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Two Problems:

(1) Concentrating a field into a region.

(2) Shielding a region from fields.



Sharp corners concentrate fields




For concentration or shielding problems it seems reasonable to require
that there is no microstructure in the concentration region or shielded
region and that the microstructure is localized in a box.

Shielded Region




Using Disks:

Concentration Shielding



Field between two highly conducting disks close to touching
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Rigorous Analysis: Lim and Yu (2015)
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Could use the transformation based approach of Greenleaf, Lassas, and Uhlmann
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Stretching space (From Ulf Leonhardt)

Advantages: Works for any external field and creates no disturbance

Disadvantages: Requires extreme conductivities, and if one truncates the
solution there is no reason to expect it is optimal.



Or Maybe?

Seems like we are just guessing. Is there a more systematic approach,
at least in the case where we use just 2 conducting materials, and
we are seeking shielding or concentration for just one applied field?



Possible (average heat current, q”, average temperature gradient, e")
pairs in a two phase conducting composite (Raitum, 1978).

V-q=0, q(x)=k(x)e(x), e=-VT
q, e periodic, (q) = q", (e) =¢",

Follows from the Wiener bounds:
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Solution of the ”weak G-closure” problem for conductivity



The heat lens problem: Gibiansky, Lurie and Cherkaev (1988)

Aim: Shield or concentrate flux in the blue dashed interval
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How does one optimally distribute a poor and good conductor to do this?



Field Shield: (Black, good conductor)




Field Concentrator:




To solve similar optimization problems for elasticity, can we find
the “weak G-Closure” for 3d-elasticity?

At least in the case for 3d printed materials when one phase is void and the
other elastically isotropic?

A difficult problem: need to characterize possible
(average strain €', average stress o) pairs,

Can assume o' is diagonal and normalized : 2 parameters
Then €' has 6 parameters.

So the “weak G-Closure” is described by a set in an 8-dimensional space,
11 if one includes the volume fraction, and bulk and shear moduli of the initial
elastic material.




One constraint implied by sharp bounds on the minimum compliance energy:

We(e?) <a%: €% ()

Explicit expression for W (o) given by Gibiansky and Cherkaev (1987) and
Allaire (1994). Note Wr(cA) = c*W;(A)

Our result is that these optimal bounds on the compliance energy also

provide optimal bounds on (€, 6")-pairs. Given o they constrain €’ to lie on

one-side of a hyperplane.




Explicit Formula for Bound: (can skip)
Wi(o?)=0o":C{lo’ + Qig(cl,g“), (Using Allaire’s notation.)
L

Suppose the stress has eigenvalues o1, 02 and o3. Can assume at most one
eigenvalue is negative, and o; < 09 < 03. When all are non-negative, and A > 0:
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The bound: very similar to the conductivity case when ko = 0.

Bounding surface
We(o!)=0":€"

Response of the hierarchical
laminate that has minimum
compliance energy

6-dimensional
space of symmetric
3 X 3 matrices

Response surface of
an "1deal” pentamode.

Response surface of the ”optimal” pentamode.



What are pentamodes?
New classes of elastic materials (with Cherkaev, 1995)

A three dimensional pentamode material Like a fluid it only supports one
which can support any prescribed loading loading, unlike a fluid that
ol _ _ loading may be anisotropic. Desired

support of a given anisotropic loading
is achieved by moving P to another
position in the unit cell.

KEY POINT is the coordination number of 4 at each vertex:
the tension in one double cone connector, by balance of
forces, determines uniquely the tension in the other

3 connecting double cones, and by induction the entire

Many other important papers average stress field in the material.
on pentamodes.




Pentamode structures are a sort of anisotropic inhomogeneous fluid
Cx)=Ax)®A(x), V-A=0,

o(x)=C(x)e(x), V-o=0, e€=[Vu+ (Vu)']/2

have the solution
o(x) = aA(x)
where o« = ”a constant” is the analog of pressure, and

a = Tr[A(x)Vul,

constrains Vu. Thus A(x) is a sort of anisotropic ”compressibility”



Realization of Kadic et.al. 2012
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Cloak making an object “unfeelable”:
Buckmann et. al. (2014)




ldea of proof: Insert into the material attaining the energy bounds
a thin walled structure with sets of parallel walls:

(a) (b)

Inside the walls put the appropriate modified ideal pentamode
material. Thus we obtain an optimal pentamode attaining
(arbitrarily closely) the energy bounds.



Hashin-Shtrikman bounding box when one phase is void,
and the volume fraction is prescribed

Attained

K
Attained K

See also Ostanin, Ovchinnikov, Tozoni, and Zorin (results in 2d)
https://doi.org/10.1016/j.jmps.2018.05.018



What about discrete networks? Guiding of stress usually
achieved by adjusting tension in wires.




However the flow of stress is quite different to the flow of electrical
current, e.g. consider a junction of four conducting rods:

Current in one does not determine the
current in the others, only their sum.

But the tension in one does uniquely
determine the tension in the three rods
that meet it, by balance of forces, provided
they are not co-planar.

Suggests that the flow of stress can be controlled by geometry alone
by carefully making appropriate junctions.



The “spider-web” problem

Given a set of forces tq,ts,...,t, at prescribed points x1, X2, ...X,,, when
does there exist a web under tension (possibly with internal nodes) that supports
these forces?

Mathematically: given a loading
f(x) =) t0(x—x;)
i=1

when does there exist a positive semidefinite stress field o(x) vanishing

at infinity such that
V-o=1



Theorem A set of points X1,Xs,...,X,, at the vertices of a convex poly-

gon, numbered clockwise, can support balanced forces ti,ts,....t, at these

vertices, with a truss with all its elements under tension, if and only if for

all v and 7,
i—1

> (xk—x;) - [Ruti] >0,

k=j

and we have assumed i > 7, if necessary by replacing i by i+n and identifying
where necessary X5 and t;, with x5_,, and t;_,,.

That is: A web exists if and only if the net torque
around any segment of the boundary is non-negative



ldea of Proof:
o(x) =R VVo(x)R,.

o(x) > 0 if and only if ¢(ax) is concave.

: 4



Force Cones:.

LP) L ,t, Polyhedral
approximate

cone of F cone of F

F=(t,.t,,t,)




Making a 2d-web uniloadable:




Superimposing uniloadable webs

By superposition one can realize any polyhedral
force cone that satisfies the torque condition



Combining a web under tension with a web under
compression to support any desired loading
at the vertices of a convex polygon
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What about if the points x1,xs,...Xx,
are not the vertices of a convex
polygon?

What happens in 3d?
Let the forces now be f{,1f5,... £,



Now if €)(x) = [Vuy(x) + (Vuy(x))"]/2, €o(x) >0
Then 0 < [ Tr(oey) = >, £ - up(x;)

Physically the constraint ey(x) > 0 implies ug(x)
corresponds to a displacement field where
everything is stretched and hence

uo(x3) —up(x;)] - (% —x;) >0
Conversely, if this is satisfied for all 2 and 7 then

there exists an interpolating field uo(x)
such that ep(x) >0



In a space of any dimension d we have proved:

Theorem (existence of a web under tension). Let Ax be the cone of displacements U =
(ui,up,...,un) at points X = (x1,X2, ...,XN) defined by

Ax:={Ue R :V1<i<j<N,(u—u)-(x; —x)) >0}
Then, the following condition: F=(f1,f2,...,fN) must satisfy

inf F-U>0
Ue. Ay

IS necessary and suﬂcicff?ﬂf to ensure the existence mf a ﬁﬂite web under tension that supports the loadin ¢F
at points X. In such a case, the web connecting the terminal points X pairwise supports the hmding F.

So the existence, or not, of a web under tension that
supports the desired loading, reduces to a finite dimensional
linear programming problem, that is easily solved numerically.



Example:




Making a 3d-web uniloadable:




[ hank You!
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