
SPECIAL UNIPOTENT REPRESENTATIONS AND THE HOWECORRESPONDENCEPETER E. TRAPAAbstract. We use the Howe correspondence to establish new unitarity results for specialunipotent representations of certain classical real Lie groups.Let (GR; G0
R
) be a reductive dual pair in Sp(2N;R). Let eGR and eG0

R
be the preimages ofGR and G0

R
in Mp = Mp(2N;R), the nontrivial double cover of Sp. Write Irr( eGR) for theset of equivalence classes of irreducible admissible representations for GR, and likewise forIrr( eG0

R
). Two representations � 2 Irr( eGR) and �0 2 Irr( eG0

R
) are said to correspond if � 
 �0is a quotient of a �xed oscillator representation for Mp; in this case � and �0 are said tooccur in the correspondence. Howe proved that the map � 7! �0 is well-de�ned and bijectivewhen restricted to those representations which occur [H2]. Hence we obtain a map� : Irr( eGR) �! Irr( eG0

R) [ f0g;where �(�) = 0 if � does not occur in the correspondence. (This map depends on a choicean oscillator representations for Mp.) In most cases there exists genuine characters � and �0of eGR and eG0
R
both of which have in�nitesimal character zero. Given � 2 Irr(GR), we willoften be sloppy and write �(�) for �(�
�)
�0 which is a nongenuine representation of eG0

Rand which we thus view as an element of Irr(G0
R
). This bit of imprecision is customary andwe henceforth ignore it in the introduction.It has long been observed that interesting small unitary representations of GR correspondto interesting small unitary representations of G0
R
. The idea goes back to Howe himself andhas been exploited by many authors. (A very incomplete list of some highlights includes[H1], [Li1], [Li2], [Pr1], and [He]; see also the references given there.) The purpose of thisnote is to sharpen these ideas in the context of Arthur's special unipotent representations.For orientation, we recall the de�nition of a special unipotent representation of a linearreal reductive group GR. We need some general notation �rst. Let gR denote the Lie algebraof GR, let g denote its complexi�cation, and write g_ for the dual Lie algebra. Fix a nilpotentadjoint orbit O_ in g_, and choose f_ 2 O_. According to the Jacobsen-Morozov Theorem,there exists a Lie algebra homomorphism � from sl(2;C) to O_ such that ��0 10 0� = f_.De�ne h_ = ��1 00 �1�, and let h_ denote a Cartan containing h_. Then h_ is canonicallyisomorphic to the linear dual h� of a Cartan h of g. Finally consider�(O_) = 12h_ 2 h_ ' h�:There were a variety of choices made in the de�nition of �(O_). Di�erent choices amountat most to modifying �(O_) 2 h� by an element of W =W (h; g). In other words,�(O_) is a well-de�ned element of h�=W;1



2 PETER E. TRAPAso de�nes an in�nitesimal character for g. The following de�nition is perhaps the simplestpossible, but masks most of the deeper ideas that are behind making it.De�nition 0.1 (Arthur, cf. [BV1]). An irreducible representation � of a linear reductivegroup GR is called (integral) special unipotent if: (1) its in�nitesimal character is integraland of the form �(O_); and (2) the GK-dimension of � is minimal among all representationswith the same in�nitesimal character as �. In this case, � is said to be attached to O_. (Thecondition that �(O_) be integral is equivalent to requiring that O_ is even.)The basic example is the trivial representation. Its in�nitesimal character is � whichis 12h_ for the principal orbit O_, and of course it is the smallest representation with suchin�nitesimal character. At the other extreme are representations with in�nitesimal characterzero which is 12h_ for the zero orbit O_. Such representations exist if and only if G isquasisplit and in that case they all have the same (maximal) GK-dimension. In other words,any representation with in�nitesimal character zero is special unipotent.The de�nition of special unipotent is entirely algebraic. Yet Arthur's conjectures pre-dict that such representations should be local components of global automorphic forms; inparticular, they should be unitary.Conjecture 0.2 (Arthur). If � is special unipotent, then � is unitary.The best partial progress on this conjecture is due to Barbasch for classical groups. (Forinstance, [B] establishes the complex classical case.) For real groups of type A the conjecturefollows from work of Barbasch, Speh, and Vogan. For other real groups (apart from thoseof small real rank), the conjecture is still open. We note that both of our examples givenabove | the trivial representation and representations with in�nitesimal character zero |are unitary. (The latter are all limits of discrete series [V1].)In general, �(O_) is singular | it is regular only if O_ is principal | so condition (1)implies that � cannot be too small. On the other hand condition (2) says that � cannot betoo large. Thus special unipotent representation exist on the interface of these restrictions.The key point is that the Howe correspondence preserves this interface in a sense which wenow explain.Suppose � is special unipotent and assume that �(�) 6= 0. Przebinda [Pr2] computedthe in�nitesimal character of �(�) in terms of the in�nitesimal character, say �, of �, andit is easy to verify that if � = �(O_), then there typically exists a nilpotent orbit O_1 for(g0)_ such that the in�nitesimal character of �(�) is �(O_1 ). On the other hand Przebinda[Pr3] computed an upper bound on the size of �(�) as follows. Let Omin denote the minimalcoadjoint orbit in sp(2N;C)�; in other words Omin is the associated variety of the annihilatorof the oscillator used to de�ne the correspondence. Let � denote the projection from Ominto g� obtained by �rst considering the projection sp(2N;C)� to g� (dual to inclusion) andthen by restricting the domain to Omin. Likewise write �0 for the projection from Ominto (g0)�. Let O denote the associated variety of the annihilator of �. [DKP1] proved that�0(��1(Omin)) is the closure of a single coadjoint orbit for g0; we write �(O) for this orbit.The result of Przebinda giving an upper bound on the size of �(�) may now be written as(1) AV(Ann(�(�))) � �(AV(Ann(�)));and, in particular, the GK dimension of � � the dimension of �(O):



SPECIAL UNIPOTENT REPRESENTATIONS AND THE HOWE CORRESPONDENCE 3Since the in�nitesimal character of a special unipotent representation is dictated by nilpotentorbits in g_, and the size estimate is dictated by nilpotent orbits in g, we need a mechanismto pass between the two kinds of orbits. This is provided for by Spaltenstein's duality mapd (Section 1.6). A short computation (Section 1.9) then gives the following result.Theorem 0.3. Consider a dual pair of the form (GR; G0
R
) = (Sp(p; q);O�(2m)) or (GR; G0

R
) =(O�(2m);Sp(p; q)). Suppose � 2 Irr( eGR) is special unipotent attached to O_. Then �(�) iseither zero or special unipotent attached to d(�(d(O_))).A similar result is valid for any dual pair, but some additional technical hypothesis areneeded. Some of the subtleties in the general case are sketched in Section 4.We wish to pursue the following idea. In some cases (the \stable range"), Li [Li1] provedthat if � is nonzero and unitary then �(�) is also nonzero and unitary. Thus if we canestablish Conjecture 0.2 for a special unipotent representation �, then Theorem 0.3 impliesConjecture 0.2 for �(�). The trivial representation is the simplest special unipotent repre-sentation. Beginning with it, and taking iterated stable-range theta lifts, we thus obtain alarge collection of unitary special unipotent representations. The issue of exhaustion thenremains: can one obtain all special unipotent representations as iterated lifts from the triv-ial representation? The latter question can be approached using the counting techniques of[BV1] and [Mc1]. For Sp(p; q) and O�(2m), we arrive at the following result.Theorem 0.4. Let GR = Sp(p; q) and suppose O_ is an even nilpotent orbit for so(2p+2q+1;C) with the following condition: in the partition classi�cation of O_ according to Jordanform, assume that each part p of the partition corresponding to O_ is greater than the sumof all other parts less than or equal to p. Suppose � is a special unipotent representationattached to O_ (De�nition 0.1). Then � is unitary.More precisely, � is obtained by a sequence of iterated theta lifts from the trivial repre-sentation as follows. There exists a sequence of dual pairs each of which is in the stablerange(O�(2m1);Sp(p1; q1)); (Sp(p1; q1);O�(2m2)); (O�(2m2);Sp(p2; q2)); : : : ; (O�(2mk);Sp(p; q))so that if the corresponding theta lifts are denoted byIrr(O�(2m1)) �1�! Irr(Sp(p1; q1)) �2�! Irr(O�(2m2)) �3�! � � � �2k�1�! Irr(Sp(p; q));then � = [�2k�1 � �2k � � � � � �1](11):The identical statements hold (with obvious modi�cations) for GR = O�(2n).The theorem veri�es a large part of Conjecture 0.2 for Sp(p; q) and O�(2n) and is provedafter Theorem 3.7 below. The condition on the partition corresponding to O_ is a vestigeof the fact that each pair used for the iterated lift must be in the stable range so that theresults of [Li1] apply. This condition may perhaps be omitted completely using the results of[He] (in which case the full Conjecture 0.2 would follow for the groups in question). Resultsof an identical nature for U(p; q), GL(n;C), and GL(n;R) also follow. But as remarkedabove, special unipotent representations for these groups are already well-understood andwe get no new unitarity results. Nonetheless the case of U(p; q) does exhibit some intriguingfeatures; we give complete details in Section 2.



4 PETER E. TRAPAThe same kinds of ideas work for arbitrary dual pairs, but there are signi�cant compli-cations. We already noted some additional hypothesis are needed for Theorem 0.3. Moreimportantly, the count required to prove exhaustion fails in a mildly complicated way forthe pairs (O(p; q);Sp(2n;R)) (owing to the disconnectedness of the orthogonal group). Someexamples are given in Section 4.Acknowledgments. It is a pleasure to thank Dan Barbasch for a number of helpful con-versations. Many of the main results here were independently obtained by him.1. background: nilpotent orbits and the theta correspondence1.1. General notation. Let GR be a real reductive group with maximal compact subgroupKR corresponding to a Cartan involution � . We write gR and kR for the corresponding Liealgebras, g and k for their complexi�cations, and g = k � p for the corresponding Cartaninvolution. We often implicitly identify g and g� by means of a �xed invariant form. In thesetting of a reductive dual pair (GR; G0
R
) in Sp(2N;R), we adopt the analogous notation forG0

R
but simply add a prime everywhere. For instance g0 = k0� p0 is the complexi�ed Cartandecomposition with respect to � 0. We further assume that � and � 0 are the restriction of a�xed Cartan involution for Sp(2N;R).1.2. Nilpotent orbits in complex classical Lie algebras. Let g denote a complex re-ductive Lie algebra and write G for a connected complex group with Lie algebra G. LetN (g) denote the nilpotent cone in g. G acts on N (g) with �nitely many orbits. Using aninvariant bilinear form, N (g) identi�es with N (g�), the nilpotent cone in g�, and the orbitsof G on N (g) and N (g�) are also identi�ed.Recall the nilpotent orbits in sl(n;C) are classi�ed according to Jordan normal forms ofelements, i.e. by partitions of n. We denote the set of all such partition by �(n) or �A(n).For sp(2n;C), nilpotent orbits are again classi�ed according to Jordan normal forms. Thepartitions that arise in this was have all odd parts occurring with even multiplicity. Wewrite �C(2n) for such partitions.Nilpotent orbits in so(2n+1;C) are classi�ed by the set �B(2n+1) of partitions of 2n+1in which even parts occur with even multiplicity.Finally let �D(2n) denote the set of partition of 2n in which even parts occur witheven multiplicity. The adjoint orbits of the disconnected group O(2n;C) on so(2n;C) areparametrized by �D(2n). The parametrization of orbits of SO(2n;C) is slightly more elab-orate: the partition in �D(2n) has only even parts if and only if the O(2n;C) orbit splitsinto two SO(2n;C) orbits; but we shall have no occasion to study the latter orbits.Notation 1.1. Given a complex semisimple Lie algebra g, we let N(g) denote the set ofG orbits on N (g) with one exception. For applications to the theta correspondence, it isonly the disconnected orthogonal group which arises. Consequently we shall only considernilpotent orbits of O(n;C) on N (so(n;C)) in this paper. We deviate from our usual notationand write N(g) for this set in this case. We use analogous notation for N(g�).1.3. Associated varieties of primitive ideals. Let U(g) denote the universal envelopingalgebra of a complex reductive Lie algebra g and let X denote a simple U(g) module. LetIX denote the two sided ideal AnnU(g)(X). Consider the degree �ltration on U(g). Passingto associated graded objects gives an ideal grIX in S(g). The support of grIX is a G-invariant subvariety of g� called the associated variety of the annihilator of X and denoted



SPECIAL UNIPOTENT REPRESENTATIONS AND THE HOWE CORRESPONDENCE 5AV(Ann(X)). Since X has �nite length, it is annihilated by an ideal of �nite codimensionin the center Z(g) of U(g). Since the center cuts out N (g�), and since AV(Ann(X)) isinvariant under the adjoint action, AV(Ann(X)) is a union of nilpotent orbits. In fact, if Xis irreducible, AV(Ann(X)) is the closure of a single orbit ([BB]).1.4. Associated varieties of Harish-Chandra modules. We recall the main construc-tion of [V4]. Fix GR, and let X be an irreducible (g;K) module. Fix a K-stable good�ltration of X, and consider the S(g) module obtained by passing to the associated gradedobject gr(X). By identifying (g=k)� with p (and noting the K-invariance of the �ltration),we can consider the support of gr(X) as a subvariety of p. This subvariety is called theassociated variety of X and is denoted AV(X). It is a (�nite) union of closures of elementsof Irr(O \ p) where AV(Ann(X)) = O. Each such component is a nilpotent K orbit on p.1.5. Operations on nilpotent orbits in complex classical Lie algebras: adding acolumn. Recall Przebinda's upper bound in Equation (1). The paper [DKP1] computesthe upper bound explicitly in terms of partitions. In this section we recall a particularlysimple case of that computation adequate for our purposes.We now describe an operation on nilpotent orbits in terms of the partition classi�cationgiven in Section 1.2. We �rst treat Type A. Fix n � m and de�ne a map� : �(n) �! �(m);de�ned by augmenting the m� n largest parts of a given partition by one. More precisely,given a partition �, n = n1 + n2 + � � �+ nkstretch it to have length n by padding it with zero entries nk+1 = nk+2 = � � � = nm = 0, andthen de�ne �(�) to be the partitionn = (n1 + 1) + (n2 + 1) + � � �+ (nm�n + 1) + nm�n+1 + � � �+ nm;removing any terminal zeros as necessary.Outside of Type A, the situation is necessarily more complicated. For instance, �x Xof Type B, C, or D. Then it is easy to see that there exist n, m, and � 2 �X(n) so that�(�) =2 �Y (m) for Y equal to B, C, or D. We sweep this under the rug by incorporating itinto our hypotheses.Proposition 1.2. Let (GR; G0
R
) denote an irreducible reductive dual pair and consider thecorresponding complex Lie algebras g and g0. Fix an orbit O = O� in N(g) (Notation 1.1)parametrized by a partition �. Suppose the size of g0 is arranged so that the column-addingoperation �(�) is a partition of the appropriate type to parametrize an orbit O0�(�) in N(g0).Recall the orbit �(O�) de�ned just before Equation (1) in the introduction. Then�(O�) = O0�(�):Remark 1.3. Notice that outside of Type A, we have restricted the size of g0 so that thecolumn-adding operation de�nes a partition of the appropriate type. [DKP1] computes�(O�) without this restriction, but we do not need the more general computation here.Example 1.4. Fix n � m and consider(g; g0) = (sp(2n;C); so(2m;C)) or (so(2n;C); sp(2m;C)):



6 PETER E. TRAPASuppose � is a partition in which all parts occur with even multiplicity. Then � alwaysde�nes an orbit for g. Moreover, �(�) always de�nes an orbit for g0. A \dual" fact is thesubject of the �rst assertion in Proposition 1.10 below.As as a consequence of Przebinda's result (Equation (1)), we obtain the following com-putable upper bound on the size of �(�).Corollary 1.5 ([Pr1], [DKP1]). Retain the notation and hypotheses of Proposition 1.2.Suppose � is an irreducible representation of eGR with AV(Ann(�)) = O�. ThenAV(Ann(�(�))) � O0�(�):1.6. Duality of orbits. Let g denote a complex simple Lie algebra and g_ for its complexdual. Recall Notation 1.1. Spaltenstein de�ned a mapd : N(g) �! N(g_)with many remarkable properties. For instance the image of d consists exactly of the specialorbits in N(g_) and d2 is the identity when restricted to special orbits in N(g). Here is theanother property that is especially important for us.Theorem 1.6 (Barbasch-Vogan). Let GR be a linear reductive group. Suppose � is a specialunipotent representations of GR attached to O_. ThenAV(Ann(�)) = d(O_):Proof. This is proved in Section A.3 of [BV1]. ˜Corollary 1.7. Let GR be a linear reductive group and �x an even nilpotent orbit O_ in g_.Suppose � is a representation of GR with in�nitesimal character �(O_) such thatAV(Ann(�)) � d(O_):Then the inclusion is in fact an equality, and � is special unipotent attached to O_.For classical Lie algebras (Section 1.2), the orbit d(O) is roughly parametrized by thetranspose of the partition parametrizing O. (Given a partition of n, we may consider it asa Young diagram | i.e. a left justi�ed array of boxes whose length decreases down rows| and then the transpose is the 
ip about the obvious diagonal.) This is exactly right inType A, but can't be quite right in other types since the transpose of an element in, say,�B(2n+ 1) does not belong to �C(2n). Some minor re�nement is necessary which we nowdescribe.First we recall the \X-collapse" operation on partitions ([CM, Chapter 6], for example).Recall the partial order on �(n) arising from the closure order on nilpotent orbits for sl(n;C).Given a partition � 2 �(2n), its C- (resp. D-)collapse �C (resp. �D) is de�ned to be thelargest partition in �C(2n) (resp. �D(2n)) which is less than or equal to � in the partialorder on �(2n). The B-collapse �B of a partition � 2 �(2n+1) is de�ned in the same way.Now we can give the computation of d in terms of partitions. If � 2 �D(2n), then d(�)is obtained by transposing � and then taking the D-collapse. (We have no occasion to keeptrack of orbits of SO(n;C).) If � 2 �C(2n), the d(�) is obtained by �rst adding 1 to thelargest part of �, then taking the B-collapse, then transposing, and �nally taking the B-collapse again. If � 2 �B(2n+1) the d(�) is obtained by �rst removing one from the smallestpart of �, then taking the C-collapse, then transposing, and �nally taking the C-collapseagain.



SPECIAL UNIPOTENT REPRESENTATIONS AND THE HOWE CORRESPONDENCE 71.7. A dual operation: adding a row to a nilpotent orbit. In view of Corollary 1.5and Theorem 1.6, it's natural to ask it we can �nd an operation dual to adding a column to anilpotent orbits. More precisely, consider an irreducible dual pair (GR; G0
R
) with complexi�edLie algebras g and g0. We would like to �nd a map �_ that makes the following diagramcommute,(2) N(g)d

››

�
// N(g0)d

››N(g_) �_ // N((g0)_):The map � can be combinatorially de�ned (Section 1.5 and Remark 1.3), and we explainedthe combinatorial computation of d in Section 1.6. So investigating the existence of �_ istractable. Of course its essentially trivial in Type A, and so we start there.Suppose n � m and de�ne �_ : �(n) �! �(m)by augmenting a given partition of n by the part m� n; i.e. �_ adds a row of length m� nto n. Using that parametrizations of Section 1.2, this gives us a map�_ : N(sl(n;C)) �! N(sl(m;C)):The following proposition is obvious.Proposition 1.8. Let g = sl(n;C) and g0 = sl(m;C) and suppose n � m. Then for allO 2 N(g), �_(d(O)) = d(�(O)):Corollary 1.9. Retain the notation and hypotheses of Proposition 1.8. Consider an ir-reducible dual pair (GR; G0
R
) whose complexi�ed Lie algebras are equal to (g; g0). Suppose� 2 Irr( eGR) is a special unipotent representation attached to O_ (De�nition 0.1). ThenAV(Ann(�(�))) � d[�_(O_))]:Proof. Since � is special unipotent attached to O_, Theorem 1.6 together with Corollary 1.5gives that AV(Ann(�(�))) � �(d(O_)):Now since d2 is the identity, Proposition 1.8 implies�(d(O_)) = [d � d � � � d](O_) = [d � �_d � d](O_) = d(�_(O_));and the corollary then follows. ˜Since the collapse procedure is combinatorially a little complicated, de�ning �_ outsideof Type A in Equation (2) is also complicated outside of Type A. But there is one easy casethat it entirely adequate for our applications.Proposition 1.10. Fix n � m and consider of pair of complex Lie algebras (g; g0) of theform (g; g0) = (sp(2n;C); so(2m;C)) or (so(2n;C); sp(2m;C))Fix an element O 2 N(g) (Notation 1.1), and suppose that the corresponding partition � hasall parts occurring an even number of times (cf. Example 1.4). Consider O_ = d(O) 2 N(g_)and let �_ denote its corresponding partition. Then the partition obtained by adding a



8 PETER E. TRAPAsingle part (\row") of length 2m � 2n to �_ is of the appropriate type to de�ne an orbit�_(O_) 2 N((g0)_). Moreover �_(d(O)) = d(�(O)):The proof is a simple exercise in the combinatorial de�nitions. The assumption that allparts of the partition occur with even multiplicity simpli�es matters enormously.Corollary 1.11. Retain the notation and hypothesis of Proposition 1.10. Consider an ir-reducible dual pair (GR; G0
R
) whose complexi�ed Lie algebras are equal to (g; g0). Suppose� 2 Irr( eGR) is a special unipotent representation attached to O_ (De�nition 0.1; the as-sumption of the proposition guarantee that O_ is even). ThenAV(Ann(�(�))) � d[�_(O_)]:Proof. This follows just as Corollary 1.9 did. (Here one must also use the fact that O isspecial and that d2 is the identity on special orbits.) ˜1.8. The in�nitesimal character correspondence. Fix a reductive dual pair (GR; G0

R
)as in the introduction. Fix Cartans h and h0 in g and g0 and let W and W 0 denote thecorresponding Weyl groups. Writeic : Irr( eGR) �! h�=W;for the in�nitesimal character map. Fix � 2 Irr( eGR). Przebinda [Pr2] proved that thenthe in�nitesimal character of �(�) depends only on the in�nitesimal character of �. Moreprecisely, there is a map �ic : h�=W �! (h0)�=W 0such that ic(�(�)) = �ic(ic(�));whenever �(�) 6= 0. Moreover �ic depends only of the pair (g; g0) of complexi�ed Lie algebras.The main point is that the map �_ of Section 1.5 computes �ic for the kinds of in�nitesimalcharacters that arise as those of special unipotent representations of interest to us here.Proposition 1.12. Recall the notation �(O_) appearing in De�nition 0.1.(a) Fix complex Lie algebras (g; g0) = (sl(n;C); sl(m;C)). Let O_ denote an even nilpo-tent orbit for g_ ' sl(n;C). The condition that O_ is even means all of its rowshave the same parity, say �. Suppose m� n is positive and matches the parity of �.Then �ic(�(O_)) = �(�_(O_)):(b) Retain the notation and assumptions of Proposition 1.10.�ic(�(O_)) = �(�_(O_)):Proof. This is a simple exercise using [Pr2] and the well-known computation of �(O_)([CM, Section 6.3] for example). ˜



SPECIAL UNIPOTENT REPRESENTATIONS AND THE HOWE CORRESPONDENCE 91.9. Proof of Theorem 0.3.Theorem 1.13. (a) Retain the setting of Corollary 1.9. Then �(�) is either zero orspecial unipotent attached to �_(O_).(b) Retain the setting of Corollary 1.11. Then �(�) is either zero or special unipotentattached to �_(O_).Proof. This follows immediately from Proposition 1.12 and Corollaries 1.7, 1.9, and 1.11.̃If � is a special unipotent representation of O�(2n) or Sp(p; q), then the discussion inSection 3 shows that AV(Ann(�)) is the closure of an orbit parametrized by a partition allof whose parts occur an equal number of times. So the hypotheses of Theorem 0.3 implythose for Theorem 1.13(b), and the theorem thus follows once we note that Proposition 1.10implies that d(�(d(O_))) = �_(O_):
˜2. unipotent representations of U(p; q).The purpose of this section is to give a very precise conjectural description of the thetalifts of unipotent representations of U(p; q) sharpening the conclusion of Theorem 1.13(a).Theorem 2.1. Let GR = U(p; q) and n = p+q. Fix an even nilpotent orbit O_ for g_ andset O = d(O_) (Notation as in Section 1.6). Suppose O \ p is nonempty. Let Unipp;q(O_)denote the set of special unipotent representations of U(p; q) attached to O_ (De�nition 0.1).Then there is a bijection Unipp;q(O_) �! Irr(O \ p)mapping � 2 Unipp;q(O_) to the dense orbit in AV(�) (Section 1.4). In particular, there isa unique such orbit; i.e. AV(�) is irreducible. As a matter of notation, we will write �(OK)for the special unipotent representation corresponding to OK 2 Irr(O \ p).Proof. The paper [BV2] essentially establishes the theorem. The modi�er \essentially" isrequired since that reference makes no mention of associated varieties; see [T1, Section 4]for this. ˜We now de�ne �(OK) in terms of cohomological induction. In order to do so, we must�rst recall the well-known parametrization of Irr(O\p). A signed tableau of signature (p; q)is an (equivalence class of) signed Young diagram of size p + q whose boxes are �lled withp plus signs and q minus signs so that signs alternate across rows; two such diagrams aresaid to be equivalent if they di�er by interchanging rows of equal length. We write �(p; q)for the set of all such diagram and �(p; q;�) for those whose shape coincides with that of� 2 �(p + q) when viewed a Young diagram. If O is parametrized by �, then Irr(O \ p) isparametrized by �(p; q;�); see [CM, Chapter 9].Recall that K conjugacy classes of � -stable parabolics in g are parametrized by orderedtuples (p1; q1); : : : ; (pr; qr) so that Pi pi = p and Pi qi = q. The parabolic q = l � ucorresponding to such a tuple has Levi factor l which satis�es

lR = q \ �q ' u(p1; q1)� � � � � u(pr; qr):More details may be found in [T1, Section 3].



10 PETER E. TRAPAGiven OK 2 Irr(O \ p) parametrized by �� 2 �(p; q;�), let pi denote the number of plussigns in its ith column; likewise let qi denote the number of minus signs in the ith column.Denote the corresponding � -stable parabolic by q(OK) = l(OK)� u(OK) (or just q = l � uwhen the context is clear). Let LR denote the analytic subgroup of GR with Lie algebra
lR. Consider the one-dimensional representation C� of LR on the dual space ^top(u�). Thecondition on the parity of the columns guarantees that the square-root character C� := Cp�factors to LR. (See the discussion after De�nition 1.31 in [V3] for instance.) De�ne(3) �(OK) = Aq(�);where Aq(�) denotes the derived functor module de�ned (for instance) in [KnV, Chapter5]. The normalization is arranged so that �(OK) has in�nitesimal character that matchesthe trivial representation of LR. In the terminology of [KnV, De�nition 0.52] this module isexactly on the \edge" of the weakly fair range; i.e. for all roots � 2 �(u), the inner productof � with � + �(u) is zero. [BV2] proves that each �(OK) is nonzero and [V2] proves thatthey are all unitary, thus verifying the prediction of Conjecture 0.2 in this case.Here is the de�nition we need to investigate the theta lifts of the representations �(OK).(It is probably best to read the de�nition in conjunction with the example that follows it.)De�nition 2.2. Consider (GR; G0

R
) = (U(p; q);U(r; s)). Set n = p+q, m = r+s, andassume n � m. Write (g; g0) for the corresponding complexi�ed Lie algebras. Fix O 2 N(g)parametrized by � 2 �(n). Let O0 = �(O) (cf. Proposition 1.2), the element of N(g0)parametrized by the partition �0 obtained from � by adding a column of length m� n. FixOK 2 Irr(O \ p) and suppose OK is parametrized by the signed tableau ��.We say that the pair (U(p; q);U(r; s)) is in the stable range with respect to OK if thereexists an orbit O0K 2 Irr(O0 \ p0) parametrized by �0� satisfying the following condition:there is some representative of �0� whose subtableau of shape � is a representative for ��.In this case, it is easy to see that �0� (and hence O0K) is unique. We write O0K = �(OK).(See Remark 2.4.)The terminology is consonant with the usual notion of the stable range for a dual pair(which in this case amounts to min(r; s) � p+ q): if (U(p; q);U(r; s)) is in the usual stablerange then it is in in the stable range for all orbits OK ; and conversely, the pair is in theusual stable range only if it is in the stable range for the zero orbit OK of U(p; q).Example 2.3. Consider (p; q) = (7; 5) and let OK be the orbit parametrized by

�� =
+ � ++ � +� ++ �+� ;and so the complex orbit O is parametrized by the partition � = (3; 3; 2; 2; 1; 1). Supposethat r+s = 17 and thus the complex orbit O0 = �(O) obtained by adding a column of length5 to � is parametrized by �0 = (4; 4; 3; 3; 2; 1). Thus the signed partition �0� parametrizing



SPECIAL UNIPOTENT REPRESENTATIONS AND THE HOWE CORRESPONDENCE 11O0K = �(OK) is obtained by �lling the vacancies in one of the following diagrams+ � ++ � +� ++ �+�
+ � ++ � +� ++ ��+This is possible only if (r; s) = (8; 9) or (9; 8) in which case such a �lling is unique. (It is easyto see the unicity of such �llings in the general case.) In the terminology of De�nition 2.2, thepair (U(7; 5);U(r; s)) with r+s = 17 is in the stable range for OK if and only if (r; s) = (8; 9)or (9; 8).Remark 2.4. The notation �(OK) is potentially dangerous inasmuch as it resembles thenotation �(O). According to Proposition 1.2, the latter notation had both a combinatorialand geometric interpretation; but De�nition 2.2 gives only a combinatorial de�nition of�(OK). Fortunately there is a corresponding geometric interpretation which was observedby a number of people. More precisely, let OminK denote the associated variety of the oscillatorrepresentation of Mp(2N;R) used to de�ne the theta correspondence. Write s for the �1eigenvalue of a complexi�ed Cartan involution for Mp(2N;R) on sp(2n;C). Recall thenotational conventions of Section 1.1; so p; p0 � s. Write �K for the restriction to OminKof the natural projection of s� to p� and likewise for �0K . Then for a particular choice of theoscillator de�ning the � correspondence, �(OK) is dense in �0K(��1K (OK)). (I learned thisfrom unpublished work of Shu-Yen Pan. The paper [DKP2] is also relevant.) If we make theother choice of oscillator de�ning �, the combinatorial de�nition of �(OK) must be modi�edto coincide with the geometric one: instead of adding a column of singed entries on theright (as in Example 1.4), the column is instead added on the left. In Conjecture 2.5(and Conjecture 3.5 below) a speci�c choice of oscillator is implicitly �xed so that thecombinatorial de�nition of �(OK) in De�nitions 2.2 and 3.2 is compatible with the naturalgeometric one.Here is how unipotent representations of U(p; q) should behave under theta lifting.Conjecture 2.5. Let (GR; G0

R
) = (U(p; q);U(r; s)). Fix an even complex orbit O_ 2 N(g)and set O = d(O_) (Section 1.6), and suppose that the orbit �_(O_) 2 N((g0)_) (Section 1.7)is also even. Fix an orbit OK 2 Irr(O \ p) and suppose the pair is in the stable range forOK (De�nition 2.2). Recall the choice of oscillator discussed in Remark 2.4. Then�(�(OK)) = �(�(OK)):Remark 2.6. The validity of the conjecture would give a mechanism to obtain all specialunipotent representations of U(p; q) as iterated lifts of the trivial representation. Moreprecisely, given OK we may build a sequence of orbits Ozero = O(1)K ;O(2)K ; : : : ;O(k)K = OK byincrementally peeling away the longest possible chain of row-ends from the right side of thetableau parametrizing OK . This is most easily described by means of an example. In thefollowing chain of tableau, the left-most one parametrizes OK and each successive tableau



12 PETER E. TRAPAis obtained by peeling o� row-ends (indicated with primes) from the previous tableau:+ � + � +0+ � + � +0� + � +0+ � + �0+ �0+ �0+0�0
+ � + �0+ � + �0� + �0+ � +0+0+0 + � +0+ � +0� +0+ �0 + �0+ �0�0+0 ++(A di�erent choice of oscillator would necessitate peeling from the left; see Remark 2.4.) LetO(1)K denote the orbit parametrized by the last tableau (so it is necessarily the zero orbit),let O(2)K denote the orbit parametrized by the second to last tableau, and so on; we end withO(k)K = OK . Let (pi; qi) denote the signature of the ith tableau, so that O(i)K is an orbit forU(pi; qi). Consider the sequential � liftingsIrr(U(p1; q1)) �1�! Irr(U(p2; q2)) �2�! � � � �k�1�! Irr(U(pk; qk)):It is easy to check that O(i)K is in the stable range for the pair (U(pi; qi);U(pi+1; qi+1)). SinceO(1)K is the zero orbit, the validity of the conjecture would imply that�(OK) = [�k�1 � � � � � �2 � �1](11p1;q1);where 11p1;q1 denotes the trivial representation of U(p1; q1).Notice that Theorem 1.13(a) implies that in the setting of Conjecture 2.5,�(Unipp;q(O_)) � Unipr;s(�_(O_)):The next theorem shows how to make the inclusion an equality in the stable range.Theorem 2.7. Fix U(r; s) and �x n � min(r; s). Set g = gl(n;C) and g0 = gl(r+s;C). Fixan even complex orbit O_ 2 N(g) and set O = d(O_) 2 N(g0) (Section 1.6), and supposethat the orbit �_(O_) 2 N((g0)_) (Section 1.7) is also even. Then(4) � [p+q=nUnipp;q(O_)! = Unipr;s(�_(O_)):Proof. As remarked before above, Theorem 1.13(a) implies that the left-hand side of Equa-tion (4) is a subset of the right-hand side. So it remains only to show that both sides aresets of the same cardinality. Since each pair (U(p; q);U(r; s)) is in the stable range, �(�) 6= 0for all � 2 Irr(U(p; q)). Thus the left-hand side of Equation (4) has cardinality equal to thatof [p+q=nUnipp;q(O_):By Theorem 2.1 and the combinatorial classi�cation discussed above, the above set is inbijection with(5) [p+q=n�A(p; q;�);



SPECIAL UNIPOTENT REPRESENTATIONS AND THE HOWE CORRESPONDENCE 13where � denotes the shape of O. Meanwhile the right-hand side is in bijection with(6) �A(r; s;�0);where �0 is the shape of �(O). But since min(r; s) � p+ q, the sets in (5) and (6) areclearly in bijection: in the notation of De�nition 2.2, the map simply takes a tableau in (5)parametrizing an orbit OK to the tableau in (6) parametrizing the orbit �(OK) obtained byadding a a column of the appropriate signs. ˜Notice that the validity of Conjecture 2.5 would imply Theorem 2.7. So the latter maybe interpreted as evidence for the former.In the setting of Theorem 2.7, the preservation of unitarity results of [Li1] allow one todeduce the unitarity of each element of the set Unipr;s(�_(O_)) from the unitarity of the set�p;q(Unip(O_)). As remarked above, we know that every special unipotent representationof U(p; q) is unitary, so we obtain nothing new. By contrast, the parallel theory of the nextsection provides new unitarity results.3. unipotent representations of Sp(p; q) and O�(2n)The theory of unipotent representations of Sp(p; q) and O�(2n) closely mirrors that ofU(p; q).Theorem 3.1. Let GR = Sp(p; q) and n = p+q. Fix an even nilpotent orbit O_ for g_and set O = d(O_) (Notation as in Section 1.6). Let Unipp;q(O_) denote the set of specialunipotent representations attached to O_ (De�nition 0.1). Suppose O\p is nonempty. Thenthere is a bijection Unipp;q(O_) �! Irr(O \ p)mapping � 2 Unip(O_) to the dense orbit in AV(�) (Section 1.4). In particular, there is aunique such orbit; i.e. AV(�) is irreducible. As a matter of notation, we will write �(OK)for the special unipotent representation corresponding to OK 2 Irr(O \ p).The same conclusion holds for GR = O�(2n): As a matter of notation, We write Unip2n(O_)for the set of special unipotent representations of O�(2n) attached to O_.Proof. Theorems 6 and 10 of [Mc1] prove the existence of the bijection. Here is a sketch ofthe associated variety. The main results of [V4] show that each AV(�) is irreducible. Thesurjectivity of the assignment � 7! AV(�) follows by a counting argument of the form givenin Theorem 3.3.1 of [T3]. ˜Unlike the case of U(p; q), the unipotent representation �(OK) of Sp(p; q) and O�(2n)need not be weakly fair derived functor modules. (The paper [T2] determines exactly whichof them are.) It seems likely that all are obtained by a kind of analytic continuation of suchderived functor modules however.As in the previous section, we need to recall the combinatorics of the sets Irr(O \ p)appearing in Theorem 3.1. So let GR = Sp(p; q) and retain the notation of the theorem.The condition that O\p be nonempty implies that all parts of the partition � parameterizingO appear with even multiplicity. Let �C(2p; 2q;�) denote the subset of �(2p; 2q; �) (withnotation as in Section 2) consisting of those signed tableau for which each chunk of evenrows of a �xed length has an equal number of rows beginning with plus and with minus.Then �C(2p; 2q;�) parametrizes Irr(O \ p); see [CM, Theorem 9.3.5].



14 PETER E. TRAPANext let GR = O�(2n) and �x other notation as in Theorem 3.1. Again let � denote thepartition parametrizing O. As before, the condition that O \ p be nonempty implies thatall parts of � appear with even multiplicity. Let �D(�; �;�) denote the subset of�(�; �;�) = [p+q=2n�(p; q;�)consisting of those partitions for for which each chunk of odd rows of a �xed length has anequal number of rows beginning with plus and with minus. Then �D(�; �;�) parametrizesIrr(O \ p); see [CM, Theorem 9.3.4].De�nition 3.2. Consider (GR; G0
R
) = (Sp(p; q);O�(2m)). Set n = p+q and assume n � m.Write (g; g0) for the corresponding complexi�ed Lie algebras. Fix O 2 N(g) parametrized by� 2 �C(2n) in which all parts occur with even multiplicity. Let O0 = �(O) (cf. Example 1.4),the element of N(g0) parametrized by the partition �0 obtained from � by adding a columnof length 2m � 2n. Fix OK 2 Irr(O \ p) and suppose OK is parametrized by the signedtableau ��.We say that the pair (Sp(p; q);O�(2m)) is in the stable range with respect to OK if thereexists an orbit O0K 2 Irr(O0 \ p0) parametrized by �0� satisfying the following condition:there is some representative of �0� whose subtableau of shape � is a representative for ��.In this case, it is easy to see that �0� (and hence O0K) is unique. We write O0K = �(OK).We say that the pair (Sp(p; q);O�(2m)) is in the stable range with respect to O if it is inthe stable range with respect to every OK 2 Irr(O \ p).The obvious versions of these de�nitions apply to (GR; G0

R
) = (O�(2n);Sp(p; q)) withn � p+ q.The terminology is again compatible with the usual notion of the stable range: a pairof the above type is in the usual stable range if and only if it is in the stable range for allcomplex orbits O.Remark 3.4. The analogous version of Remark 2.4 applies here.Here is the analog of Conjecture 2.5.Conjecture 3.5. Let (GR; G0

R
) = (Sp(p; q);O�(2n)) or (O�(2m);Sp(p; q)). Fix an evencomplex orbit O_ 2 N(g) and set O = d(O_) (Section 1.6). Fix OK 2 O\p and suppose thepair is in the stable range for OK (De�nition 3.2). Recall the choice of oscillator discussedin Remark 2.4. Then �(�(OK)) = �(�(OK)):Remark 3.6. Just an in Remark 2.6, the validity of the conjecture would precisely dictate(in terms of an analogous \peeling" procedure) how each unipotent representation is aniterated lift from the trivial representation.Next we have the analog of Theorem 2.7.Theorem 3.7. Recall the notational conventions of Section 1.1 and the notation of Theorem3.1.(1) Fix G0

R
= Sp(p; q), �x n � min(p; q), and let GR = O�(2n). Fix an orbit O_ 2 N(g),set O = d(O_) 2N(g0) (Section 1.6), and suppose that O \ p is nonempty. Then(7) � �Unip2n(O_)� = Unipp;q(�_(O_)):



SPECIAL UNIPOTENT REPRESENTATIONS AND THE HOWE CORRESPONDENCE 15In particular, since nonzero unitary representations lift to nonzero unitary represen-tations in the stable range [Li1], the validity of Conjecture 0.2 for O�(2n) implies itfor Sp(p; q).(2) Fix G0
R
= O�(2n), and �x m such that 2m � n. Set g = sp(2m;C) and g0 =

so(2n;C). Fix an orbit O_ 2 N(g), set O = d(O_) 2 N(g0) (Section 1.6), andsuppose that �(O) \ p0 is nonempty. Then(8) � [p+q=mUnipp;q(O_)! = Unip2n(�_(O_)):In particular, the validity of Conjecture 0.2 for the various groups Sp(p; q) implies itfor O�(2n).Proof. This follows from counting considerations analogous to those treated in the proof ofTheorem 2.7. We omit the details. ˜As remarked above, the results of [He] may make it possible to drop the stable rangehypothesis of Theorem 3.7 and thus prove Conjecture 0.2 for Sp(p; q) and O�(2n) withoutadditional hypotheses. In any event, the present Theorem 3.7 supplies some evidence forConjecture 3.5.Finally, we may complete the proof of Theorem 0.4.Proof of Theorem 0.4. Suppose � is a special unipotent representation of Sp(p; q) attachedto O_, a nilpotent orbit for g_ = so(2p + 2q + 1;C) of the form described in Theorem 0.4.Set 2m = 2p + 2q. Let p be the largest part of the partition � parametrizing O_. Sincep is assumed to be greater than the sum of all other parts less than or equal to it, p musthave multiplicity one. Since even parts must occur with even multiplicity in the partitionparametrizing O_, p must be odd. Set 2m1 = 2m + 1 � p. We may assume that m1 6= 0;otherwise the theorem is trivial. Let �1 be the partition obtained from � by deleting thepart p. Since all even parts in � occur with even multiplicity and p is odd, the same is trueof �0. So �1 parametrizes a nilpotent orbit O_1 for so(2m1;C).Consider the dual pair (O�(2m1);Sp(p; q)). We claim the pair is in the stable range,i. e. that m � min(p; q). Since � is attached to O_, d(O_)\p is nonempty (by Theorem 3.1).From the combinatorial description of d(O) \ p given above, we conclude that there is asignature (2p; 2q) tableau �� whose shape coincides with �, the shape of d(O_). From thede�nition of d, one checks that that � has a column of length p. Let �1 denote the partitionobtained from � after removing a column of length p. Likewise let �1;� denote the signedtableau obtained from �� by deleting all row-ends. (So, in the notation of De�nition 3.2,�� = �(�1;�).) Let (r; s) denote the signature of �1;�. Without loss of generality supposer � s; so r � m1. Thus the number of odd rows of �1;� ending in plus exceed the numberof odd rows ending in minus by r � s. Thus the removed row-ends from �� must have hadat least r � s minus signs in it. So the number of minus signs in �� is at least s + (r � s)(the former from �1;�, the latter from the deleted row-ends), and hence the number of minussigns q exceeds r and hence m1. The number of plus signs p in �� is at least the number in�1;� which was r and r � m1. In other words, m1 � min(p; q). So indeed the pair is in thestable range.According to Theorem 3.7, there is a special unipotent representation �1 of O�(2m1)attached to O_1 such that �(�1) = �. If �1 is trivial, we are �nished. If not, we mayrepeat this argument inductively (inverting the roles of Sp(p; q) and O�(2n) as necessary



16 PETER E. TRAPAand arguing combinatorially as before) to conclude that � is an iterated stable-range liftfrom the trivial representation. Hence � is unitary and Theorem 0.4 follows. ˜Remark 3.8. The paper [LPTZ] computes a large part of the O�(2n)-Sp(p; q) correspon-dence in terms of Langlands parameters. But since the Langlands parameters of specialunipotent representations are obscure, their computations cannot be immediately appliedto Conjecture 3.5. On the other hand, the Langlands parameters of special unipotent rep-resentation of U(p; q) are known from [T1]. But Paul's computations in [P1]{[P2], whilesubstantial, are seemingly not enough to handle Conjecture 2.5.4. considerations for general dual pairsMany of the above ideas work for arbitrary dual pairs, but there are some complications.Of course if one is interested only in Conjecture 0.2, then the only simple linear groups(apart from those treated here) that arise in dual pairs for which the Conjecture 0.2 is openare Sp(2n;R) and O(p; q).First there are what one might call obvious combinatorial complications arising in extend-ing Propositions 1.10 and 1.12 to more general setting. Unfortunately many case-by-caseconsiderations enter. For any particular case, these issues are relatively easy to resolve (butsometimes di�cult to state).Next, Theorem 0.3 can fail in the general case. The �rst example is the complex dual pair(O(2;C);Sp(2n;C)) for n � 2 and � the trivial representation of O(2;C). Then it followsfrom [AB] that �(�) is also the trivial representation. While �(�) is special unipotent ofcourse, it is not attached to d(�(O)). (The associated variety of its annihilator is the zeroorbit which is properly contained in �(AV(Ann(�))).) It seems possible that this kind offailure is con�ned to the complex pair (O(2m;C);Sp(2n;C)).Finally exhaustion statements like those in Theorems 2.7 and 3.7 (and their analogousconjectures outside the stable range) are much more subtle for disconnected groups. To takebut one example, �x s even and consider the 4s characters of the orthogonal groups O(p; q)with p+q = s. Fixm � s. Then the 4s characters lift to 4s special unipotent representationsof Sp(2m;R). It is an easy count to see that these 4s representations exhaust all specialunipotent representations attached O1 = d(�(O)) where O is the zero orbit for O(s;C). Upto this point, everything looks �ne. Now �x O(r; s) with r+ s � 4m and even. Then the 4sspecial unipotent representations of Sp(2m;R) just constructed lift to 4s special unipotentrepresentations of O(r; s) attached to d(�(d(O1)). But this time, these 4s representations donot exhaust all such special unipotent representations | there are many more not accountedfor by this construction. One may hope that after tensoring with nontrivial characters, theydo indeed exhaust such unipotent representations. But this appears rather subtle to proveand perhaps even a little optimistic. References[AB] J. Adams and D. Barbasch, Reductive Dual Pair Correspondence for Complex Groups,J. Funct. Anal., 132 (1995), 1{42.[B] D. Barbasch, The unitary dual for complex classical Lie groups, Invent. Math., 96(1989), no. 1,103{176.[BV1] D. Barbasch and D. A. Vogan, Jr., Unipotent representations of complex semisimple groups, Ann. ofMath. (2), 121 (1985), no. 1, 41{110.
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