Ṽ ) 21
U⊥ (nonunitary case) 22
HF (G, K) 23
chK 23
HF (G) 23
HF,ω(G, K), HF,ω(G) 23
HomG(A, B) 23
chπ 25
IndG

H σ 26
c-IndG

H σ 26

Λ, Λc 26
Pδ 27
Iδ (functional) 27
〈v, ṽ〉 28
cv,ṽ 28
i G

P σ 32
V (N0), V (N) 33
VN 34
Iσ (sheaf) 36
V K0

a 38
V K0

A− 39
A+ 40

ΘA−
∅ (ε) 43

VJ 43
LJ 43
V + 43
VJ

+ 43
MJ 43
JV (c) 43
JV +(c) 43
JL+(c) 44
dπ 47
I∞c (σ|H, X) 52
Gw, GR 55
d(w) 55
Gn 55
I(σ) 55
Iw, IR 55
Jw 56
In (n ∈ N) 56
Jx 56
W (σ) 61
Λx−1,dn 62
Tx−1(σ) 62
G∗

w, G∗∗
w 62

I∗
w, I∗∗

w 62
γ(σ) 66
P̄ 67
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harmonique sur les groupes de Lie, Lecture Notes in Mathematics, vol. 497, Springer, 1975,
pp. 257–276.
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