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Introduction.

§ 1. THE present paper contains a discussion of some optical properties of a medium
containing minute metal spheres. The discussion is divided into two Parts: the first
Part dealing with colours in metal glasses, in which the proportion of volume
occupied by metal is small; the second Part dealing with metal films, in which this
proportion may have any value from zero to unity.
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Formula of Clausius (1879) and Mossotti (1846-1850),
Lorenz (1869, 1875, 1880), Lorentz (1870)
Maxwell (1873) and
Maxwell Garnett (1904)

Dilute periodic array of spheres: Rayleigh (1892).

History — see Landauer (1978), 1t ETOPIM conference proceedings



Exact Formula:

Hashin-Shtrikman Sphere Assemblage (1962)
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Neutral Inclusion




Naomi Halas’s Group (2002)

Rice University

Gold Nanoshells
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Model independent bounds:
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Bergman-Milton Bounds (1980)
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Group of Julia Greer




Walser 1999:

Macroscopic composites having a manmade,
three-dimensional, periodic cellular architecture
designed to produce an optimized combination,
not available in nature, of two or more responses
to specific excitation.

Browning and Wolf 2001:

Metamaterials are a new class of ordered
composites that exhibit exceptional properties
not readily observed in nature.



With Kadic, Van Hecke and Wegener 2019

Metamaterials are rationally designed composites made of tailored
building blocks that are composed of one or more constituent bulk
materials. The metamaterial properties go beyond those of the
ingredient materials, qualitatively or quantitatively.

With the addendum that ‘the properties of the metamaterial can
be mapped onto effective-medium parameters’,



It's constantly a surprise to find what
properties a composite can exhibit.

One interesting example:

LB

Hall Voltage



In elementary physics textbooks one
IS told that In classical physics the
sign of the Hall coefficient tells one
the sign of the charge carrier.

However there Is a counterexample!

Mathematically: Find a conducting periodic composite
with say cubic symmetry, where the matrix-valued electric field

has negative trace of its cofactor matrix in some regions.



Geometry suggested by artist Dylon Whyte
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A material with cubic symmetry having
a Hall Coefficient opposite to that of the
constituents (with Marc Briane)



Simplification of Kadic et.al. (2015)
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Experimental realization of Kern, Kadic, and Wegener




Alternate Structure of Christian Kern:
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Another example: negative expansion from positive expansion

A d g i

(a)

A Hd R/

(b)

(C)
Original designs: Lakes (1996); Sigmund & Torquato (1996, 1997)
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Fig. 4. Bounds for three-phase design example. The circles with letters a-d denote the obtained values for
the microstructures shown in Figs 5 and 6.

Metamaterial Mantra: what is not obviously forbidden may actually be possible
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One can get a similar effect for poroelasticity

=—a

Same equation,
but different physics

Qu, et.al 2017



Displacement-Vector Fields

(Courtesy of Martin Wegener)

top view {xy-plane) side view (xz-plane)
|

AP =156x10°Pa

, from image cross-correlation analysis



New classes of elastic materials (with Cherkaev, 1995)

A three dimensional pentamode material
which can support any prescribed loading

y

Like a fluid it only supports one
loading, unlike a fluid that
loading may be anisotropic

\\\




Realization of Kadic et.al. 2012
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Key Feature: At any junction only 4 tips meet



Application of Pentamodes:

Cloak making an object “unfeelable™.
Buckmann et. al. (2014)




(Courtesy of Martin Wegener)
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More generally, as observed by Norris (2008) , pentamodes can be used for
acoustic cloaking. They can guide the stress field around the object to be cloaked.

A pentamode has effective elasticity tensor C, = A ® A

On a macroscopic scale with smoothly varying pentamode structure we
can get an elasticity tensor field C,(x) = A(x) ® A(x)

The associated stress field is
o(x) = Ci(x)e(x) = A(x)Tr[A(x)e(x)]

(A (x) must be chosen so this can have zero divergence).



A network under given tension having internal nodes where more than 4 wires
meet can be replaced by a network where at most 4 wires meet
at any internal node:

(a) (b)

(c) (d)

-

(Joint work with Bouchitte, Mattei, and Seppecher, 2019)




Excitement in the early 2000’s: negative refractive index

v

Propagating Waves

_ Evanescent Waves n=.,/cu >0
Wave Equation: "

V2E + w?epE =0
E

Propagating Waves Evanescent Waves

n=—cu<0




Negative Refraction Simulation: Hess 2008
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Negative
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Valentine et. al.(2008)




Focusing beyond the diffraction limit: the superlens (Pendry, 2000)
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Answer to how superlenses image a point source comes from an earlier paper:

PHYSICAL REVIEW B VOLUME 49, NUMBER 12 15 MARCH 199411 & m = 1

Optical and dielectric properties of partially resonant composites

N. A. Nicorovici and R. C. McPhedran
Department of Theoretical Physies, School of Physies, University of Sydney, Sydney, New South Wales 2006, Australia

G. W, Milton™
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
(Received 2 November 1993)

. First Discovery of a Ghost Source
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Ghost sources and anomalous resonance are the
essential mechanisms that explain superlensing.
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When the shéll waé hollow we found it was
completely invisible to any applied field



Cloaking due to anomalous
resonance

With Botten, McPhedran
Nicorovici 2006,2007

Many other works
in particular
by Hoai Minh Nguyen



Similarly for the “perfect lens” there are anomalously resonant regions:

Work by Garcia and Nieto-Vesperinas (2002) and
Pokrovsky and Efros (2002) indicated large fields
between the ghost sources.
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Numerical Results of Cummer (2003) showing the
anomalously resonant regions on both sides of the lens

In fact instead of getting perfect transmission sometimes the transmission is zero! The
lens “cloaks” the dipole energy source if it is close enough to the lens.



An important parallel:
Maxwell's Equations:

e, .0k o
f(C*?jkﬁ *‘"){JEE}j

O, o

Cj?; ke — €ijm ekﬁn{ o ! } mn
Continuum Elastodynamics:

) ) I
()Lr? (ngu TT) — —{w?pu},
Suggests that €(w) and p ()

might have similar properties

Specifically a similar dependence on frequency



There is a close connection between negative
density and negative magnetic permeability

Split ring structure of David Smith



In two dimensions the Helmholtz equation
describes both antiplane elastodynamics
and TE (or TM) electrodynamics

Split ring resonantor structure behaves as an
acoustic band gap material (Movchan and
Guenneau, 2004)



Sheng, Zhang, Liu, and Chan (2003) found
that materials could exhibit a negative
effective density over a range of frequencies

Il = Lcad = Rubber [ ]= Stiff

—

—

Experiment: Liu et. al (2000)

High Contrast
Mathematically the observation goes back to homogenization

Zhikov (2000) also Bouchitte & Felbacqg (2004)



A simplified one-dimensional model:
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(With John Willis). Note: the displacement must be small
compared to the cell size




Early work recognizing anisotropic and negative effective densities:
Auriault and Bonnet (1985)

Le comportement macroscopique est celui d'un corps €lastique monophasique de masse
volumique p a caractére tensoriel et dépendante de la pulsation :

p = {0 +<{g(@))o-.
And in english (1995):

“The monochromatic macroscopic behavior is elastic, but with an
effective density o°"' of tensorial character and depending on the
pulsation”

"hatched areas correspond to negative densities ot
l.e., to stopping bands."



Anisotropic Density
Simplified Model:

Anisotropic density in
layered materials:
Schoenberg and Sen (1983)

The springs could have some damping in which
case the mass will be complex (With John Willis)



What do we learn?
For materials with microstructure, Newton’s law

F = ma

needs to be replaced by

F(t)= [* _K(' —t)a(t)dt’

It takes some time for the internal masses to respond to the macroscopically
applied force.

(With John Willis)



Unimode and Bimode
Affine Materials



Examples of nonlinear 2d unimode materials

Larsen et. al. Milton

(c) (d)

Garima and Fvane



Three Dimensional Dilational materials

with Bickmann, Schittny, Thiel,
Kadic, and Wegener (2014)



Experiment of R. Lakes (1987)

Normal Foam

These are ideal
“Auxetic” materials

F. 5. Lakes



Unimode:

g
N

What trajectories \i(t) = X\2(t) = 0(t) are realizable? (Answer: any trajectory!)

In a bimode material there i1s a surface of
realizable motions.



Cell of the perfect expander: a unimode material
P
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Cell of a bimode material




However neither are affine materials:

(2) (b)

SO0 can one get affine bimode materials?



Bimode material for which the only easy modes of deformations
are affine ones




Characteristic Feature of Affine Materials:

They dislike strain gradients — elastic energy not just a
function of Vu

-
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Example of Pierre Seppecher
Like a Pantograph:
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Field Patterns: A new type of wave

With Ornella Mattei



Space-time microstructures

(aue)y—(bux), =0

Static materials: a = a(x) and b = b(x)

Space-time microstructures: a = a(x, t) and b = b(x, 1)

Activated materials: Kinetic materials:

The property pattern moves The material itself moves

tA
X

[K.A. Lurie, An Introduction to the Mathematical Theory of Dynamic Materials
(2007)]




Dynamic composites

Pure space interface = Pure time interface
t A




Dynamic composites

Pure space interface = Pure time interface
tA tA




What happens at a time interface?
\:ITM

>l > 1+ 2Nt Time

Bacot, Labousse, Eddi, Fink, and Fort, Nature 2016



Evolution of a disturbance in a space-time checkerboard

t A

N4 .

Transmission conditions:

Vi=VW;
n- cer'\/l =n- G-QVVQ




Evolution of a disturbance in a space-time checkerboard

=

Transmission conditions:

Vi=VW
n- 0‘17\/1 =n- UQVVQ



How to avoid this complicated cascade?

‘t

Lurie, Onofrei, and Weekes (2009) suggested having a zero
impedance mismatch:




Curiously they found accumulations of the characteristic lines:

(m n)=({0405) (a.a)=(0611)

5
I I

= Siable limit cycla
45— = = Unatable limit cycle

0 1 2 3 4 5 g )

A bit like a shock but in a linear medium!



Field patterns in a space-time checkerboard

(0.4 (4
a=a=c > f=8




Families of field patterns

Field patterns are a new type of wave propagating along orderly patterns
of characteristic lines which arise in specific space-time microstructures
whose geometry in one spatial dimension plus time is somehow
commensurate to the slope of the characteristic lines.



Checkerboard geometries where there is no blow up
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Related to PT-symmetry
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A New Wave




Blow up
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Dispersion diagrams for the three—phase checkerboard

alm =1, v2=20, =10

Bloch Waves are:
Infinitely Degenerate!
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dhankyou for listening
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