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Two Problems:

(1) Concentrating a field into a region.

(2) Shielding a region from fields.



Sharp corners concentrate fields




Large Fields also very important for Raman Spectroscopy:
Effect goes as the 4t power of the field intensity.

Well known that rough surfaces enhance Raman Spectroscopy,
by orders of magnitude (SERS)

Shielding: Think of Faraday cage to shield Electromagnetic Field,
Shielding from Magnetic Fields, Thermal Currents
Shielding from Vibrations, Sonar



How to measure this?
Threshold exponents on L7 integrability:

VT = inf : / E(x)|” dx < oo

_Sup /E )7 dx < oo

B is any Ball containing ().

Equivalently, given a (possibly disconnected) subregion @ C {2
of small subvolume |@)| one can maximize or minimize

/Q E(x)[? dx

and ask how this depends on |@)| asymptotically as |Q| — 0



Two isotropic conductors, conductivities o7, os.
Uniform field at infinity

Some Candidates:

> 2
2




Allow for multiscale inclusions:

fy_zinf:/dX/ dy1,...,dy, |[E(X,y1,...,¥n)|" < o0
Y n

fy+:sup /dx/ dyi,...,dy, |[E(xX,¥1,...,yn)]7 <

B is any Ball containing (2.

Yi,---,Yn represent finer and finer length scales and E is periodic in them with
period cell Y.



Effective Medium

/

GWM (1986 // Tree for the material
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Totally crazy microstructures: partial differential materials

Replace tree by lattice of materials

+fl 0°Sy 23_%[5* —Ty(n)]™! @} Riccati type PDE



Fig.9. Comparison of threshold exponents for the laminate of Fig.8.

Beauty Contest (GWM, 1986) . ( ). egs. (4.13) and (4.18); an array of diamond shaped
grains (— — — — — ). eq. (4.8); a checkerboard of the two components
( - ). eq. (4.9); and Schulgasser's symmetric material,
'er both in three dimensions ( —s—a—ea—s- ) and in two dimensions
7+ 8t (——%—x%—% ), eqgs. (4.11) and (4.12).
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Proof of this micostructure independent Lower Bound on y: Morrey (1938);
Boyarski (1957)

Proof of this microstructure Upper Bound on v~ : Leonetti and Nesi (1997)
See Also Faraco (2003)



What about 3d?

For a uniform applied field
the local field can vanish
between the torii, even

at finite conductivity ratios /




It's constantly a surprise to find what
properties a composite can exhibit.

One interesting example:

LB

Hall Voltage



Non-symmetric conductivity matrix with the antisymmetric part

proportional to B

In elementary physics textbooks one

IS told that in classical physics the
sign of the Hall coefficient tells one

the sign of the charge carrier.

However there Is a counterexample!



Geometry suggested by artist Dylon Whyte

A material with cubic symmetry having
a Hall Coefficient opposite to that of the
constituents (with Marc Briane)
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Experimental Realization of Kern, Kadic, Wegener




Back to the shielding problem:

It seems more reasonable to require that there is no microstructure
in the shielded region and that the microstructure is localized in a box.

Shielded Region




Using Disks:

Concentration Shielding



Field between two highly conducting disks close to touching

v A
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Y AR L p_(a*/x) = —qp,(x)

= (o0— 1).

a= 11/ n=(0c—1)/(c+1)

McPhedran, Poladian, GWM (1988) pi(l—z) =—p_(2),
B — —(c/2) (1—1/c) p_[a*/(1—x)] = np_(x)

' 2sln(c)+1—=2s[y+y¥(1+s)]
p_(x) = Al(e,—x)/(1 —a,—2)]

a=3Vv(1—-1/c%). a,=3(1—1/c).
. Psi or Digamma function

Rigorous Analysis: Lim and Yu (2015)

s =In(g)/In[e,/(1—a,)]



Could use the transformation based approach of Greenleaf, Lassas, and Uhlmann
A ' |
7 \\
l/ \\
\ 7
7
Stretching space (From Ulf Leonhardt)

Advantages: Works for any external field and creates no disturbance

Disadvantages: Requires extreme conductivities, and if one truncates the
solution there is no reason to expect it is optimal.



Or Maybe?

Seems like we are just guessing. Is there a more systematic approach,
at least in the case where we use just 2 conducting materials, and
we are seeking shielding or concentration for just one applied field?



Possible (average heat current, q”, average temperature gradient, e")
pairs in a two phase conducting composite (Raitum, 1978).

V-q=0, q(x)=k(x)e(x), e=-VT
q, e periodic, (q) = q", (e) =¢",

Follows from the Wiener bounds:

k* < kT1
fki 4+ (1 — f)ks
(f/k1+ (1= f)/k2)™"

"
-
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Solution of the ”weak G-closure” problem for conductivity



A model optimization problem:

—V - -o(x)VT' =1, o =07 or o

T=T

(a) (b) (c)

Solution minimizes [, T'(x) dx, given fixed amounts of the two materials.



The heat lens problem: Gibiansky, Lurie and Cherkaev (1988)

Aim: Shield or concentrate flux in the blue dashed interval

No Flux

Uniform
Flux

333333833

No Flux

How does one optimally distribute a poor and good conductor to do this?



Field Shield: (Black, good conductor)




Field Concentrator:




What if ko = 07

Given q the weak G-closure provides a linear constraint on e:

a’-d’/(fik1) <q°-e°

It is attained for laminate geometries but also wire
geometries where the effective tensor takes the form:

k*= fikija®a, a-a=1

Makes sense: wires are best for conducting current



Many Solutions to the shielding problem:

The weak G-closure is still needed if we:

2222222

222222 2
333333383

3333338383

(1) Want to minimize the thermal resistance.

(2) Not use too much of the highly conducting phase (may, e.g., be expensive
or heavy.



To solve similar optimization problems for elasticity, can we find
the “weak G-Closure” for 3d-elasticity?

At least in the case for 3d printed materials when one phase is void and the
other elastically isotropic?

A difficult problem: need to characterize possible
(average strain €', average stress o) pairs,

Can assume o' is diagonal and normalized : 2 parameters
Then €' has 6 parameters.

So the “weak G-Closure” is described by a set in an 8-dimensional space,
11 if one includes the volume fraction, and bulk and shear moduli of the initial
elastic material.



Problem:

o(x), €(x) periodic,

V-o=0, o(x)=C(xex
C(x) = Cix(x) + C2(1 - x(x)), o' =(o), € ={(e), [=(x)
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DO

Given f what is the range of values the pairs (o, €”) take in the limit Cy — 0
as the microgeometry varies x(x) varies over all possible configurations?



One constraint is immediately implied by sharp bounds on the compliance
energy:

Wi(e?) <o®: € (%)

Explicit expression for W (o) given by Gibiansky and Cherkaev (1987) and
Allaire (1994). Note Wr(cA) = c*W;(A)

Our main result is that these optimal bounds on the compliance tensor also

provide optimal bounds on (€, 6")-pairs. Given o' they constrain €’ to lie on

one-side of a hyperplane.



Wi(e?) =o":C7le? + %g(chaﬂ), (Using Allaire’s notation.)

Suppose the stress has eigenvalues o1, 02 and o3. Can assume at most one
eigenvalue is negative, and o; < 09 < 03. When all are non-negative, and A > 0:

2,[::4—}& 2 .
- <
g(C,o) Tom +3A)(gl + o9 +03)” if 03 < 01 + 02,
A

21+ 3A

= (o1 —|—Jz)2 —I—cr§ — (o1 + 02 +c:Jr3)2 if o3 > 01 + 09,

while when one eigenvalue, namely oy, 1s negative,

2+ A

p+ A oA
= (03+02)° 407 — A (01402 +03)2 if 03 + 09 < —L
21+ 3A Tpt+A

_ f — >
7102 2ﬁ+3}h(01+02 +03)"if o3 — 09 > L

ifJg—l—JgE

a1,

2 2 2
= 0] Tt03; +03— 1.



The required geometries are pentmodes, materials with elastic tensor
C"=adARA, A:A=1
that are optimal in the sense that
a=1/W(A)

Given any oo and €y so that (x) holds as an equality, we choose

A:O'O/\/O'O - 00

and then
C*GO — OéO'()Wf(O'Q)/(O'O : 0'()) — OéO'()Wf(A) — O

as desired.



What are pentamodes?
New classes of elastic materials (with Cherkaev, 1995)

A three dimensional pentamode material
which can support any prescribed loading

y

Like a fluid it only supports one
loading, unlike a fluid that
loading may be anisotropic

\\\




Pentamode structures are a sort of anisotropic inhomegeneous fluid
Cx)=Ax)®A(x), V-A=0,

o(x)=C(x)e(x), V-o=0, e€=[Vu+ (Vu)']/2

have the solution
o(x) = aA(x)
where o« = ”a constant” is the analog of pressure, and

a = Tr[A(x)Vul,

constrains Vu. Thus A(x) is a sort of anisotropic ”compressibility”



Realization of Kadic et.al. 2012
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Cloak making an object “unfeelable”:
Buckmann et. al. (2014)




Kadic. et.al 2012

FOM = B/G

d (um)

Disadvantage: not only does the shear modulus go to zero as they are made
more ideal, but also the bulk modulus goes to zero



Modifying the pentamodes:




ldea of proof: Insert into the material attaining the energy bounds
a thin walled structure with sets of parallel walls:

(a) (b)

Inside the walls put the appropriate modified pentamode
material. Thus we obtain an optimal pentamode attaining
the energy bounds.



For elastically isotropic materials one has the Hashin-Shtrikman Bounds

f1H (k1 — k2)?
frkct + fika +4pa/3

kx = fikr + fako —

fi (e — pa)?
fe 2 Jitr + fabto farr + fipa + 292 + 8 ) /[6(k2 + 2112)]
fi it — k2)?

Ky < Ji1K1 + Jok2 — . )
fikc+1 fak1 + fiko +4p1/3

f1 (1 — u2)?
forr + fipo 4+ 1Ok + 8u1) /[6(k1 + 2141)]

s < fipur + fopuor —

The optimal pentamode supporting hydrostatic stress 0¥ = I, is a material
that for fixed f; = 1— fo in the limit k9, o — 0 attains the bulk modulus upper
bound, yet has zero shear modulus, pu, = 0.



We can go much further and go a long way to completely
characterizing the G-closure of 3d (and 2d) printed materials.

Joint work with Marc Briane and Davit Harutyunyan



Problem:

o(x), €(x) periodic,

V-o=0, o(x)=C(xex
C(x) = Cix(x) + C2(1 - x(x)), o' =(o), € ={(e), [=(x)
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DO

By linearity o = C*€". Given f what is the range of values the effective
tensor C* takes in the limit Cy — 0 as the microgeometry varies x(x) varies
over all possible configurations?



Recall: A convex set G can be characterized by
its Legendre transform:

f(n) =minn- c.
cels




G-closures are not convex sets but can be
characterized by their W-transform

Wi(N,N') = Cuilit%fgc:*. N) + (C7LN).

ﬂ{c (C.N)+ (C~',N') > W;(N.N')} = GU;.

W-transforms generalize the idea of Legendre
transforms

2 1
N = E e/ @e, N = E o) ® 0.
i=1 j=1



Need to know the 7 energy functions
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Orthogonality conditions
(€. O’?) = 0, (€. €)) =0, (O’?. o)) =0
for all 2, 7. k.0 withi#£ 9, 1 £ k. J # (.

Result of Avellaneda (1987): If C; > Cs then

W9V oV 0V 0" 6% 6Y) = min cr C
f(1234r'f CE(FfE:
6
Wi(el. €5. €5, €. €2, €) = min E €): C,€.
1=

can be computed



They are attained by sequentially layered laminates,
and we call the material which attains

the minimum in

6
U-"T}}(J[f.ag.03.03.02.03): min E o C; o,
- " C.eGUs = J L

j=

the Avellaneda material, with elasticity tensor

-

A(p0 70 -0 ~0 -0 0
Cilo],05,03 0405 0¢)

Maxwell (1873)




Obvious bounds:

Zo CHal a8, 0% 00,020 0t < WHal.al a5 0% ol e).
4
N 00 [CHaY.05.00.05.0.0)] 'Y < ol 03, 09.0% €. €D).
j=1
3
N ol [CH ). 03.09.0,0,0)] 0 < Wiol.0).0%. € €. ).
j=1
9
S ol [CHaY.69.0,0.0,0)] ! < Who) 0l €. €) el €l
j=1

ot [CH(E0.0.0.0.00 0] < Wiot el el el el.el)

IA A

6,0 0 0 0 0 0
W f (61.' €),€5,€,, €y, 66)'

Main result: in many cases these bounds are sharp



Theorem (GWM, Briane, Harutyunyan):
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0 .
When €7 has one zero eigenvalue, and the
other eigenvalues of opposite signs,

UJ}((:Fl o).05, 0 0% €) ZO‘ Hol. o505, 04, 05.0)]"
When det(e} +tey) = 0 has at least two roots
and e(t) = €) +t€) is hever positive or negative
definite

4
Uf(al o).04, 0 €] €) ZO‘ crl o). 049, 0,.0.0)]
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ldea of proof: Insert into the Avellaneda material a
thin walled structure with sets of
parallel walls:

(a) (b)

Inside the walls put the appropriate multimode
material
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