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Exact relations for Green's functions in 
linear PDE and boundary field equalities: 

a generalization of conservation laws



Conductivity

Linear elasticity

Magnetoelectricity



Piezoelectricity

Additional coupling with magnetic fields



Thermoelasticity

Equivalent to Poroelasticity



Fields independent of 

Elasticity looks like Piezoelectricity



The Cherkaev-Gibiansky Trick:



Can easily be extended to other non-self-adjoint equations: 

Saddle shaped





Abstract theory of effective tensors



=



A related Gamma operator.

In Fourier space:

Hence:

Conductivity:



Use: Solution for the fields and effective tensor,



Action of Gamma especially simple in a laminate geometry



Classic example of an exact relation: Keller-Mendelson-Dykhne
relation for 2-dimensional conductivity

Picture courtesy of Y. Grabovsky

Goal of the theory of exact relations:
identify manifolds of tensors,        that are
Stable under homogenization-space 



Classic example of an exact link: Keller-Matheron-Mendelson 
reciprocal relation for 2-dimensional conductivity
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Many Scientists discovered exact relations one at a time:

Yury Grabovsky and coworkers discovered hundreds, 
(many intersections of more fundamental ones)
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Relevant Chapters:

Theory of exact relations for composites reviewed in the books:



Nonlinear!

-space 

-space -space 

The transformation (Milton, 1990; Zhikov 1991)

converts lamination in direction     to a linear average:
Therefore in     - -space an exact relation must be a linear relation,                , when

where      is a subspace. 

First major breakthrough: Grabovsky (1998)
As an exact relation holds for all geometries it must certainly hold for laminate geometries



Expansion of the non-linear transformation.  Set  

So       independent of       and

The search for candidate exact relations becomes a search 
for subspaces       satisfying this algebraic constraint.

(Necessary Condition)

Then all terms in the series lie in



Example: Two-dimensional conductivity



Second major breakthrough: (Grabovsky, Milton, Sage 2000) 

The transformation                 and series expansions of Milton and Golden (1990) [that formed 
the basis of the rapidly converging FFT approach of Eyre and Milton (1999)] provided the 
essential clues for a condition that guarantees a candidate exact relation holds for all 
geometries not just laminate ones.

(Sufficient Condition)

Series expansion: let                                           define     (acts locally in Fourier space)  

If the series does not converge, use analytic continuation

Appropriately defined “polarization fields” within the material also are constrained to take values in 

can be taken to consist of all symmetric matrices in 



Third Major Breakthrough (Milton and Onofrei, 2019)

Suppose we have a periodic composite
for which an exact relation holds, 
And hence the “polarization field” takes 
values in      at each      in        

The region       marked by the “dashed lines” does not know it is in a periodic medium, 
but the boundary conditions on the potentials or fluxes on this dashed boundary must be such 
to force the “polarization field” inside       to take values in       and this gives us additional
Information about the boundary fields. 

Aim: identify these boundary conditions, and find the associated exact identities 
(boundary field equalities)  satisfied by the “Dirichlet-to-Neumann map”.
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Are there other boundary field equalities or inequalities 
that use partial information about what is inside the body?

Following the ideas of Straley,  Milgrom and Shtrikman
suppose there is a matrix         such that

Simple example, our
theory  much more
powerful



Another simple example: in two dimensions suppose

Following ideas of Keller, Dykhne, Matheron and Mendelson, we have
the boundary field equality

It’s due to the fact that the equations are satisfied with



Key point: 
These new boundary field equalities that in some sense generalize the 
divergence theorem, do not result from “integration by parts” but rather from 
algebraic properties tied with the operator        that is associated with the 
differential constraints satisfied by the fields on the left and right of the 
constitutive law.

There are “hidden identities” that go beyond integration 
by parts and still allow one to deduce exact identities
satisfied by the fields at the boundary of a region 









Formulation

Rewrite as

with
Can extend the formulation to plate equations,
wave equations at constant frequency in lossy media, etc.



Abstract and more general formulation



Wave Equations in Lossy Media:

Acoustics

Electromagnetism

Elastodynamics

Dynamic Plate Equation



Extended polarization fields:



Main Theorem:



Green’s function





Expand:

Upshot :



Links between Green’s functions of different physical problems 
(in inhomogeneous media) 

Embed the problems:







How to get the “boundary field equalities” 
satisfied by the “Dirichlet to Neumann Map”.

The basic idea here (following Thaler and Milton, 2014, where for 
a body       containing 2-phases sharing the same shear modulus, the
boundary field equalities give the volume fraction occupied by one 
phase in the body) is to choose nonlocal boundary conditions 
that mimic the body      embedded in an infinite medium with 
appropriate sources outside that ensure the appropriately
defined polarization field takes values in the subspace 



Formally:



Generally, to reveal the exact relations satisfied by the DtN map one 
applies not just one boundary condition but a succession of them.

It is          that takes values in        for appropriately chosen sources outside 



Applications:

Serves as a benchmark for testing numerical code

Sometimes the exact relations involve the volume 
fractions of the phases. Then they can be used in an
inverse  way to determine these volume fractions.



Thank-you for listening

For more details see

Milton, G.W. & Onofrei, D. Exact relations for Green's functions in 
linear PDE and boundary field equalities: a generalization of 
conservation laws, Res Math Sci (2019) 6: 19. 
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