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Summary
We identify and model two possible failure modes for the Saluda Dam:

gradual failure due to an enlarging breach, and sudden catastrophic failure
due to liquefaction of the dam.

For the first case, we describe the breach using a linear sediment-transport
model to determine the flow from the dam. We construct a high-resolution
digital model of the downstream river valley and apply the continuity equations
and a modified Manning equation to model the flow downstream.

For the case of dam annihilation, we use a model based on the Saint-Venant
equations for one-dimensional flood propagation in open-channel flow. As-
suming shallow water conditions along the Saluda River, we approximate the
depth and speed of a dam break wave, using a sinusoidal perturbation of the
dynamic wave model.

We calibrate the models with flow data from two river observation stations.
We conclude that the flood levels would not reach the Capitol Building but

would intrude deeply into Rawls Creek.

Introduction
The Saluda Dam, located 20 km above Columbia, South Carolina, impounds

the almost 3-billion-cubic-meter Lake Murray [South Carolina Electric & Gas
Company 1995]. It is a large earthen dam of a type that has failed in earthquakes
before [Workshop 1986]. In such a failure, the water in Lake Murray would
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rush down the Saluda River Valley towards Columbia, its 100,000 residents,
and the State Capitol.

We present a comprehensive mathematical description of the resulting flood,

including its intrusion into Columbia and the tributaries of the Saluda. See Fig-
ure 1 for an overview of the local topography.
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Figure 1. An overview of Lake Murray and the Saluda River Valley generated from the NCRS

topographical data [National Geophysical Data Center 20051. (a) Lake Murray. (b) Saluda River.

(c) Rawls Creek. (d) State Capitol Building.

A brief survey of earthquake-related earthen dam incidents [Workshop

1986] reveals that failure can follow two distinct courses:

* A crack or breach forms in the dam, causing gradual failure due to erosion.

* The dam is completely annihilated, resulting in the formation of a surge.

To describe both of these situations accurately, we apply two different models.

Gradual Failure The relatively gradual rate at which water is introduced into

the downstream valley suggests that the dispersion of the flood may be mod-

eled using classical open-channel hydraulics. We divide the downstream

river course into basins or reaches and then use the Manning formula and

the continuity equation to describe the movement of water between them.
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We determine the flow into the first basin using a model for the destruction
of the dam due to breach erosion.

We create a three-dimensional topographical model of each basin using
3' resolution data from the NGDC Coastal Relief Model [National Geophys-
ical Data Center 2005]. (Figure I was generated using these models.) This
lets us estimate the relationship between the volume in each basin and the
cross-sectional area of its outflow channel. The Manning formula and the
continuity equation yield a system of coupled first-order differential equa-
tions. We integrate this system numerically and calibrate it using data for
normal flow in the Saluda River from river observation stations just below
the Saluda Dam and just above Columbia City [USGS 2005].

Rapid Failure The flood wave is described as a sinusoidal perturbation to the
steady-state solution of the Saint-Venant equation. We apply the dynamic
wave model of Ponce et al. [1997] to determine the surge's propagation.

We represent the Saluda River Valley as a prismatic channel of rectangular
cross section. We use a small surge recorded by the USGS river observation
station in the Saluda Valley [USGS 2005] to calibrate the frictional constant
governing the rate of attenuation of the flood waves.

Finally, we address the results of the two models and their consequences
for Rawls Creek, the Capitol, and the residents of Columbia.

Gradual Failure
Our model for downstream flooding depends on the conservation of matter

as described by the continuity equation, which states that for any given reach
of the river, the change in volume equals the difference between flow in and
flow out:

dVdt = Qn - Qout, (1)
dt

where V is the volume of the reach, t is time, and Qin and Qout are the flows.
We divide the Saluda River Valley into four reaches. Since the amount of

water involved in a dam failure flood would be significantly greater than that
contributed by any other source, we simplify our model by assuming that all
flow into and out of a reach would occur along the Saluda. For each reach, we
set Qin of each reach equal to Qout of the reach above it, ignoring all tributaries.
Eq. (1) becomes:

dV, d -V, Q i - Q., n = 1.... 4, (2)dt

where V, is the volume in the nth reach (numbered downstream from the dam)
and Qn, is the flow out of the nth reach; Q0 is the flow into the reach 1 through
the breach in the dam.
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To evaluate (2), we must estimate several parameters and relations:

* the flow out of the reservoir (into the first reach) resulting from a dam breach,

* the flow through each reach, and

* the topographical profiles of the reaches.

Flow Through the Breach
Dam-breach erosion is an interaction between the flooding water and the

material of the dam. Once a breach has formed, the discharging water further
erodes the breach. Enlargement of the breach increases the rate of discharge,
which in turn increases the rate of erosion. This interaction continues until the
reservoir water is depleted or until the dam resists further erosion.

We assume that the pre-breach flow into and out of the reservoir can be
ignored, since they are of opposite sign and of negligible magnitude compared
to the flooding waters. The breach outflow discharge Qo equals the product
of the rate at which the water is lowering and the surface area at that height,
A, (H). Also, the breach outflow discharge is related to the mean water velocity
u and the breach cross-sectional area Ab by the continuity equation:

dH
A,(H) dt = Qo = -uAb. (3)

Experimental observations show that the flow of water through a breach
can be simulated by the hydraulics of broad-crested weir flow [Chow 1959;
Pugh et al. 1984]:

u = H- Z), (4)

where Z is the breach bottom height measured from the bottom of the lake. For
critical flow conditions, a = [(2/3) 3g]1/ 2 - 1.7 m/s and,6 = 1/2 [Singh 1996].

We further assume that the surface area of the reservoir, A,, is independent
of the height (i.e., the reservoir is rectangular). Combining (3) and (4) yields

dH
A = uAb -oa(H - Z) 'Ab. (5)dt,

We describe erosion in the breach using the simplest method that has been
used to model dam breaks accurately in the past [Singh 1996] and assume that

dtdZ---ycH (6)

where -y and q are determined from experimental analysis of the dam material
and u is given by (4). Because we do not have access to the dam, we assume
that q- = 1 (linear erosion) and approximate -y as 0.01. This value of--y has given
good results for linear erosion in the past [Singh 1996]. Eqs. (5)-6) are coupled
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first-order differential equations governing the elevation of the water surface
and the elevation of the breach bottom as functions of time. To evaluate them,
we must determine the shape of the breach.

Breaches in dams are typically modeled as triangles, trapezoids, or rectan-
gles; but rectangles are used most often, since the resulting ODEs (5)-(6) are
solved relatively easily [Singh 1996]. For simplicity, we model the breach as a
rectangle with constant width b such that it erodes only in the vertical direction.
Thus, the area of the breach is given by

Ab = b(H - Z). (7)

Substituting (7) into (5) and rewriting (6) with q5  1 and = 1/2 gives

dH a b HZ dZ(8dtZd _ b(H -Z)' d -Ya (H -Z). (8)

Equations (8) admit the solution

H(Z) =Z+q±Cexp ( ,(epZ) (9)

2,,F arctanh V H(zqz)

where q = A,-y/b and C Ho - Zo - q, Ho and Zo are the initial values of H
and Z at t = t0 , and D is a constant of integration determined from the initial
conditions. The quantity Z(t) is defined implicitly by (9), and H(t) can then be
recovered from (9). Then the flow through the breach, Qo can be determined
from (3) and (5):

Qo = -a q[+Cexp ( _ Z))]1/2Ab. (10)

When Z(t) = 0 at some time i, the dam must stop eroding and from (8) we
obtain

dH ab TH3/2

dt A1

resulting in

H(t) Io ab (t - to)) forot >. (12)

Figure 2 graphs Q and Z vs. time. The discontinuity of the derivative at
time t 2 h is the transition between these two solutions.
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Figure 2. Flow through dam and height of breach bottom as breach enlarges.

Flow Between Reaches and the Manning Equation
We select reaches so that the river valley at their junctions is relatively pris-

matic and narrow. Assuming that the flow in a flood would be regulated by
the rate at which water can flow through these narrows, we model the river as
a series of pools, one flowing into the next.

Traditionally, flow in a floodplain is analyzed as the flow in a prismatic
channel using the Manning equation

) 2/3.,,

S- 1 S(13)

where

u is the mean flow velocity,

n,l is determined experimentally for each channel,

A is the cross-sectional area of the flow channel,

P, is the wet perimeter of the channel cross section, and

S is the slope of the energy line.

There is no theoretical basis for the Manning equation; however, it has been
extensively verified experimentally. Its primary advantage is the amount of
information available on estimating Manning coefficients, n. [Chanson 2004].
We apply it in our model because we can estimate r , for the Saluda from
data for other foodplains. The prismatic nature of the narrows means that we
can apply the Manning equation without correcting for channel irregularities.
Typical values of nri are 0.5 for a brush-covered floodplain and 1.5 for a tree-
covered one [Chanson 2004]. Assuming that our floodplain is somewhere
between, we choose a moderate value of n.m = 1.
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We set S, the slope of the energy line, equal to the slope of the valley floor.
This is equivalent to assuming that the depth and speed of the water are constant
with respect to flow direction in each narrows. Because of this, our model will
be most accurate when radical changes in volume occur on a time scale greater
than the time required to pass through the narrows. From the propagation rates
observed, the time required for the water to pass through each of the narrows is
on the order of 0.1 h. The flood that we wish to consider rises sharply for 0.5 h,
stays steady for 1.5 h, and then trails off gradually (see Figure 2). Our model
is least accurate for the steepest part of the initial rise but ultimately describes
most of the flood well.

We estimate the slope of the channel out of each reach from USGS topo-
graphical maps [USGS 1971; 1994; 1997]:

1 1 1 1
S - 1200 S2 = 800 S3 = 600 S4 = 80- (14)

We estimate S4 , the slope of the final outflow channel, conservatively so as
to produce a worst-case scenario of the flooding of the basin that contains
Columbia.

Our topographical models of the river basin allow us to establish one-to-one
correspondences between the volume of water in each reach, the cross-sectional
area and wet perimeter of its outlet, and the height of the water in the reach.
These correspondences define the cross-sectional area and wet perimeter of the
outflow narrows as functions of volume; we designate these functions as An, (V)
and PI (V). Noting that for a given channel cross section, the flow Q satisfies

Q = uAn, (15)

where u is the mean water velocity, (13) can be stated as a constraint on (2):

A7, (A, 2/3
Qn=A ,Un= - - -A ) VSn, (16)

where A , = An, (pV), P, = Pn, (pV), and V = V( t -)
We introduce parameters p and ( to calibrate of the model; we determine

them subsequently from observational data.

p describes how friction and surface features of the reach prevent the entire
volume of water from flowing downstream.

C describes the amount of time that it takes water to pass through a reach. We
assume ( to be constant because of the constant length of our reaches.

Selection and Analysis of Reaches
We use 3' topographical data [National Geophysical Data Center 2005] to

construct a topographical model. To establish correspondences between the
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volume V,, of water contained in each basin and the area A,, and wet perimeter
P, of their outflow channels, we intersect the topographical model of each
basin with a plane representing the water level and integrate numerically over
the appropriate regions. We construct a database of these values in terms of
height, to be used as we simulate (2). Figure 3 displays one such profile, for
reach 4, with volume and area next to the topographical map of the basin.

Our accuracy is limited by the 0.2-m height resolution of the NGDC data.
This does not significantly effect the accuracy of our volume estimates, but the
area and wet perimeter estimates display noticeable discontinuities for small
volumes. (The oscillatory behavior seen later in Figure 4 is caused by this.) Our
model could be improved by conducting better surveys of the outflow channel
of each reach; since we are primarily interested in large volumes, we proceed.

To summarize, our model places the following requirements on the selection
of the reaches:

* The inflow and outflow channels must be narrower than the rest of the reach.

* The channels must also be prismatic.

* Water should take approximately the same amount of time to flow down
each reach.

To satisfy these conditions, we construct reaches as follows:

* Reach 1: The 6-km section from Saluda Dam to the narrows at Correly Island.

* Reach 2: The 6-km section from Correly Island to the narrows just below
Interstate 20.

* Reach 3: The 6-km section from just below Interstate 20 to the narrows just
above the Saluda's outlet into the Congaree river.

* Reach 4: A large section of the Congaree River Basin including the area
around the Capitol and a 6-km stretch of downstream channel.

Reaches 1, 2, and 3 satisfy our requirements extremely well. The Congaree
River valley widens rapidly into a floodplain below Columbia and there are
no natural narrows. We end our basin at a point that is somewhat narrow and
satisfies the requirement for water flow time. A large portion of the broad river
valley is included to allow for upstream flooding.

Calibration and Sensitivity Analysis
The US Geological Survey (USGS) has river observation stations just below

the dam (at 34003'03" N 81o12'35" W) and just above Columbia (at 34'00'50" N
81' 05'17" W). Each logs the last 31 days' flows [USGS 2005]. On 6 January 2005,
the station at Saluda Dam registered a surge of 30,000 m3 . Flow rates jumped
from 27 m 3 /s to 700 m 3/s and then receded over a 5-h period. A similar surge
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was recorded by the Columbia observation station 1.5 h later (see Figure 4).
We use this event to calibrate our model.

We first calibrate the model to produce a typical river flow at the dam to a
value of 60 m3 /s and systematically vary p. We find that our model displays
stable but oscillatory behavior for p < 0.1. The oscillations can be traced
to jumps in the flow rates between the breaches, and we attribute them to
inaccuracy of our channel profiles for small volumes.

For p - 0.1, our system becomes unstable when large volumes are intro-
duced. Since we are indeed interested in a large flood, we set p = 0.01. This
value is consistent with the idea that the ground cover density, and thus the
amount of water stored in the ground cover, increases with distance from the
main river channel. The small size of p corresponds to the fact that in our
equation it scales volume.

Once our model is stable for typical flow volumes, we introduce a "flood"
in the form of a Gaussian bump in Q0 of similar shape to the Jan. 6th event. We
adjust C until this event arrives at the bottom of reach 3 in 1.5 hours. This occurs
when ( = -0.5, consistent with the three reaches that must be traversed. In
calibrating our model for a large flood by using a small one, we assume that the
effect of ( is independent of flood size. A better calibration could be achieved
by analyzing observations of a larger flood, but such data are not available from
the observation stations [USGS 2005].

Predictions
Our model predicts that the flood waters would travel slowly down the

Saluda River Valley, producing extremely high levels of flooding in the upper
reaches of the Saluda near Rawls Creek (reach 1) and near Columbia (reach 4).
Our results are summarized in Figure 5 and in Tables 1-2. Our numerical
simulations suggest that Rawls Creek would flood approximately 32 m but the
State Capitol building would remain dry.

Table 1.

The maximum flood volumes in each reach and their corresponding elevations above sea level.

Reach Max. Flood Vol. Max Flood Elev. Avg. River Elev.
(x108 M 3 ) (m) (m)

1 19 87 58
2 15 79 55
3 3.5 68 50
4 2.4 68 45



Analysis of Dam Failure 273

Table 2.

Elevation above sea level of points of interest.

Point of Interest Elevation (m)

Lake Murray 120
Saluda River (Just Below Dam) 60
Rawls Creek (Reach 1) 55
Saluda River (Bottom of River) 45
Capitol (Reach 4) 100

Volume in Basin

Volume in Basin 3
Volume in Basin 4

4-
i\

- \

,\ \\

/ •
1,/l\ -\

0 10 15

Time (hours)

Figure 5. Volumes predicted in each reach as a gradual flood propagates.

Rapid Failure: Dam Break Wave
The complete annihilation of a dam results in a highly turbulent, unsteady

flow that is commonly known as a dam break wave. The removal of the dam
results in the creation of a retreating (negative surge) wave front in response
to the sudden reduction in flow depth [Chanson 2004]. In the case of a dam
separating two bodies of water, the intersection of the resulting negative surge
with a relatively slow moving body of water results in a discontinuity of ve-
locity. Since momentum must be preserved, these two bodies of water cannot
intersect without the creation of a second wave moving in a direction opposite
to that of the first wave; this second wave is a positive surge (see Figure 6).

The propagation properties of the wave resulting from the intersection of
the positive and negative surges can be described using equations developed
by Saint-Venant. These equations form a coupled system of one-dimensional
quasi-linear hyperbolic partial differential equations describing varied unsteady
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Figure 6. The shape of the wave just after the dam fails. The dam is located at x = 0. Note the
discontinuity between the positive and negative surges at x = 100 m.

channel flow [Freed 1971]:

1au u au ad+ 0- 5-+ + Y-+ (sf - SO) = 0, (17)

ad Odu _ ad -OU Od
Tt+ - + -+UT=0

axxat&a

where u is the mean velocity of the wave, d is the flow depth, x is the direction
of propagation, t is time, and g is the acceleration due to gravity. Sf is the
friction slope and So is the slope of the canal.

The first equation is known as the equation of motion and describes the con-
tribution of various forces to wave propagation, each of which is represented
by a separate term:

"* the first term describes the local inertia of the wave,

"* the second term describes the convective inertia of the wave,

"o the third term describes the pressure differential, and

"* the fourth term describes the friction and bed slope.

The second equation, known as the equation of continuity, expresses conser-
vation of mass.

The Saint-Venant equations assume the following [Chanson 2004; Freed
1971]:

* The flow is one dimensional; motion occurs only in the direction of propa-
gation.



Analysis of Dam Failure 275

"* Vertical acceleration is negligible, resulting in a hydrostatic pressure distri-
bution.

"* Water is incompressible.

"* Flow resistance is the same as for uniform flow, Sf = So.

We are interested in describing the flood wave attenuation. In our model,
we assume that the total volume of water impounded by the Saluda Dam is
released as a single giant surge. The final value to which the peak discharge is
attenuated is independent of the magnitude of the initial peak discharge [Ponce
et al. 2003]. This allows for generalization of results calculated by our model
to waves of arbitrary size.

Solutions to the Saint-Venant Equations
Ponce et al. [2003] derives a solution to (17) in the case of a dam failure

through sinusoidal perturbation of the steady-state solution. Using spectral
analysis, it can be shown that the peak discharge at position X has magnitude

qp = qpO exp (a-)x (18)

where

Ce2= r V( L[(C-A)a/2) A-= 2, C*= [A2 + 2

1= = (-)Lo, Fo = UO
aF L \gdo'

with

F0 the Froude number F0 ,

uo the steady equilibrium mean flow velocity,

L the perturbation wavelength,

L0 the reference channel length,

do the steady equilibrium flow depth,

B the average reach width,

V, the reservoir volume,

g the acceleration due to gravity, and

m the Manning friction coefficient.
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The equation for unit width discharge (speed x depth) is

Nq--N+ Vmltd (19)

where N = 0.4V8-/f, f is the Darcy friction factor, Vmn is the maximum
reservoir volume, and d is the flow depth.

We compute the wave speed using the empirical data in Figure 4 and from
it estimate the Darcy friction factor f for the Saluda River Valley. From (19), we
also estimate the depth of the wave.

Predictions
Using estimated values of the depth of the water impounded by the dam,

the depth of the Saluda River in close proximity to the dam, and the volume of
the Saluda River Basin, we approximate the depth of a dam break wavefront
as a function of distance from the damsite. Figure 7 displays the results. The
depth of the dam break wave decreases exponentially from an initial value of
65 m to a final value of approximately 4 m at a distance of 20 km from the dam
site. This distance roughly corresponds to the distance between the Saluda
Dam and the Capitol Building.

Since the Capitol Building sits approximately 50 m above the Saluda River,
the possibility of the wave reaching the Capitol Building is extremely small.
The probability is further decreased by the simplistic geometry of our model,
which approximates the river bed approximated as rectangular and of uniform
width and texture. In reality, the river exhibits numerous contractions and
expansions and is far from uniform in texture. These qualities would further
attenuate the flow depth of the propagating wave.

50 50

~40! 8 40 \

20 20

0'o 1. •1.5 2 0 o-5 1 1.5
Dista•-ce from Damn (meters) x 10 Distance from Dam (meters) x Id

Figure 7. Predicted maximum depth of the floodwave for the upper Saluda River (left) and the
entire Saluda River (right).

Our model predicts a wave 40 m high in the vicinity of Rawls Creek. A
rapid dam failure would cause significant intrusion of flood waters into the
Rawls Creek basin.
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Conclusions
In either gradual or rapid failure of the Saluda dam, the effect on the down-

stream areas would be severe. Our models predict that the waters near Rawls
Creek could rise by as much as 40 m (rapid dam failure) or 32 m (gradual dam
failure), protruding far into the Rawls Creek basin and other drainages. The
waters would not be as high near Columbia and would not reach the Capitol
Building. However damage to low-lying areas would be severe, since the water
might rise as much as 23 m.

Several improvements could be made to the models:
Gradual Failure Model

"* This model successfully describes small surges in the Saluda River. How-
ever, extrapolating small events to larger events is inherently problematic;
so for a flood of the magnitude that we are considering, we should test the
model against larger events in the Saluda and/or large events in comparable
rivers.

"* Estimates in our erosion model could be strengthened with better informa-
tion about the material from which the dam is constructed.

"* Better profiles of the outlet channel of each reach would allow us to apply
the Manning Equation more accurately.

Rapid Failure Model

"* We calibrate this model too from a small surge in the Saluda River. A more
comprehensive study of waves from other breached dams would provide
better data for calibration of this model for large events.

"* Access to the river site would provide better estimates for friction factors of
the floodplain.

"* This model is intended to place an upper bound on the magnitude of the
flood wave. Further consideration of factors such as turns in the flood course
would increase the accuracy of this model.
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