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Classic example of an exact relation: Keller-Mendelson-Dykhne
relation for 2-dimensional conductivity

deto, =c when deto(x) = ¢ for all x.

The manifold
M ={o:deto = c}

is stable under homogenization.

Goal of the theory of exact relations:

identify manifolds of tensors, M that are
Stable under homogenization

| Given periodic L(x) with L(x) € M Vx then L, € M
Picture courtesy of Y. Grabovsky



Classic example of an exact link: Keller-Matheron-Mendelson
reciprocal relation for 2-dimensional conductivity

Consider two conductivity problems with tensor fields
o(x) and o(x) related via

7(x) = [RIo(x)RL]™", with Ri—(—ol (1))

Then the effective conductivities are related in the same way: o, = [R{a. R ]

Treat it as a trivial ”coupled field problem” with no couplings!
:].,(X)  (o(x) 0 —VY:(X)
jx)) \ 0 ox))\~-VV(x)

: : o 0
Then we can take M to consist of all matrices of the form L = (0 [R{ oR,] _1)



Many Scientists discovered exact relations one at a time:

Benveniste (Piezoelectricity) Levin (Thermoelasticity)
Bergman (Hall-effect) Lurie (Plate equations, Elasticity)
Berryman (Poroelasticity) Matheron (Conductivity).

Chen (Coupled equations, Elasticity) Milgrom (Coupled equations)
Cherkaev (Plate equations) Milton (Complex conductivity, Hall effect, elasticity)
Cribb (Thermoelasticity) Movchan (elasticity)

Dvorak (Piezoelectricity) Murat (Null-Lagrangians)
Dykhne (Conductivity, Hall Effect) Shklovskii (Hall effect) |
Gassman (Poroelasticity) Shtrikman (Coupled equations)
Hashin (Elasticity) Straley (Coupled Equations)

He (Elasticity) Strelniker (Hall effect)

Helsing (Elasticity) Rosen (Thermoelasticity)

Hill (Elasticity) Schulgasser (Piezoelectricity)
Keller (Conductivity) Tartar (Null-Lagrangians)

Yury Grabovsky and coworkers discovered hundreds,
(many intersections of more fundamental ones)



Theory of exact relations for composites reviewed in the books:

Cambridge Monographs on Appled and Computational Mathematics

The Theory of
Uomposites

Composite Materials

Mathematical theory and
exact relations

Milton 2002

Graeme W, Milton

Relevant Chapters:

3. Duality transformations in two-dimensional media
4. Translations and equivalent media
5. Some microstructure-independent exact relations

6. Exact relations for coupled equations
9. Laminate materials

12. Reformulating the problem of finding effective tensors
14. Series expansions for the fields and effective tensors

' 17.The general theory of exact relations
Gra bOVSkV 2016 and links between effective tensors




First major breakthrough: Grabovsky (1998)

As an exact relation holds for all geometries it must certainly hold for laminate geometries

The transformation (Milton, 1990; Zhikov 1991)
Wn(@L)=[I+ (L -L)I'm)] " (L—- L)) =K, LjeM

converts lamination in direction 72 to a linear average: L, = W' ((W,(L)))
Therefore in K -space an exact relation must be a linear relation, K, € X, when
K(x) € K where K is a subspace. K -space

N
W (W HK
N 1 (W2 (K))

Nonlinear!

K -space



Expansion of the non-linear transformation. Set A(m) =TI'(n) — I'(m).

Wm(Wp' (eK)) = e K{I — [T'(n) — T(m)]e K}
— e K+ eKAMK + e KAmMKAM)K
+e* KAMKAMKAMK +---.

So /U independent of @ and

KA(m)K € K forallmand forall K € K. (Necessary Condition)

Then all terms in the series liein K

The search for candidate exact relations becomes a search
for subspaces K satisfying this algebraic constraint.



Example: Two-dimensional conductivity
Take Ly = ogl. Then

T T

Alm) = (con-n) (oom-m)

is trace-free and symmetric. We can take K as the space of 2 X 2 symmetric
trace-free matrices.

a O b ¢\ [ ab ac

0 —a)\c =-b) \—ac ab
But with 3 matrices:

a 0 b ¢ d e\ (abd+ace abe— acd
0 —a/)\c —=b)\e —d) \abe—acd —abd— ace

Then M = W_1(K) consists of 2 x 2 symmetric matrices with determinant o3.



Second major breakthrough: (Grabovsky, Milton, Sage 2000)

The transformation Wy, (L) and series expansions of Milton and Golden (1990) [that formed
the basis of the rapidly converging FFT approach of Eyre and Milton (1999)] provided the
essential clues for a condition that guarantees a candidate exact relation holds for all

geometries not just laminate ones.
K(x) = Wm(L(x)) = [T+ (L(x) — Lo)M] ' (L(x) — Lo)

K, =Wnm(L,) =[I+ (L, —Lo)M] (L, — Lo)

Series expansion: let AP = M (P — (P)) —T'P define A (acts locally in Fourier space)

s A(k) = M —T'(k) for k #0,

_ _ —1 gy = KA K
K,=(I-KA] K) jzﬂ“ K —0 for k = 0.

KM —-T(n)]K; €e K andforall K|, K> € K, (Sufficient Condition)

Appropriately defined “polarization fields” within the material also are constrained to take values in K

]C can be taken to consist of all symmetric matrices in JC

If the series does not converge, use analytic continuation



Third Major Breakthrough (Milton and Onofrei, arXiv:1712.03597, 2018)
@ @ @ Suppose we have a periodic composite

. ‘ . ‘ . ' for which an exact relation holds,
_____ And hence the “polarization field” takes

— - JOREE values in K at each & in O
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The region {2 marked by the “dashed lines” does not know it is in a periodic medium,

but the boundary conditions on the potentials or fluxes on this dashed boundary must be such
to force the “polarization field” inside €2 to take values in K and this gives us additional
Information about the boundary fields.

Aim: identify these boundary conditions, and find the associated exact identities
(boundary field equalities) satisfied by the “Dirichlet-to-Neumann map”.




A new perspective on conservation laws:
Boundary field equalities and inequalities

IfV+Q:0ithhenufmn+Q:0

IfV-Ql_“f*Oiﬂchm’lfmn-Ql_}O

Requires information about what 1s

happening inside {2 namely that
V- Q=0o0rV-Q>01m Q.
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Are there other boundary field equalities or inequalities
that use partial information about what is inside the body?

Simple example, our ‘ . N
theory much more (ZJV(X)) = (a(X)I C(X)I) ( VZ(X)) , V:j=0, V-j
powerful c(x)I b(x)I —VV(x)

M(x) = (i&;% gg;i) ,  PI > M(x) > ol for some > a >0

Following the ideas of Straley, Milgrom and Shtrikman
suppose there is a matrix W such that

= (50

(‘Z(X>> W (f(x)) forall x €00 B Wailn-j(x)] + Wasln-j(x)] =0 for all x € OQ




Another simple example: in two dimensions suppose
c(x) =0, bx)=a’/a(x)

Following ideas of Keller, Dykhne, Matheron and Mendelson, we have
the boundary field equality

n-j(x)=at-VV(x) when t- VV(x) = —a " 'n - j(x)

n normal to 0}, t tangential to 0,

It’s due to the fact that the equations are satisfied with

~ A~

V(x) = —a"'Rij(x), jx)=-aR.VV(x),

where



Key point:

These new boundary field equalities that in some sense generalize the
divergence theorem, do not result from “integration by parts” but rather from
algebraic properties tied with the operator I' that is associated with the

differential constraints satisfied by the fields on the left and right of the
constitutive law.

There are “hidden identities” that go beyond integration
by parts and still allow one to deduce exact identities
satisfied by the fields at the boundary of a region ()



Generalized viewpont of boundary field inequalities One eliminate
L(x) from the the constitutive law J(x) = L(x)E(x) and just view the constaint
on L(x) that L(x) € M as a constraint on the field pairs (J(x), E(x)) that is

independent of x.



For instance, if
e E consists of potential gradients,

e J consists of divergenge free fields (fluxes) that themselves may be
expressed as curl’s of additional potentials

Then collecting all potentials together as some grand potential U,
The field constraints imply

VU(x) € A for all x € Q

where A is some non-linear manifold (determined by M).
Then with appropriate nonlocal boundary conditions on the surface
potential U(x), x € 0f) we obtain the constraint that

VU(x) € C for all x € (2

for some appropriately defined subspace C, and this in turns constrains the
tangential derivatives of U at 0f): these are the boundary field equalities.



Note that if N is perpendicular to C then
0=Tr[N(VU(x)] = V- (U(x)N")

So there are additional divergence tree fields and additional associated boundary
field equalities.



Formulation

Z o, (i i Liajs(x

j=1 p=1
Rewrite as
d m
=D Liajs(x
j=1 g=1
with

Ohia
Z ,d:.c(i- i = JalX)

i=1

3“5(?{)

8$j )fcx(x)a @:112:'---3?”1

dJﬂ-CE
— hia(X),  Ejp(x) = dg:_,, Z dmi =

i=1

Can extend the formulation to plate equations,
wave equations at constant frequency in lossy media, etc.




E depends linearly on h and defines the (modified) infinite body
Green’s function in the inhomogeneous medium.

E(x) = y G(x,x' )h(x") dx/,

Define the ”polarization field”

P(x) = J(x) — LoE(x) = [L(x) — LoJE(x) — h(x)

Consider a point x” and take h(x) to be proportional to a Dirac delta function localized at

X:XUZ

h(x) = h’§(x —x”),  with h’ = —(L(x") — Lg)s".

P(x) = (L(x") — Lg)s%(x — x") — (L(x) — Lo)G(x.x")(L(x") — Ly)s"




So P(x) = T(x,xg)s” with

T(x.x") = (L(x") — Lo)d(x — x”) — (L(x) — Lo)G(x, x")(L(x") — Lyg).

T=(L-Lo)— (L-Lo)G(L - Ly) = (I-K¥) 'K

K(x) = Wa(L(x)) = [T+ (L(x) — Lo)M] ™" (L(x) — Lo)

v=M-TI

T(x,x") = §x—x"OK(Ex")+K(x)¥(x—x")K(x)

e

+ [ KB —y)Ky) By —xKE) dy,

+ /Rd Rd K(X)@(X — Y1)K(Y1)€’(Y1 — Y2)K(Y2)€’(Y2 - XO)K(XO) dyy dys + ...,



Expand:

§(x — xOK(x°) + K(x)¥(x — x")K(x")

/ x) ¥ (x — y1)K(y ) ¥y — x)K(x") dy,

+ /R pa K(x)® (x—y1)K(y1) ¥ (y1-y2)K(y2) ¥(y2—x")K(x°) dy1 dy>+. ..,

Upshot :

T (x,Xo) takes values in K when L(x) takes values in M.

In the same way that one gets links between effective tensors so too can one get links
between Green’s functions of different physical problems (in inhomogeneous media)



Did not discuss how to get the “boundary field equalities”
satisfied by the “Dirichlet to Neumann Map”.

The basic idea here (following Thaler and Milton, 2014, where for

a body () containing 2-phases sharing the same shear modulus, the
boundary field equalities give the volume fraction occupied by one
phase in the body) is to choose nonlocal boundary conditions

that mimic the body {)embedded in an infinite medium with
appropriate sources outside that ensure the appropriately

defined polarization field takes values in the subspace C

For more details see arXiv:1712.03597,2018



Generally, to reveal the exact relations satisfied by the DtN map one
applies not just one boundary condition but a succession of them.

In general,
e E(x), J(x), P(x) take values in some N-dimensional tensor space T

o L(x), Lo, K(x) take values in L(7) the N?*-dimensional space of linear
maps T — T

e K and K are therefore subspaces of L(7T)

Hence it does not really make sense to say P(x) takes values in K.

e Rather one should take a basis e, eq,...,ex2 for L(T).

e Consider polarization fields P1(x), P2 (x), ..., Py2(x) associated with N?
experiments, with appropriate sources outside (2.

Define P(x): T — 7T via P(x)e; = P;(x)

It is P(x) that takes values in KC for appropriately chosen sources outside 2



Thank you!
Thank you!

Thank you!
Thank you!
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