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ABSTRACT. We use the Howe correspondence to establish new unitarity results for special
unipotent representations of certain classical real Lie groups.

Let (Gr,Gp) be a reductive dual pair in Sp(2N,R). Let Gr and é{R be the preimages of
Gr and Gg in Mp = Mp(2N,R), the nontrivial double cover of Sp. Write Irr(éR) for the
set of equivalence classes of irreducible admissible representations for G, and likewise for
Irr(é]'R). Two representations 7 € Irr(Gg) and 7' € Irr(é]'R) are said to correspond if T ® 7'
is a quotient of a fixed oscillator representation for Mp; in this case 7 and 7’ are said to
occur in the correspondence. Howe proved that the map 7 — 7’ is well-defined and bijective
when restricted to those representations which occur [H2]. Hence we obtain a map

0 : Irr(Ggr) — Irr(GR) U {0},

where () = 0 if 7 does not occur in the correspondence. (This map depends on a choice
an oscillator representations for Mp.) In most cases there exists genuine characters y and x’

of Gg and é]'R both of which have infinitesimal character zero. Given w € Irr(GRr), we will

often be sloppy and write 6(r) for 8(7 ® x) ® x' which is a nongenuine representation of é]'R
and which we thus view as an element of Irr(G%). This bit of imprecision is customary and
we henceforth ignore it in the introduction.

It has long been observed that interesting small unitary representations of Gg correspond
to interesting small unitary representations of G. The idea goes back to Howe himself and
has been exploited by many authors. (A very incomplete list of some highlights includes
[H1], [Lil], [Li2], [Prl], and [He]; see also the references given there.) The purpose of this
note is to sharpen these ideas in the context of Arthur’s special unipotent representations.

For orientation, we recall the definition of a special unipotent representation of a linear
real reductive group Gr. We need some general notation first. Let gr denote the Lie algebra
of G, let g denote its complexification, and write gV for the dual Lie algebra. Fix a nilpotent
adjoint orbit OV in gV, and choose fV € OV. According to the Jacobsen-Morozov Theorem,

there exists a Lie algebra homomorphism ¢ from s[(2,C) to O such that ¢ <8 (1)> = fV.

0
-1
isomorphic to the linear dual h* of a Cartan h of g. Finally consider

Define hV = ¢ <(1) , and let h" denote a Cartan containing h". Then bV is canonically

x(OY) = %hv € hY ~p*.

There were a variety of choices made in the definition of x(OV). Different choices amount
at most to modifying x(OV) € h* by an element of W = W (h, g). In other words,

x(0Y) is a well-defined element of h* /W,
1
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so defines an infinitesimal character for g. The following definition is perhaps the simplest
possible, but masks most of the deeper ideas that are behind making it.

Definition 0.1 (Arthur, cf. [BV1]). An irreducible representation = of a linear reductive
group G is called (integral) special unipotent if: (1) its infinitesimal character is integral
and of the form y(OV); and (2) the GK-dimension of 7 is minimal among all representations
with the same infinitesimal character as 7. In this case, 7 is said to be attached to OV. (The
condition that x(OV) be integral is equivalent to requiring that OV is even.)

The basic example is the trivial representation. Its infinitesimal character is p which
is %hv for the principal orbit @V, and of course it is the smallest representation with such
infinitesimal character. At the other extreme are representations with infinitesimal character
zero which is ¥ for the zero orbit OV. Such representations exist if and only if G is
quasisplit and in that case they all have the same (maximal) GK-dimension. In other words,
any representation with infinitesimal character zero is special unipotent.

The definition of special unipotent is entirely algebraic. Yet Arthur’s conjectures pre-
dict that such representations should be local components of global automorphic forms; in
particular, they should be unitary.

Conjecture 0.2 (Arthur). If 7 is special unipotent, then m is unitary.

The best partial progress on this conjecture is due to Barbasch for classical groups. (For
instance, [B] establishes the complex classical case.) For real groups of type A the conjecture
follows from work of Barbasch, Speh, and Vogan. For other real groups (apart from those
of small real rank), the conjecture is still open. We note that both of our examples given
above  the trivial representation and representations with infinitesimal character zero
are unitary. (The latter are all limits of discrete series [V1].)

In general, x(OV) is singular it is regular only if O is principal  so condition (1)
implies that m cannot be too small. On the other hand condition (2) says that = cannot be
too large. Thus special unipotent representation exist on the interface of these restrictions.
The key point is that the Howe correspondence preserves this interface in a sense which we
now explain.

Suppose 7 is special unipotent and assume that 6(7) # 0. Przebinda [Pr2] computed
the infinitesimal character of 6(w) in terms of the infinitesimal character, say A, of 7, and
it is easy to verify that if A = x(OV), then there typically exists a nilpotent orbit O for
(g')Y such that the infinitesimal character of 6(m) is x(Oy). On the other hand Przebinda
[Pr3] computed an upper bound on the size of §(7) as follows. Let Opin denote the minimal
coadjoint orbit in sp(2N, C)*; in other words Opi, is the associated variety of the annihilator
of the oscillator used to define the correspondence. Let p denote the projection from O,
to g* obtained by first considering the projection sp(2N,C)* to g* (dual to inclusion) and
then by restricting the domain to OMin, Likewise write u’ for the projection from O,
to (g')*. Let O denote the associated variety of the annihilator of 7. [DKP1] proved that
(' (147" (Omin)) is the closure of a single coadjoint orbit for g'; we write (O) for this orbit.
The result of Przebinda giving an upper bound on the size of §(7) may now be written as

(1) AV(Ann(6(r))) € 8(AV(Ann(m)));

and, in particular,

the GK dimension of 7 < the dimension of 6(O).
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Since the infinitesimal character of a special unipotent representation is dictated by nilpotent
orbits in gV, and the size estimate is dictated by nilpotent orbits in g, we need a mechanism
to pass between the two kinds of orbits. This is provided for by Spaltenstein’s duality map
d (Section 1.6). A short computation (Section 1.9) then gives the following result.

Theorem 0.3. Consider a dual pair of the form (G, GRr) = (Sp(p,q), O*(2m)) or (Gr, Gg) =

(O*(2m), Sp(p, q)). Suppose w € Irr(GR) is special unipotent attached to OV. Then 0(r) is
either zero or special unipotent attached to d(6(d(OV))).

A similar result is valid for any dual pair, but some additional technical hypothesis are
needed. Some of the subtleties in the general case are sketched in Section 4.

We wish to pursue the following idea. In some cases (the “stable range”), Li [Lil] proved
that if 7 is nonzero and unitary then #(7) is also nonzero and unitary. Thus if we can
establish Conjecture 0.2 for a special unipotent representation m, then Theorem 0.3 implies
Conjecture 0.2 for (7). The trivial representation is the simplest special unipotent repre-
sentation. Beginning with it, and taking iterated stable-range theta lifts, we thus obtain a
large collection of unitary special unipotent representations. The issue of exhaustion then
remains: can one obtain all special unipotent representations as iterated lifts from the triv-
ial representation? The latter question can be approached using the counting techniques of
[BV1] and [Mcl]. For Sp(p,q) and O*(2m), we arrive at the following result.

Theorem 0.4. Let Gg = Sp(p, q) and suppose OV is an even nilpotent orbit for so(2p+2q+
1,C) with the following condition: in the partition classification of OV according to Jordan
form, assume that each part p of the partition corresponding to OV is greater than the sum
of all other parts less than or equal to p. Suppose w is a special unipotent representation
attached to OV (Definition 0.1). Then w is unitary.

More precisely, m is obtained by a sequence of iterated theta lifts from the trivial repre-
sentation as follows. There exists a sequence of dual pairs each of which is in the stable
range

(0%(2m1), Sp(p1, q1)), (Sp(p1, q1), 0" (2m2)), (O*(2m2), Sp(p2, ¢2)). - - - . (O*(2m4 ). Sp(p, )
so that if the corresponding theta lifts are denoted by

Ier(O* (2m1)) 25 Tre(Sp(p1, a1)) 2 Ter(0* (2ma)) =2 -+ 25 Ier(Sp(p. ),

then
T = [fog 1002 0 06](1).
The identical statements hold (with obvious modifications) for Gg = O*(2n).

The theorem verifies a large part of Conjecture 0.2 for Sp(p, ¢) and O*(2n) and is proved
after Theorem 3.7 below. The condition on the partition corresponding to OV is a vestige
of the fact that each pair used for the iterated lift must be in the stable range so that the
results of [Lil] apply. This condition may perhaps be omitted completely using the results of
[He] (in which case the full Conjecture 0.2 would follow for the groups in question). Results
of an identical nature for U(p,q), GL(n,C), and GL(n,R) also follow. But as remarked
above, special unipotent representations for these groups are already well-understood and
we get no new unitarity results. Nonetheless the case of U(p, ¢) does exhibit some intriguing
features; we give complete details in Section 2.
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The same kinds of ideas work for arbitrary dual pairs, but there are significant compli-
cations. We already noted some additional hypothesis are needed for Theorem 0.3. More
importantly, the count required to prove exhaustion fails in a mildly complicated way for
the pairs (O(p, ¢), Sp(2n,R)) (owing to the disconnectedness of the orthogonal group). Some
examples are given in Section 4.

Acknowledgments. It is a pleasure to thank Dan Barbasch for a number of helpful con-
versations. Many of the main results here were independently obtained by him.

1. BACKGROUND: NILPOTENT ORBITS AND THE THETA CORRESPONDENCE

1.1. General notation. Let Gr be a real reductive group with maximal compact subgroup
Kpr corresponding to a Cartan involution 7. We write gr and €r for the corresponding Lie
algebras, g and & for their complexifications, and g = € & p for the corresponding Cartan
involution. We often implicitly identify g and g* by means of a fixed invariant form. In the
setting of a reductive dual pair (Gr, G}) in Sp(2N,R), we adopt the analogous notation for
G} but simply add a prime everywhere. For instance g’ = ¢ @ p’ is the complexified Cartan
decomposition with respect to 7. We further assume that 7 and 7" are the restriction of a
fixed Cartan involution for Sp(2N,R).

1.2. Nilpotent orbits in complex classical Lie algebras. Let g denote a complex re-
ductive Lie algebra and write G for a connected complex group with Lie algebra G. Let
N (g) denote the nilpotent cone in g. G acts on N(g) with finitely many orbits. Using an
invariant bilinear form, A/ (g) identifies with A/(g*), the nilpotent cone in g*, and the orbits
of G on N(g) and N (g*) are also identified.

Recall the nilpotent orbits in sl(n, C) are classified according to Jordan normal forms of
elements, i.e. by partitions of n. We denote the set of all such partition by II(n) or I14(n).

For sp(2n, C), nilpotent orbits are again classified according to Jordan normal forms. The
partitions that arise in this was have all odd parts occurring with even multiplicity. We
write I (2n) for such partitions.

Nilpotent orbits in so(2n + 1, C) are classified by the set IIg(2n+1) of partitions of 2n+1
in which even parts occur with even multiplicity.

Finally let II;(2n) denote the set of partition of 2n in which even parts occur with
even multiplicity. The adjoint orbits of the disconnected group O(2n,C) on so(2n,C) are
parametrized by I (2n). The parametrization of orbits of SO(2n, C) is slightly more elab-
orate: the partition in II;(2n) has only even parts if and only if the O(2n,C) orbit splits
into two SO(2n, C) orbits; but we shall have no occasion to study the latter orbits.

Notation 1.1. Given a complex semisimple Lie algebra g, we let N(g) denote the set of
G orbits on N (g) with one exception. For applications to the theta correspondence, it is
only the disconnected orthogonal group which arises. Consequently we shall only consider
nilpotent orbits of O(n, C) on N (so(n,C)) in this paper. We deviate from our usual notation
and write N(g) for this set in this case. We use analogous notation for N(g*).

1.3. Associated varieties of primitive ideals. Let {(g) denote the universal enveloping
algebra of a complex reductive Lie algebra g and let X denote a simple $(g) module. Let
Ix denote the two sided ideal Anngg)(X). Consider the degree filtration on 4(g). Passing
to associated graded objects gives an ideal grix in S(g). The support of grliyx is a G-
invariant subvariety of g* called the associated variety of the annihilator of X and denoted
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AV(Ann(X)). Since X has finite length, it is annihilated by an ideal of finite codimension
in the center Z(g) of U(g). Since the center cuts out N (g*), and since AV(Ann(X)) is
invariant under the adjoint action, AV(Ann(X)) is a union of nilpotent orbits. In fact, if X
is irreducible, AV(Ann(X)) is the closure of a single orbit ([BB]).

1.4. Associated varieties of Harish-Chandra modules. We recall the main construc-
tion of [V4]. Fix Gg, and let X be an irreducible (g, K) module. Fix a K-stable good
filtration of X, and consider the S(g) module obtained by passing to the associated graded
object gr(X). By identifying (g/€)* with p (and noting the K-invariance of the filtration),
we can consider the support of gr(X) as a subvariety of p. This subvariety is called the
associated variety of X and is denoted AV (X). It is a (finite) union of closures of elements
of Irr(O N p) where AV(Ann(X)) = O. Each such component is a nilpotent K orbit on p.

1.5. Operations on nilpotent orbits in complex classical Lie algebras: adding a
column. Recall Przebinda’s upper bound in Equation (1). The paper [DKP1] computes
the upper bound explicitly in terms of partitions. In this section we recall a particularly
simple case of that computation adequate for our purposes.

We now describe an operation on nilpotent orbits in terms of the partition classification
given in Section 1.2. We first treat Type A. Fix n < m and define a map

0 : II(n) — II(m),
defined by augmenting the m — n largest parts of a given partition by one. More precisely,
given a partition A,
n=ny+ne+- - +ng

stretch it to have length n by padding it with zero entries ng11 = ngqo =+ =ny, =0, and
then define () to be the partition

n=m +1)+ne+1)+ 4 nmon+1)+0m pp1+- + Ny,

removing any terminal zeros as necessary.

Outside of Type A, the situation is necessarily more complicated. For instance, fix X
of Type B, C, or D. Then it is easy to see that there exist n, m, and A € IIx(n) so that
O(\) ¢ 11y (m) for Y equal to B, C, or D. We sweep this under the rug by incorporating it
into our hypotheses.

Proposition 1.2. Let (Gr,Gg) denote an irreducible reductive dual pair and consider the
corresponding complex Lie algebras g and g'. Fiz an orbit O = Oy in N(g) (Notation 1.1)
parametrized by a partition \. Suppose the size of g' is arranged so that the column-adding
operation O(\) is a partition of the appropriate type to parametrize an orbit (9'0(/\) in N(g').

Recall the orbit 0(O)) defined just before Equation (1) in the introduction. Then

Remark 1.3. Notice that outside of Type A, we have restricted the size of g’ so that the
column-adding operation defines a partition of the appropriate type. [DKP1] computes
6(0,) without this restriction, but we do not need the more general computation here.

Example 1.4. Fix n < m and consider

(g,9") = (sp(2n,C),s0(2m,C)) or (so(2n,C),sp(2m,C)).
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Suppose A is a partition in which all parts occur with even multiplicity. Then A always
defines an orbit for g. Moreover, #(\) always defines an orbit for g’. A “dual” fact is the
subject of the first assertion in Proposition 1.10 below.

As as a consequence of Przebinda’s result (Equation (1)), we obtain the following com-
putable upper bound on the size of 6(x).

Corollary 1.5 ([Prl], [DKP1]). Retain the notation and hypotheses of Proposition 1.2.
Suppose T is an irreducible representation of Gr with AV(Ann(rn)) = Oy. Then

AV (Ann(f(n))) C (9'9(/\).

1.6. Duality of orbits. Let g denote a complex simple Lie algebra and g¥ for its complex
dual. Recall Notation 1.1. Spaltenstein defined a map

d : N(g) — N(g")

with many remarkable properties. For instance the image of d consists exactly of the special
orbits in N(g¥) and d? is the identity when restricted to special orbits in N(g). Here is the
another property that is especially important for us.

Theorem 1.6 (Barbasch-Vogan). Let Gr be a linear reductive group. Suppose w is a special
unipotent representations of Ggr attached to OV. Then

AV (Ann(n)) = d(OV).
Proof. This is proved in Section A.3 of [BV1]. O

Corollary 1.7. Let Gg be a linear reductive group and fiz an even nilpotent orbit OV in g.

Suppose m is a representation of Gr with infinitesimal character x(OV) such that

AV (Ann(n)) C d(OV).
Then the inclusion is in fact an equality, and 7 is special unipotent attached to OV.

For classical Lie algebras (Section 1.2), the orbit d(Q) is roughly parametrized by the
transpose of the partition parametrizing @. (Given a partition of n, we may consider it as
a Young diagram — i.e. a left justified array of boxes whose length decreases down rows
— and then the transpose is the flip about the obvious diagonal.) This is exactly right in
Type A, but can’t be quite right in other types since the transpose of an element in, say,
I15(2n + 1) does not belong to II¢(2n). Some minor refinement is necessary which we now
describe.

First we recall the “X-collapse” operation on partitions ([CM, Chapter 6], for example).
Recall the partial order on I1(n) arising from the closure order on nilpotent orbits for sl(n, C).
Given a partition A € II(2n), its C- (resp. D-)collapse A\¢ (resp. Ap) is defined to be the
largest partition in II(2n) (resp. IIp(2n)) which is less than or equal to A in the partial
order on II(2n). The B-collapse Ap of a partition A € II(2n + 1) is defined in the same way.

Now we can give the computation of d in terms of partitions. If A € I1p(2n), then d(\)
is obtained by transposing A and then taking the D-collapse. (We have no occasion to keep
track of orbits of SO(n,C).) If A € II¢(2n), the d()\) is obtained by first adding 1 to the
largest part of A, then taking the B-collapse, then transposing, and finally taking the B-
collapse again. If A € IIp(2n+1) the d()) is obtained by first removing one from the smallest
part of X\, then taking the C-collapse, then transposing, and finally taking the C-collapse
again.
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1.7. A dual operation: adding a row to a nilpotent orbit. In view of Corollary 1.5
and Theorem 1.6, it’s natural to ask it we can find an operation dual to adding a column to a
nilpotent orbits. More precisely, consider an irreducible dual pair (Ggr, G ) with complexified
Lie algebras g and g’. We would like to find a map 6" that makes the following diagram
commute,

(2) N(g) —— N(g)

N(g") — N((@)")

The map 6 can be combinatorially defined (Section 1.5 and Remark 1.3), and we explained
the combinatorial computation of d in Section 1.6. So investigating the existence of 6" is
tractable. Of course its essentially trivial in Type A, and so we start there.
Suppose n < m and define
0¥ : I(n) — I(m)
by augmenting a given partition of n by the part m — n; i.e. ¥ adds a row of length m —n
to n. Using that parametrizations of Section 1.2, this gives us a map

6" : N(sl(n,C)) — N(sl(m,C)).
The following proposition is obvious.

Proposition 1.8. Let g = sl(n,C) and ¢’ = sl(m,C) and suppose n < m. Then for all
O € N(g),

0" (d(0)) = d(6(0)).
Corollary 1.9. Retain the notation and hypotheses of Proposition 1.8. Consider an ir-

reducibleNdual pair (Gr, Gy) whose complexified Lie algebras are equal to (g,g¢'). Suppose
7 € Irr(GR) is a special unipotent representation attached to OV (Definition 0.1). Then

AV(Ann(8(x))) C d[8V(OV))].

Proof. Since 7 is special unipotent attached to OV, Theorem 1.6 together with Corollary 1.5
gives that
AV(Ann(f(m))) C 6(d(OV)).
Now since d? is the identity, Proposition 1.8 implies
0(d(0")) =[dodofod(0") = [do8'dod](0) =d(6"(O)),
and the corollary then follows. ]

Since the collapse procedure is combinatorially a little complicated, defining 0¥ outside
of Type A in Equation (2) is also complicated outside of Type A. But there is one easy case
that it entirely adequate for our applications.

Proposition 1.10. Fiz n < m and consider of pair of complex Lie algebras (g,9') of the
form

(g,9") = (sp(2n,C),s0(2m,C)) or (so(2n,C),sp(2m,C))
Fiz an element O € N(g) (Notation 1.1), and suppose that the corresponding partition A has
all parts occurring an even number of times (cf. Example 1.4). Consider OV = d(O) € N(g")
and let NV denote its corresponding partition. Then the partition obtained by adding a
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single part (“row”) of length 2m — 2n to AV is of the appropriate type to define an orbit
6V(0OV) e N((¢g')Y). Moreover

The proof is a simple exercise in the combinatorial definitions. The assumption that all
parts of the partition occur with even multiplicity simplifies matters enormously.

Corollary 1.11. Retain the notation and hypothesis of Proposition 1.10. Consider an ir-
reducible dual pair (Gr,Gy) whose complezified Lie algebras are equal to (g,9'). Suppose

mE Irr(éR) is a special unipotent representation attached to OV (Definition 0.1; the as-
sumption of the proposition guarantee that OV is even). Then

AV(Ann(8(x))) C d[8V(OV)].

Proof. This follows just as Corollary 1.9 did. (Here one must also use the fact that O is
special and that d? is the identity on special orbits.) ]

1.8. The infinitesimal character correspondence. Fix a reductive dual pair (Gr,Gg)
as in the introduction. Fix Cartans h and ' in g and g’ and let W and W' denote the
corresponding Weyl groups. Write

ic : Irr(Gr) — b* /W,

for the infinitesimal character map. Fix m € Irr(Gg). Przebinda [Pr2] proved that then
the infinitesimal character of 6(7) depends only on the infinitesimal character of 7. More
precisely, there is a map

Oic = b"/W — (b')" /W'
such that
iC(H(ﬂ')) = Hic(ic(ﬂ—))a

whenever 6(7) # 0. Moreover 6;. depends only of the pair (g, g’) of complexified Lie algebras.

The main point is that the map 6V of Section 1.5 computes ;. for the kinds of infinitesimal
characters that arise as those of special unipotent representations of interest to us here.

Proposition 1.12. Recall the notation x(OV) appearing in Definition 0.1.

(a) Fiz complex Lie algebras (g,¢') = (sl(n,C),sl(m,C)). Let OV denote an even nilpo-
tent orbit for g¥ ~ sl(n,C). The condition that OV is even means all of its rows

have the same parity, say €. Suppose m — n is positive and matches the parity of €.
Then

bic(x(0Y)) = x(87(0)).

(b) Retain the notation and assumptions of Proposition 1.10.
Oic(x(0")) = x(6"(OY)).

Proof. This is a simple exercise using [Pr2] and the well-known computation of x(OV)
([CM, Section 6.3] for example). O
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1.9. Proof of Theorem 0.3.

Theorem 1.13. (a) Retain the setting of Corollary 1.9. Then 0(x) is either zero or
special unipotent attached to 0¥ (OV).

(b) Retain the setting of Corollary 1.11. Then () is either zero or special unipotent
attached to 0¥ (OV).

Proof. This follows immediately from Proposition 1.12 and Corollaries 1.7, 1.9, and 1.11.
g

If 7 is a special unipotent representation of O*(2n) or Sp(p,q), then the discussion in
Section 3 shows that AV(Ann(r)) is the closure of an orbit parametrized by a partition all
of whose parts occur an equal number of times. So the hypotheses of Theorem 0.3 imply
those for Theorem 1.13(b), and the theorem thus follows once we note that Proposition 1.10
implies that

d(O(d(0Y)) = 6¥(0Y).

2. UNIPOTENT REPRESENTATIONS OF U(p,q).

The purpose of this section is to give a very precise conjectural description of the theta
lifts of unipotent representations of U(p, ¢) sharpening the conclusion of Theorem 1.13(a).

Theorem 2.1. Let Gg = U(p,q) and n = p+q. Fiz an even nilpotent orbit OV for gV and
set O = d(O) (Notation as in Section 1.6). Suppose O Ny is nonempty. Let Unip, ,(OY)
denote the set of special unipotent representations of U(p,q) attached to OV (Definition 0.1).
Then there is a bijection

Unip, ,(0Y) — Irr(O Np)

mapping © € Unip, ,(OV) to the dense orbit in AV(r) (Section 1.4). In particular, there is
a unique such orbit; i.e. AV(r) is irreducible. As a matter of notation, we will write (O )
for the special unipotent representation corresponding to Ok € Irr(O N p).

Proof. The paper [BV2] essentially establishes the theorem. The modifier “essentially” is
required since that reference makes no mention of associated varieties; see [T1, Section 4]
for this. O

We now define 7(Ok) in terms of cohomological induction. In order to do so, we must
first recall the well-known parametrization of Irr(O Np). A signed tableau of signature (p, q)
is an (equivalence class of) signed Young diagram of size p + ¢ whose boxes are filled with
p plus signs and ¢ minus signs so that signs alternate across rows; two such diagrams are
said to be equivalent if they differ by interchanging rows of equal length. We write I1(p, q)
for the set of all such diagram and II(p, g; A) for those whose shape coincides with that of
A € II(p + q) when viewed a Young diagram. If O is parametrized by A, then Irr(O N p) is
parametrized by II(p, g; \); see [CM, Chapter 9].

Recall that K conjugacy classes of T-stable parabolics in g are parametrized by ordered

tuples (p1,q1),...,(pr,qr) so that > .p; = p and ) ,¢; = ¢q. The parabolic ¢ = [® u
corresponding to such a tuple has Levi factor [ which satisfies

R =a0d~ulp,q)®- - &ulprgr).
More details may be found in [T1, Section 3].
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Given Ok € Irr(O Np) parametrized by Ay € I1(p, g; A), let p; denote the number of plus
signs in its 4th column; likewise let ¢; denote the number of minus signs in the ith column.
Denote the corresponding 7-stable parabolic by q(Ok) = [(Og) ® u(Ok) (or just q=1Pu
when the context is clear). Let Lr denote the analytic subgroup of Gr with Lie algebra
[g. Consider the one-dimensional representation C, of Lg on the dual space A™P(u*). The
condition on the parity of the columns guarantees that the square-root character Cy := C s
factors to Lr. (See the discussion after Definition 1.31 in [V3] for instance.) Define

(3) T(Ok) = Aq(N),

where Ag()) denotes the derived functor module defined (for instance) in [KnV, Chapter
5]. The normalization is arranged so that m(Ox) has infinitesimal character that matches
the trivial representation of Lg. In the terminology of [KnV, Definition 0.52] this module is
exactly on the “edge” of the weakly fair range; i.e. for all roots a € A(u), the inner product
of a with A + p(u) is zero. [BV2] proves that each 7(Og) is nonzero and [V2] proves that
they are all unitary, thus verifying the prediction of Conjecture 0.2 in this case.

Here is the definition we need to investigate the theta lifts of the representations 7(Of).
(It is probably best to read the definition in conjunction with the example that follows it.)

Definition 2.2. Consider (Ggr,GR) = (U(p,q),U(r,s)). Set n = p+¢q, m = r+s, and
assume n < m. Write (g, g’) for the corresponding complexified Lie algebras. Fix O € N(g)
parametrized by A € II(n). Let @' = 6(O) (cf. Proposition 1.2), the element of N(g')
parametrized by the partition A’ obtained from A by adding a column of length m — n. Fix
Ok € Irr(O Np) and suppose Ok is parametrized by the signed tableau Aj.

We say that the pair (U(p,q),U(r,s)) is in the stable range with respect to O if there
exists an orbit O} € Irr(O' N p') parametrized by N, satisfying the following condition:
there is some representative of A/, whose subtableau of shape A is a representative for .
In this case, it is easy to see that X/, (and hence O%) is unique. We write O% = 0(Ok).
(See Remark 2.4.)

The terminology is consonant with the usual notion of the stable range for a dual pair
(which in this case amounts to min(r, s) > p + q): if (U(p,q),U(r,s)) is in the usual stable
range then it is in in the stable range for all orbits Ok; and conversely, the pair is in the
usual stable range only if it is in the stable range for the zero orbit Ok of U(p, q).

Example 2.3. Consider (p,q) = (7,5) and let Ok be the orbit parametrized by

—[+
~1+

L[]+ [+]+
|

>\:|: = 3

and so the complex orbit O is parametrized by the partition A = (3,3,2,2,1,1). Suppose
that 74+s = 17 and thus the complex orbit @’ = #(O) obtained by adding a column of length
5 to A is parametrized by X' = (4,4,3,3,2,1). Thus the signed partition )/, parametrizing
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O = 6(Ok) is obtained by filling the vacancies in one of the following diagrams

+|-]+ +|-]+
+|-[|+ +|-|+
—|¥ —|¥
- iy
+ _
|~ Lt

This is possible only if (r,s) = (8,9) or (9, 8) in which case such a filling is unique. (It is easy
to see the unicity of such fillings in the general case.) In the terminology of Definition 2.2, the
pair (U(7,5),U(r,s)) with r+s = 17 is in the stable range for O if and only if (r, s) = (8,9)
or (9,8).

Remark 2.4. The notation §(Of) is potentially dangerous inasmuch as it resembles the
notation #(O). According to Proposition 1.2, the latter notation had both a combinatorial
and geometric interpretation; but Definition 2.2 gives only a combinatorial definition of
0(Ok). Fortunately there is a corresponding geometric interpretation which was observed
by a number of people. More precisely, let O%in denote the associated variety of the oscillator
representation of Mp(2N,R) used to define the theta correspondence. Write s for the —1
eigenvalue of a complexified Cartan involution for Mp(2N,R) on sp(2n,C). Recall the

notational conventions of Section 1.1; so p,p’ C 5. Write uy for the restriction to Or,?i“
of the natural projection of §* to p* and likewise for p/;-. Then for a particular choice of the
oscillator defining the 6 correspondence, (Of) is dense in ph (1 (Ok)). (I learned this
from unpublished work of Shu-Yen Pan. The paper [DKP2] is also relevant.) If we make the
other choice of oscillator defining 6, the combinatorial definition of #(Ok) must be modified
to coincide with the geometric one: instead of adding a column of singed entries on the
right (as in Example 1.4), the column is instead added on the left. In Conjecture 2.5
(and Conjecture 3.5 below) a specific choice of oscillator is implicitly fized so that the
combinatorial definition of (Of) in Definitions 2.2 and 3.2 is compatible with the natural
geometric one.

Here is how unipotent representations of U(p, ¢) should behave under theta lifting.

Conjecture 2.5. Let (Gr,GR) = (U(p,q),U(r,s)). Fiz an even complez orbit OV € N(g)
and set O = d(OV) (Section 1.6), and suppose that the orbit 0¥ (0OV) € N((g')V) (Section 1.7)
is also even. Fiz an orbit Ok € Irr(O N p) and suppose the pair is in the stable range for
Ok (Definition 2.2). Recall the choice of oscillator discussed in Remark 2.4. Then

0(m(Ok)) = 7(0(Ok))-

Remark 2.6. The validity of the conjecture would give a mechanism to obtain all special
unipotent representations of U(p,q) as iterated lifts of the trivial representation. More
precisely, given Ok we may build a sequence of orbits O,er0 = Og), (’)g), e ,(’)g) = Ok by
incrementally peeling away the longest possible chain of row-ends from the right side of the
tableau parametrizing Og. This is most easily described by means of an example. In the

following chain of tableau, the left-most one parametrizes O and each successive tableau
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is obtained by peeling off row-ends (indicated with primes) from the previous tableau:

+| | +] |+

+ =+ =+

=+ |-+ +| =+ |-

+|—[+] +| [+

+1- —|+]- + ||+ +|-

+|-' +| =+ +| =+ +|-'

! ! ! !

+ ] SIS
- ] 11

(A different choice of oscillator would necessitate peeling from the left; see Remark 2.4.) Let
(9%) denote the orbit parametrized by the last tableau (so it is necessarily the zero orbit),
let (9(,?) denote the orbit parametrized by the second to last tableau, and so on; we end with

O(,ﬁ) = Ok. Let (p;, q;) denote the signature of the ith tableau, so that (’)([? is an orbit for
U(ps, g;). Consider the sequential 6 liftings

0 /] Or_
Irr(U(pr, q1)) — Ier(U(p2, g2)) — -+ = Tee(U(pg, ax))-

It is easy to check that (’)E? is in the stable range for the pair (U(p;, ¢;), U(pit1,gi+1))- Since
(9(,? is the zero orbit, the validity of the conjecture would imply that

m(Ok) =[Ok 10063 061](1p, 4 ),

where 1, ,, denotes the trivial representation of U(p1, ¢1).

Notice that Theorem 1.13(a) implies that in the setting of Conjecture 2.5,
H(Unipp’q((’)v)) C Unipr’s(ﬁv(ov)).
The next theorem shows how to make the inclusion an equality in the stable range.

Theorem 2.7. Fiz U(r,s) and fix n < min(r,s). Set g = gl(n,C) and ¢’ = gl(r+s,C). Fiz
an even complex orbit OV € N(g) and set O = d(OV) € N(g') (Section 1.6), and suppose
that the orbit 6¥(OV) € N((g')V) (Section 1.7) is also even. Then

(4) 9( U Unippyq((’)v)) = Unip, ,(6"(0)).

ptq=n

Proof. As remarked before above, Theorem 1.13(a) implies that the left-hand side of Equa-
tion (4) is a subset of the right-hand side. So it remains only to show that both sides are
sets of the same cardinality. Since each pair (U(p, ¢), U(r, s)) is in the stable range, 8(7) # 0
for all m € Irr(U(p, ¢)). Thus the left-hand side of Equation (4) has cardinality equal to that
of
U Unip, ,(0").
pt+g=n

By Theorem 2.1 and the combinatorial classification discussed above, the above set is in
bijection with

(5) U ma@ e,

p+q=n
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where A denotes the shape of @. Meanwhile the right-hand side is in bijection with
(6) ILa(r, 55 X'),

where )\ is the shape of #((0). But since min(r,s) > p+gq, the sets in (5) and (6) are
clearly in bijection: in the notation of Definition 2.2, the map simply takes a tableau in (5)
parametrizing an orbit O to the tableau in (6) parametrizing the orbit 8(Ox) obtained by
adding a a column of the appropriate signs. O

Notice that the validity of Conjecture 2.5 would imply Theorem 2.7. So the latter may
be interpreted as evidence for the former.

In the setting of Theorem 2.7, the preservation of unitarity results of [Lil] allow one to
deduce the unitarity of each element of the set Unip, ((6¥(O")) from the unitarity of the set
6, ,(Unip(OY)). As remarked above, we know that every special unipotent representation
of U(p, ¢q) is unitary, so we obtain nothing new. By contrast, the parallel theory of the next
section provides new unitarity results.

3. UNIPOTENT REPRESENTATIONS OF Sp(p,q) AND O*(2n)

The theory of unipotent representations of Sp(p,q) and O*(2n) closely mirrors that of
U(p, q)-

Theorem 3.1. Let Gg = Sp(p,q) and n = p+q. Fiz an even nilpotent orbit OV for g¥
and set O = d(OY) (Notation as in Section 1.6). Let Unip, ,(O) denote the set of special
unipotent representations attached to OV (Definition 0.1). Suppose ONp is nonempty. Then
there is a bijection

Unip, ,(0Y) — Irr(O Np)

mapping © € Unip(OV) to the dense orbit in AV () (Section 1.4). In particular, there is a
unique such orbit; i.e. AV(r) is irreducible. As a matter of notation, we will write w(Og)
for the special unipotent representation corresponding to Ok € Trr(O Np).

The same conclusion holds for Gg = O*(2n). As a matter of notation, We write Unip,,, (OV)
for the set of special unipotent representations of O*(2n) attached to OV.

Proof. Theorems 6 and 10 of [Mcl] prove the existence of the bijection. Here is a sketch of
the associated variety. The main results of [V4] show that each AV(n) is irreducible. The
surjectivity of the assignment 7 — AV(w) follows by a counting argument of the form given
in Theorem 3.3.1 of [T3]. O

Unlike the case of U(p,q), the unipotent representation 7(Ok) of Sp(p,q) and O*(2n)
need not be weakly fair derived functor modules. (The paper [T2] determines exactly which
of them are.) It seems likely that all are obtained by a kind of analytic continuation of such
derived functor modules however.

As in the previous section, we need to recall the combinatorics of the sets Irr(O N p)
appearing in Theorem 3.1. So let Gr = Sp(p,q) and retain the notation of the theorem.
The condition that ONp be nonempty implies that all parts of the partition A parameterizing
O appear with even multiplicity. Let 1o (2p,2¢; \) denote the subset of I1(2p,2¢, A) (with
notation as in Section 2) consisting of those signed tableau for which each chunk of even
rows of a fixed length has an equal number of rows beginning with plus and with minus.
Then 11 (2p, 2g; A) parametrizes Irr(O N p); see [CM, Theorem 9.3.5].
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Next let Ggr = O*(2n) and fix other notation as in Theorem 3.1. Again let A denote the
partition parametrizing . As before, the condition that O N p be nonempty implies that
all parts of X\ appear with even multiplicity. Let IIp(x, *; A) denote the subset of

M, %2 = |J TpgA)
p+q=2n
consisting of those partitions for for which each chunk of odd rows of a fixed length has an
equal number of rows beginning with plus and with minus. Then ITj (%, *; \) parametrizes
Irr(O Np); see [CM, Theorem 9.3.4].

Definition 3.2. Consider (Gr, GR) = (Sp(p, ¢), O*(2m)). Set n = p+¢ and assume n < m.
Write (g, g’) for the corresponding complexified Lie algebras. Fix O € N(g) parametrized by
A € I (2n) in which all parts occur with even multiplicity. Let O' = 6(O) (cf. Example 1.4),
the element of N(g’) parametrized by the partition A’ obtained from A by adding a column
of length 2m — 2n. Fix Ox € Irr(O N p) and suppose Ok is parametrized by the signed
tableau Ai.

We say that the pair (Sp(p,q),0*(2m)) is in the stable range with respect to Ok if there
exists an orbit O} € Irr(O' N p') parametrized by X, satisfying the following condition:
there is some representative of X/, whose subtableau of shape X is a representative for .
In this case, it is easy to see that AL (and hence O)) is unique. We write O} = 0(Ox).

We say that the pair (Sp(p,q), O*(2m)) is in the stable range with respect to O if it is in
the stable range with respect to every O € Irr(O N p).

The obvious versions of these definitions apply to (Gr,Gg) = (0*(2n),Sp(p,q)) with
n<p+q.

The terminology is again compatible with the usual notion of the stable range: a pair
of the above type is in the usual stable range if and only if it is in the stable range for all
complex orbits O.

Remark 3.4. The analogous version of Remark 2.4 applies here.

Here is the analog of Conjecture 2.5.

Conjecture 3.5. Let (Gr,Gy) = (Sp(p,q),0*(2n)) or (O*(2m),Sp(p,q)). Fiz an even
complez orbit OV € N(g) and set O = d(OV) (Section 1.6). Fiz O € ONp and suppose the
pair is in the stable range for Ok (Definition 3.2). Recall the choice of oscillator discussed
i Remark 2.4. Then

0(7(Ok)) = 7(0(Ok))-

Remark 3.6. Just an in Remark 2.6, the validity of the conjecture would precisely dictate
(in terms of an analogous “peeling” procedure) how each unipotent representation is an
iterated lift from the trivial representation.

Next we have the analog of Theorem 2.7.

Theorem 3.7. Recall the notational conventions of Section 1.1 and the notation of Theorem
3.1.

(1) Fiz G = Sp(p,q), fir n < min(p,q), and let Ggr = O*(2n). Fiz an orbit OV € N(g),
set O =d(OY) € N(g') (Section 1.6), and suppose that O Np is nonempty. Then

(7) 0 (Unip,, (0")) = Unip, ,(6¥(0")).
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In particular, since nonzero unitary representations lift to nonzero unitary represen-
tations in the stable range [Lil], the validity of Conjecture 0.2 for O*(2n) implies it
for Sp(p, q).

(2) Fiz G = O*(2n), and fix m such that 2m < n. Set g = sp(2m,C) and g' =
50(2n,C). Fiz an orbit OV € N(g), set O = d(0V) € N(g') (Section 1.6), and
suppose that 0(O) Np' is nonempty. Then

(8) 9( U Unipp’q((’)v)) = Unip,, (¥ (OY)).
pt+g=m
In particular, the validity of Conjecture 0.2 for the various groups Sp(p,q) implies it
for O*(2n).

Proof. This follows from counting considerations analogous to those treated in the proof of
Theorem 2.7. We omit the details. g

As remarked above, the results of [He] may make it possible to drop the stable range
hypothesis of Theorem 3.7 and thus prove Conjecture 0.2 for Sp(p, ¢) and O*(2n) without
additional hypotheses. In any event, the present Theorem 3.7 supplies some evidence for
Conjecture 3.5.

Finally, we may complete the proof of Theorem 0.4.

Proof of Theorem 0.4. Suppose 7 is a special unipotent representation of Sp(p, ¢) attached
to OV, a nilpotent orbit for g¥ = s0(2p + 2¢ + 1,C) of the form described in Theorem 0.4.
Set 2m = 2p + 2g. Let p be the largest part of the partition A parametrizing OV. Since
p is assumed to be greater than the sum of all other parts less than or equal to it, p must
have multiplicity one. Since even parts must occur with even multiplicity in the partition
parametrizing OV, p must be odd. Set 2m; = 2m + 1 — p. We may assume that m; # 0;
otherwise the theorem is trivial. Let A; be the partition obtained from X\ by deleting the
part p. Since all even parts in A occur with even multiplicity and p is odd, the same is true
of . So A\ parametrizes a nilpotent orbit Oy for so(2m;,C).

Consider the dual pair (O*(2m1),Sp(p,q)). We claim the pair is in the stable range,
i. e. that m < min(p, ¢). Since 7 is attached to OV, d(OV)Np is nonempty (by Theorem 3.1).
From the combinatorial description of d(O) N p given above, we conclude that there is a
signature (2p,2q) tableau 1. whose shape coincides with 7, the shape of d(0V). From the
definition of d, one checks that that n has a column of length p. Let 7; denote the partition
obtained from 7 after removing a column of length p. Likewise let 1; + denote the signed
tableau obtained from 74 by deleting all row-ends. (So, in the notation of Definition 3.2,
n+ = 0(ni +).) Let (r,s) denote the signature of 7 +. Without loss of generality suppose
r > s; so r > my. Thus the number of odd rows of 7 + ending in plus exceed the number
of odd rows ending in minus by r — s. Thus the removed row-ends from 74+ must have had
at least » — s minus signs in it. So the number of minus signs in 74 is at least s + (r — s)
(the former from 7, 4, the latter from the deleted row-ends), and hence the number of minus
signs ¢q exceeds r and hence . The number of plus signs p in 74 is at least the number in
m,+ which was r and 7 > m;. In other words, m; < min(p,¢). So indeed the pair is in the
stable range.

According to Theorem 3.7, there is a special unipotent representation m; of O*(2m;)
attached to O such that 6(m) = n. If m is trivial, we are finished. If not, we may
repeat this argument inductively (inverting the roles of Sp(p,q) and O*(2n) as necessary
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and arguing combinatorially as before) to conclude that 7 is an iterated stable-range lift
from the trivial representation. Hence 7 is unitary and Theorem 0.4 follows. g

Remark 3.8. The paper [LPTZ] computes a large part of the O*(2n)-Sp(p, gq) correspon-
dence in terms of Langlands parameters. But since the Langlands parameters of special
unipotent representations are obscure, their computations cannot be immediately applied
to Conjecture 3.5. On the other hand, the Langlands parameters of special unipotent rep-
resentation of U(p,q) are known from [T1]. But Paul’s computations in [P1]-[P2], while
substantial, are seemingly not enough to handle Conjecture 2.5.

4. CONSIDERATIONS FOR GENERAL DUAL PAIRS

Many of the above ideas work for arbitrary dual pairs, but there are some complications.
Of course if one is interested only in Conjecture 0.2, then the only simple linear groups
(apart from those treated here) that arise in dual pairs for which the Conjecture 0.2 is open
are Sp(2n,R) and O(p, q).

First there are what one might call obvious combinatorial complications arising in extend-
ing Propositions 1.10 and 1.12 to more general setting. Unfortunately many case-by-case
considerations enter. For any particular case, these issues are relatively easy to resolve (but
sometimes difficult to state).

Next, Theorem 0.3 can fail in the general case. The first example is the complex dual pair
(0(2,C),Sp(2n,C)) for n > 2 and = the trivial representation of O(2,C). Then it follows
from [AB] that 6(n) is also the trivial representation. While 6(x) is special unipotent of
course, it is not attached to d(0(0)). (The associated variety of its annihilator is the zero
orbit which is properly contained in §(AV(Ann(n))).) It seems possible that this kind of
failure is confined to the complex pair (O(2m, C), Sp(2n, C)).

Finally exhaustion statements like those in Theorems 2.7 and 3.7 (and their analogous
conjectures outside the stable range) are much more subtle for disconnected groups. To take
but one example, fix s even and consider the 4s characters of the orthogonal groups O(p, q)
with p+q = s. Fix m > s. Then the 4s characters lift to 4s special unipotent representations
of Sp(2m,R). It is an easy count to see that these 4s representations exhaust all special
unipotent representations attached 07 = d(6(QO)) where O is the zero orbit for O(s,C). Up
to this point, everything looks fine. Now fix O(r, s) with r + s > 4m and even. Then the 4s
special unipotent representations of Sp(2m, R) just constructed lift to 4s special unipotent
representations of O(r, s) attached to d(6(d(O)). But this time, these 4s representations do
not exhaust all such special unipotent representations — there are many more not accounted
for by this construction. One may hope that after tensoring with nontrivial characters, they
do indeed exhaust such unipotent representations. But this appears rather subtle to prove
and perhaps even a little optimistic.
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