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introduction

Suppose X is an irreducible Harish-Chandra module. By far the most important invariant attached
to X is its characteristic cycle. The point of these notes is two-fold. In Section 1, I define the
characteristic cycle and through some carefully chosen examples illuminate some subtleties. In the
second section, I focus on how one might use Atlas to make partial computations of characteristic
cycles. The first real test case will be the split real form of F4. In the final section I include the case
of Sp(4, R).

1. characteristic cycles: definition and examples

To get started, I list the notation that I will use below and when it isn’t obvious what the
notation means I add parenthetic explanations: G (complex reductive algebraic group defined over
R), GR (real point of G), KR, K, gR, g, U(g), kR, k, g = k ⊕ p, N (g∗) (nilpotent cone in g∗),
N (g/k) := N (g∗)∩(g/k)∗, B (the variety of Borel subalgebras in g), DB (sheaf of algebraic differential
operators on B), T ∗B (cotangent bundle to B), T ∗

QB (conormal bundle in T ∗B to a K orbit Q on

B), µ (moment map for Hamiltonian action of G on T ∗B).

Next I’ll pause to describe a few of theses objects more explicitly as well as introduce more notation.
First we may obviously identify

T ∗B = {(b, ξ) | b ∈ B and ξ ∈ (g/b)∗}.

In terms of these identification, the moment map concretely may be written as

T ∗B −→ g∗

(b, ξ) −→ ξ

from which one observes that the image is contained in the nilpotent cone N (g∗). Next we may
identify

T ∗
QB = {(b, ξ) | b ∈ Q and ξ ∈ (g/b + k)∗},

and so for any b = h ⊕ n in Q

µ(T ∗
QB) = K · (g/b + k)∗ ⊂ N (g/b)∗

It is not hard to see that this image contains a dense orbit of K. We denote this orbit by µ(Q).
Given such an orbit OK , we define

µ−1(Q) := {Q ∈ K\B | µ(Q) = OK}.

This set is always nonempty, and we obtain an interesting partition

(1.1) K\B =
∐

OK∈K\N (g/k)∗

µ−1(OK).

This decomposition is a kind of generalized Robinson-Schensted correspondence: if GR = GL(n, C),
then K\B naturally identifies with the symmetric group Sn, K\N (g/b)∗ is parametrized by partitions
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of n, and the subsets µ−1(OK) consist of those elements of Sn whose Robinson-Schensted tableaus
have the shape corresponding to a fixed partition of n.

Fix an irreducible Harish-Chandra module X with trivial infinitesimal character. Set X :=
DB ⊗U(g) X; this makes sense since U(g) acts by global differential operators on X. Roughly speak-
ing X is a K-equivariant sheaf of DB modules on B. Since X is irreducible its support on B is the
closure of a single K orbit on B which we denote supp◦(X).

Next choose a filtration X j on X compatible with the degree filtration on DB. (This choice can be
avoided by working in a category where objects (roughly) are DB-modules together with filtrations.
This is undoubtedly the right category to work in. But I will not go into this here.) The symbol
calculus identifies grDB with functions on T ∗B. So grX naturally becomes an (OT∗B,K) modules
(where OT∗B denotes the structure sheaf of T ∗B), i.e. a K-equivariant sheaf on T ∗B. Define CV(X)
to be the support of this sheaf. While the sheaf itself depended on the choice of filtration, its support
does not. Since X is a special kind of DB module (arising as the localization of X), CV(X) has a
special form: there is a subset cv(X) ⊂ K\B such that

CV(X) =
⋃

Q∈cv(X)

T ∗
QB.

By keeping track of the rank of grX along each irreducible component of CV(X), we obtain an
integral linear combination,

CV(X) =
∑

Q∈cv(X)

mQ[T ∗
QB],

called the characteristic cycle of X.

The next lemma provides some very weak information. It’s proof is easy.

Lemma 1.2. Retain the setting above. Then

(a) supp◦(X) ∈ cv(X); moreover msupp
◦
(X) = 1.

(b) if Q ∈ cv(X), then Q ⊂ supp◦(X).

The next result, which is also very easy to prove, shows how to recover Vogan’s invariant from the
characteristic variety.

Proposition 1.3. Fix X as above. Recall the associated variety of X,

AV (X) =
⋃

OK∈av(X)

OK ;

here av(X) is a subset of K orbits on N (g/k)∗. Then

AV(X) =
⋃

Q∈cv(X)

µ(Q).

Because of Lemma 1.2(b) and Proposition 1.3, it is natural to investigate how the closure order
on K\B interacts with the closure order on K\N (g/k)∗. More precisely if Q′ ⊂ Q does this imply
a relationship between the closures of µ(Q′) and µ(Q′)? Here is a partial affirmative answer. Again
the proof is very easy.

Proposition 1.4. Fix a Cartan subalgebra h of g and let α denote a simple root of h in g. Write
Pα for the variety of parabolic subalgebras of g of type α and write πα for the canonical projection
from B to Pα. Fix an orbit Q′ ∈ K\B and suppose that

dim(Q′) = dim(πα(Q′)).

Let Q denote a (in fact, the unique) dense orbit of K on π−1
α (πα(Q′)) . So, in particular, Q′ ⊂ Q.

Then

(1.5) µ(Q) ⊂ µ(Q′).
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The closure relations Q′ ⊂ Q appearing in the proposition account for many — but not all —
codimension one closure relations for K\B. Remarkably for the other codimension one relations not
accounted for by the πα construction, the conclusion of (1.5) need not hold. This is closely connected
to the next example which indicates how complicated things can get in even the simplest of cases.

Example 1.6. Suppose GR = GL(n, C). Then, as remarked above, we may identify K\B with Sn.
Write Qw for the orbit parametrized by w ∈ Sn and Xw for the unique Harish-Chandra module
with trivial infinitesimal character supported on the closure of Qw. It follows by combining results of
Springer, Steinberg, and Joseph that for a fixed irreducible Harish-Chandra module X with trivial
infinitesimal character

µ(supp◦(X)) = av(X);

that is, the associated variety of X is irreducible and, in fact, simply the closure of the moment map
image of the conormal bundle to the support of X. As mentioned above, the computation can be
made very explicit: µ(Qw) is the orbit parametrized by the partition corresponding to the shape of
the Robinson-Schensted tableau corresponding to w.

Kazhdan-Lusztig conjectured that indeed cv(X) = {supp◦(X)} for any irreducible X; i.e. cv(Xw) =
{Qw}. This turns out to be true for all n ≤ 7, but remarkably it fails for n = 8. More precisely, let
si denote the transposition of i and i + 1 in S8. Consider the reduced expressions

w = s1s3s2s4s3s5s4s3s2s1s6s7s6s5s4s3; and

w′ = s1s3s4s3s5s4s3s7.

Then Kashiwara and Saito proved that

cv(Xw) = {Xw, Xw′}.

(Notice that Qw′ ⊂ Qw — obviously w′ is a subexpression of the reduced expression for w — and
this must be the case by Lemma 1.2(b).) This is certainly a very surprising result indicating that
the characteristic variety of a Harish-Chandra module is a very, very delicate invariant.

How were Kashiwara and Saito led to such an example? I can only guess, but the the elements w
and w′ have a quite striking property. First notice that τ(w) ⊂ τ(w′); this is a necessary condition
by the equivariance results described below. Next we can compute µ(Qw) and µ(Qw′) using the
Robinson-Schensted correspondence to find

µ(Qw) = Oλ where λ is the partition 8 = 4 + 2 + 2.

while

µ(Qw′) = Oλ′ where λ′ is the partition 8 = 3 + 3 + 1 + 1.

The conclusion is that

Qw′ ⊂ Qw

but

µ(Qw′) = Oλ′ ⊂ Oλ = µ(Qw).

This is the opposite of the conclusion of (1.5). So the pair Qw and Qw′ are natural candidates to
appear in a reducible characteristic variety. Even so, I know of no conceptual “explanation” of the
Kashiwara-Saito example. It is very mysterious.

Here is another painful example.

Example 1.7. Consider the categories of Harish-Chandra modules for Sp(2n, C) and SO(2n + 1, C)
at trivial infinitesimal character. In fact, these categories are equivalent, but much more is true:
their Grothendieck groups carry isomorphic Hecke algebra representations. (Another way to say
this is that for complex groups, the Kazhdan-Lusztig algorithm only depends on the Weyl groups
which of course are isomorphic in this case.) Thus, for most algebraic purposes, the two categories
are indistinguishable. It is thus perhaps surprising that characteristic cycle computations in these
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categories are very different. Even if one could compute all characteristic cycles of irreducible Harish-
Chandra modules for Sp(2n, C), it would tell you very little about the corresponding computations
for SO(2n + 1, C). Again this indicates the subtleties of this invariant.

The Kashiwara-Saito example is especially deflating and indicates that one really has no hope of
computing characteristic cycles in any generality. Here is a weakened invariant which seems to be
weakened just enough to be computable, and yet still retain a lot of interesting information.

Definition 1.8. Fix a Harish-Chandra module X with trivial infinitesimal character. Define

lt(X) = {Q ∈ cv(X) | dim(µ(Q)) ≥ dim(µ(Q′)) for all Q′ ∈ cv(X)};

that is, lt(X) consists of those orbits in cv(X) whose moment map images have the largest dimension.
Define the leading term of the characteristic variety of X to be

LT(X) =
⋃

Q∈lt(X)

T ∗
QB,

and the leading term cycle of X to be

LT (X) =
∑

Q∈lt(X)

mQ[T ∗
QB].

Here is the first indication that the leading term cycle is a tractable invariant.

Example 1.9. Suppose GR = GL(n, C) and let X be an irreducible Harish-Chandra module for X.
Then

lt(X) = {supp◦(X)}.

Thus,
LT (X) = 1 · [T ∗

supp
◦
(X)B].

So the leading term defines the mysterious Kashiwara-Saito example out of existence.

Here is one of the basic results from a recent preprint of mine. It’s proof is not really that difficult;
it is more a matter of assembling the pieces properly.

Theorem 1.10. Fix an irreducible Harish-Chandra module X with trivial infinitesimal character
and let Q denote the support of the localization X . Suppose (for simplicity) that for ξ ∈ µ(Q), the
component group of the centralizer of ξ in K surjects onto the component group of the centralizer of ξ
in G. Then given the computation of the leading term LT (X), there is an algorithm to determine the
annihilator and associated cycle of X. Conversely, given the computation of Ann(X) and AV(X),
there is an algorithm to determine LT(X).

The theorem is really meant only as philosophical encouragement: the algorithms in the theorem
are ineffective inasmuch as they depend on certain explicit calculations of Springer representations
which are (at present) unavailable. But since the Atlas can compute annihilators, for instance,
one should view the computation of LT (X) as potentially tractable. Here is yet another deflating
example.

Example 1.11. The first case of an irreducible Harish-Chandra module X with a reducible leading
term occurs in Sp(6, R). It transpires that X is cohomologically induced (in the good range) from
the trivial representation on U(1, 0) tensored with a certain lowest weight module X ′ for Sp(4, R).
It turns out to be very easy to see that X ′ has a reducible characteristic cycle (but an irreducible
leading term). Using a relatively simple relationship between characteristic cycles and cohomological
induction, one deduces the reducibility of LT(X) from the reducibility of CV(X ′). Since LT(X ′) is
indeed irreducible, this is bad news: the computation of leading terms is not closed under induction.

These examples leave the water murky. One would need to make further serious computations to
see what we might expect in general.

4



2. toward computing characteristic cycles

By far the most powerful tool in computing characteristic cycles is the Weyl group equivariance
result of Tanisaki which we now recall. Let

T ∗
KB =

⋃

Q∈K\B

T ∗
QB,

the conormal (or generalized Steinberg variety) for K orbits on B. Then the topological construction
of Springer representations due to Kazhdan-Lusztig may be adapted to prove that the top Borel-
Moore homology

H∞
top(T

∗
KB, Z)

is a Weyl group representation. Of course the fundamental classes of the irreducible component T ∗
QB

of T ∗B are a basis for this space,

H∞
top(T

∗
KB, Z) '

⊕

Q∈K\B

[T ∗
QB].

Since the construction of the characteristic cycle given in the last section transparently descends to
the Grothendieck group KHC of Harish-Chandra modules with trivial infinitesimal character, we may
thus view the characteristic cycle as a map

CC : KHC −→ H∞
top(T

∗
KB, Z).

We have already discussed that the range is a representation of W . Of course W also action on the
domain by the coherent continuation action. Tanisaki (building on earlier work of Kashiwara and
Tanisaki in the complex case) prove that CC is W -equivariant.

Theorem 2.1. The characteristic cycle functor is W -equivariant. Since the coherent continuation
action is effectively computable, effectively computing characteristic cycles of Harish-Chandra mod-
ules is equivalent to computing the Kazhdan-Lusztig action of W on H∞

top(T
∗
KB, Z) in the basis of

fundamental classes of conormal bundle closures. (This, for instance, implies the effective compu-
tation of the top-dimensional Springer representation of W in the basis of fundamental classes of
irreducible components of the Springer fiber; but it is much stronger.)

I now remark on two additional powerful aids in computing characteristic cycles. The first is
easiest to understand. Suppose X is cohomologically induced from s = g′⊕u′ in the good range from
a module X ′ for G′

R
. Suppose

CC(X ′) =
∑

Q′

mQ′ [T ∗
Q′B].

Given an orbit Q′, there is a unique orbit Q such that the projection of Q from B to G/S fibers over
its image with fiber isomorphic to Q′. Then

CC(X) =
∑

Q′

mQ′ [T ∗
QB].

In particular if X is of the form As, then

CV(X) = 1 · [T ∗
supp

◦
(X)B].

This is very powerful in practice.

The next utilizes the known leading term calculations for type A. I phrase the result as follows.
Fix two adjacent simple roots α and β of the same length. Suppose

sα · [T ∗
QB] = −[T ∗

QB],

but

sβ · [T ∗
QB] 6= −[T ∗

QB].
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Then there is a unique dense orbit, say Qβ , in the preimage of the projection of Q to Pα (notation
as in Proposition 1.4) and

sβ · [T ∗
QB] = [T ∗

QB] + [T ∗
Qβ B] + other terms.

Moreover if [T ∗
Q′B] is one of the other terms, both sα and sβ map it to its negative. I prove this in

a recent preprint. There are other more subtle (but quite powerful) restrictions also given in that
preprint. They are too technical to discuss here however.

Apart from this list, I know of very few other general restrictions.

The question remains: how much can one compute given the above restrictions? This is a fasci-
nating question.

3. examples

Here I record the full Springer representation on the integral homology of the conormal variety for
Sp(4, R). Since there are 11 orbits of K on the flag variety, the representation is 11 dimensional. I
adhere to the Atlas labeling. Below I give two matrices. One is the simple reflection s1 in the short
simple root. It’s ijth entry is the coefficient of the conormal bundle to the orbit Atlas labels i− 1 in
s1 applied to the conormal bundle to the orbit Atlas labels j − 1.

s1 =





































1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 −1 0 2 0 0 0 0 0 0
0 0 0 −1 0 2 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 −1 2 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 −1 0 0
0 0 0 0 0 1 0 1 0 −1 0
0 0 0 0 0 0 0 2 0 0 −1





































s2 =





































1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 −1 0 0 0 0 0 0
0 1 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1 −1





































I double-checked in Maple that s2
1 = s2

2 = e and (s1s2)
2 = (s2s1)

2.

Compare with the coherent continuation representations on the 12 dimensional block containing
the trivial representation (in the basis of irreducible characters ordered to be consisting with the
above ordering so that the “extra” 12th representations is last).
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s1 =









































1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 −1









































s2 =









































1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 −1 0 0 0 1 0 0 0
0 1 0 1 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 1









































Again, I double-checked these in Maple.

Let Ti denote the closure of the conormal bundle to the dense K orbit in the support of Xi where
Xi is the irreducible Harish-Chandra module with trivial infinitesimal character that Atlas labels i.
So i 7→ Ti fails to be injective (only) because T10 = T11 are both the zero section. Then CC(Xi) = Ti

except in the following cases:

CC(X8) = T8 + T2

CC(X9) = T9 + T3

CC(X11) = T11 + T9 + T8 + T6.

As a final note, for the real rank one form of F4 I checked that

CV(X) = 1 · [T ∗
supp

◦
(X)B]

for all irreducible Harish-Chandra modules X with trivial infinitesimal character.
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