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Bergman-Milton Bounds (1980) and microstructures that fill them
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Related example (Miller and collaborators): maximum extinction/mass
of dilute nanoparticles (i.e., what is the best smoke grenade?)

Related applications:
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JACS 128, 2115 (2006)  Nat. Mat. 9, 205 (2010)

Previous state-of-the-art: coated,
metal+dielectric nano-spheres

Optimal ellipsoids and more exotic designs
obtained via topology optimization
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Miller et al. Phys. Rev. Lett. 112, 123903 (2014)



Inverse design approaches necessarily find local optima /
saddle point. Analytical upper bounds provide global
targets, dictating when to modify algorithms and when to
stop searching.

Moreover, we could predict which materials to start with!
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Early work: Bounds coupling thermal expansion and bulk modulus
and their realizabilty using topology optimization
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Fig. 4. Bounds for three-phase design example. The circles with letters a-d denote the obtained values for

the microstructures shown in Figs 5 and 6.

Sigmund and Torquato (1997)

J. Mech. Phys. Sol. 45, 1037-1067 (1997)

Mantra: what is not obviously forbidden may actually be possible



Negative Expansion from positive expansion

Topology Optimization can help guide intuition
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One can get a similar effect for poroelasticity
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Same equation,
but different physics

Qu, et.al 2017



Sometimes Intuition and topology optimization almost coincide:

Auxetic materials that expand when stretched
Larsen, Sigmund and
----- Boustra (1997)
(Topology Optimization)
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J. Mech. Phys. Sol. 40, 1105-1137 (1992) J. Microelectromech. Sys 6, 91-106 (1997)



Near-field optics (Miller and collaborators)

For spontaneous emission, radiative heat transfer, Raman
scattering, quantum entanglement between qubits, etc.,
near-field coupling can lead to dramatic rate enhancements.

We derived bounds to these quantities, and showed that in
certain frequency ranges, prototypical structures—bowtie
antennas, hyperbolic metamaterials—fall far short. Opportunity
for topology optimization!
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Beating the diffraction limit (Miller and collaborators)

It has long been known that sub-diffraction-limited optical
beams are possible, with potential ramifications for imaging.
Problem: large sidelobes obscure the signal. Question: how
much can the sidelobes be reduced?

We derived general upper bounds, and compare them to the
best designs from the literature
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Topology optimization of super-resolving metasurfaces
approaching fundamental limits (Miller and collaborators)
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Sometimes the geometries one obtains, even by intuition
(guided by mathematics), are not at all simple

One interesting example: Can one reverse the

Hall Voltage by playing

l l l l l l l l B with microstructure?

F=qgqvxDB

Hall Voltage



Geometry suggested by artist Dylon Whyte

Picture Image
Courtesy Courtesy
Dylon Whyte Christian Kern

A material with cubic symmetry having a Hall Coefficient
opposite to that of the constituents (with Mark Briane)

Arch. Rat. Mech. Anal. 193, 715-736 (2009)



Simplification of Kadic et.al. (2015)
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Experiment: Kern et.al (2017)

Phys. Rev. Lett. 118, 016601 (2017)
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Alternate Structure of Christian Kern:

One can also get novel effects
Such as the parallel Hall effect

Arch. Rat. Mech. Anal. 193, 715-736 (2009)
Phys.Rev. Applied 7, 044001 (2017)

What will topology optimization give?

New J. Phys. ,20 193, 083034 (2018)



On the importance of bounds for topology optimization

We've seen examples where bounds identify opportunities for
Improvement via topology optimization.

Equally important: areas where known or simple structures can
already achieve global bounds, where we learn not to bother
with topology optimization! We’ve also seen this in a few cases:
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Finally: Bounds for Multiphysics Problems:

One approach: eliminate geometric parameters common to bounds for
the different physical problems:
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upper bound on the bulk modulus of the porous frame. JPhysD Appl Phys 21, 87-94



Alternate Approach:

Given m different (linear) physics problems where the tensors entering
their constitutive laws are Lq(x),Lo(x),...,L;(x) the idea of Gibiansky and
Cherkaev 1s to introduce a "supertensor”

Li(x) 0 0 0

0 Lo(x) 0 0

0 0 0 .. Lnx
L(x)

and seek bounds on the associated effective tensor
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Exa m ple L. V. Gibiansky and S. Torquato
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There are many things | have not talked much about, including:

- Bounds for non-linear problems
- Bounds on the response of a body containing one or more
inclusions (can be useful for the inverse problem of

determining something about the inclusion)

- Bounds on the response in the time domain

dhankyou for listening



