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Walser 1999:

Macroscopic composites having a manmade,
three-dimensional, periodic cellular architecture
designed to produce an optimized combination,
not available in nature, of two or more responses
to specific excitation.

Browning and Wolf 2001:

Metamaterials are a new class of ordered
composites that exhibit exceptional properties
not readily observed in nature.



Wegener (2018):

Metamaterials are rationally designed composites made of
tailored building blocks or unit cells, which are composed of one
or more constituent bulk materials. The metamaterial properties
go beyond those of the ingredient materials — qualitatively

or guantitatively.

With an addition:

....The properties of the metamaterial can be
mapped onto effective-medium parameters



Metamaterials are not new:

-Dispersions of metallic particles for optical effects

in stained glasses (Maxwell-Garnett, 1904 )
-Bubbly fluids for absorbing sound (masking submarine prop. noise)
-Split ring resonators for artificial magnetic

permeability (Schelkunoff and Friis, 1952)
-Wire metamaterials with artificial electric permittivity (Brown, 1953)
-Metamaterials with negative

and anisotropic mass densities (Auriault and Bonnet, 1985, 1994)

-Metamaterials with negative Poisson’s ratio (Lakes 1987, Milton 1992)

What is new is the unprecedented ability to tailor-make structures
the explosion of interest, and the variety of emerging novel directions.



Another example: negative expansion from positive expansion
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Original designs: Lakes (1996); Sigmund & Torquato (1996, 1997)
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One can get a similar effect for poroelasticity
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Qu, et.al 2017



New classes of elastic materials (with Cherkaev, 1995)

Pentamodes, useful for guiding stress and the building block for getting any

desired elasticity tensor.

A three dimensional pentamode material Like a fluid it only supports one
which can support any prescribed loading loading, unlike a fluid that
ol loading may be anisotropic. Desired

Many other important papers
on pentamodes.

support of a given anisotropic loading
is achieved by moving P to another
position in the unit cell.

KEY POINT is the coordination number of 4 at each vertex:
the tension in one double cone connector, by balance of
forces, determines uniquely the tension in the other

3 connecting double cones, and by induction the entire
average stress field in the material.



Application of Pentamodes:

Cloak making an object “unfeelable™.
Buckmann et. al. (2014)




Realization of Kadic et.al. 2012




It's constantly a surprise to find what
properties a composite can exhibit.

One interesting example:
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Hall Voltage



In elementary physics textbooks one
IS told that In classical physics the
sign of the Hall coefficient tells one
the sign of the charge carrier.

However there is a counterexample!



Geometry suggested by artist Dylon Whyte

Image courtesy
of Christian Kern
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A'material with cubic symmetry having
a Hall Coefficient opposite to that of the
constituents (with Marc Briane)



Simplification of Kadic et.al. (2015)
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Two natural problems:

(1) Concentrating a field into a region.

(2) Shielding a region from fields.



Sharp corners concentrate fields




Large Fields also very important for Raman Spectroscopy:
Effect goes as the 4t power of the field intensity.

Well known that rough surfaces enhance Raman Spectroscopy,
by orders of magnitude (SERS)

Shielding: Think of Faraday cage to shield Electromagnetic Field,
Shielding from Magnetic Fields, Thermal Currents
Shielding from Vibrations, Sonar



How to measure this?
Threshold exponents on L7 integrability:

VT = inf : / E(x)|” dx < oo

_Sup /E )7 dx < oo

B is any Ball containing ().

Equivalently, given a (possibly disconnected) subregion @ C {2
of small subvolume |@)| one can maximize or minimize

/Q E(x)[? dx

and ask how this depends on |@)| asymptotically as |Q| — 0



Two isotropic conductors, conductivities o7, os.
Uniform field at infinity

Some Candidates:
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Effective Medium
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Fig.9. Comparison of threshold exponents for the laminate of Fig.8.

Beauty Contest (GWM, 1986) . ( ). egs. (4.13) and (4.18); an array of diamond shaped
grains (— — — — — ). eq. (4.8); a checkerboard of the two components
2 ( - ). eq. (4.9); and Schulgasser's symmetric material,
both in three dimensions ( —s—a—ea—s- ) and in two dimensions
+
Y 8l (—%—st—x%—x ), egs. (4.11) and (4.12).
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Proof of this micostructure independent Lower Bound on y: Morrey (1938);
Boyarski (1957)

Proof of this microstructure Upper Bound on v~ : Leonetti and Nesi (1997)
See Also Faraco (2003)



What about 3d?

For a uniform applied field
the local field can vanish
between the torii, even

at finite conductivity ratios /




Back to the shielding problem:

It seems more reasonable to require that there is no microstructure
in the shielded region and that the microstructure is localized in a box.

Shielded Region




Using Disks:

Concentration Shielding



Field between two highly conducting disks close to touching
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Y AR L p_(a*/x) = —qp,(x)

= (o0— 1).

a= 11/ n=(0c—1)/(c+1)

McPhedran, Poladian, GWM (1988) pi(l—z) =—p_(2),
B — —(c/2) (1—1/c) p_[a*/(1—x)] = np_(x)

' 2sln(c)+1—=2s[y+y¥(1+s)]
p_(x) = Al(e,—x)/(1 —a,—2)]

a=3Vv(1—-1/c%). a,=3(1—1/c).
. Psi or Digamma function

Rigorous Analysis: Lim and Yu (2015)

s =In(g)/In[e,/(1—a,)]



Could use the transformation based approach of Greenleaf, Lassas, and Uhlmann
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Stretching space (From Ulf Leonhardt)

Advantages: Works for any external field and creates no disturbance

Disadvantages: Requires extreme conductivities, and if one truncates the
solution there is no reason to expect it is optimal.



Or Maybe?

Seems like we are just guessing. Is there a more systematic approach,
at least in the case where we use just 2 conducting materials, and
we are seeking shielding or concentration for just one applied field?



Possible (average heat current, q”, average temperature gradient, e")
pairs in a two phase conducting composite (Raitum, 1978).

V-q=0, q(x)=k(x)e(x), e=-VT
q, e periodic, (q) = q", (e) =¢",

Follows from the Wiener bounds:

k* < kT1
fki 4+ (1 — f)ks
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Solution of the ”weak G-closure” problem for conductivity



The heat lens problem: Gibiansky, Lurie and Cherkaev (1988)

Aim: Shield or concentrate flux in the blue dashed interval

No Flux

Uniform
Flux

333333833

No Flux

How does one optimally distribute a poor and good conductor to do this?



Field Shield: (Black, good conductor)




Field Concentrator:




The Hall matrix.

In anisotropic materials one has

e = poJ + (Anb) x g j =0o0pe+ (Sb) xe

What are the constraints on the Hall matrix?

Can one use metamaterials to get unusual Hall matrices?



Homogenization formula for the effective Hall matrix

e — — (Vd)(e), (VB), = 20 V.(oV®) =0 (V&) =1

J ox i

(Cof (agV®)" Ay) = Cof () Af;.
Generalizes a formula of Bergman for isotropic materials:

(Ji1Jas — JorJ1a) An) = (o) A%



Geometry studied by Briane and Milton (2009)

Suggestion to use this geometry came from chain-mail artist Dylon Whyte



Plot of the determinant of the matrix valued electric field




Plot of the cofactor matrices

One cofactor

Cofactor trace
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Hall coefficient for 3 different geometries

(@)

Ar = —5.73 A%,

Dark Grey= Semiconductor, Light Grey=perfect conductor



Plot of the trace of the cofactor matrix
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A simple idea for reversing the Hall voltage....
just swap the connecting leads

(@) (b)
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But can one incorporate this idea in a metamaterial
to reverse the Hall coefficient?




Yes: the incredible geometry of Christian Kern:




Plot of a cofactor
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The parallel Hall effect:
twisting the induced electric field in each unit cell

z
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The Hall matrix becomes asymptotically an antisymmetric matrix.
(Milton and Briane, 2010)

Image courtesy Christian Kern



Measuring the curl of the magnetic field using the parallel Hall effect: Kern et.al (2017)




Simplified Design: (Kern, Kadic, Wegener 2015)
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A modified structure with an almost antisymmetric Hall matrix
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Experiments:

Kern, Schuster, Kadic, and Wegener (2017)
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So far we have been manipulating the conductivity
to channel current in the structure to achieve desired effects.

What about if we also manipulate the magnetic permeability
to channel the magnetic field to achieve desired effects?

Formula for the effective Hall matrix with
magnetic permeability variations

Cof () Ap* = (Cof (0o V®)T A (VP,))

b=—pop(VP,) (h) V- (uVe,)=0 — (V@) (h) = h.
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Some References

See: https://sinews.siam.org/Details-Page/surprises-regarding-the-hall-effect-an-extraordinary-story-involving-an-artist-mathematicians-and-physicists
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