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Accelerating some Fast Fourier Transform Methods in
two-component composites

The effective conductivity 0« is an analytic function
of the component conductivities 01 and 02

With o, = 1, 04(01) has the properties of a
Stieltjes function:

} Im(c))

R s L ! = Re(0,)
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Bergman 1978 (pioneer, but faulty arguments)
Milton 1981 (limit of resistor networks)

Golden and Papanicolaou 1983 (rigorous proof)



Original FFT approach of Moulinec and Suquet (1994,1998)
based on the series expansion (Brown, Kroner, Willis...)
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I'p(k) =T if k = 0, zero otherwise.

I (k) =kk”/(k-k) fork # 0, T1(0)=0

Key point: the action of I'; is most easily evaluated in Fourier space, while
the action of o is most easily evalauated in real space. Therefore go back and
forth between real and Fourier space, using FFT's, until the series converges.

With o¢g = (01 + 02)/2 and o2 = 1 one gets an expansion of the form
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Complex analysis provides the theory for the convergence of such expansions.
The convergence and asymptotic rate of converegence is dictated by the nearest
singularity to the origin in the (o7 — 1)/(01 + 1)-plane.



Numerical scheme of Moulinec and Suquet (1994)

O-*/O-0:1+de (
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Let z= (01 —1)/(01 + 1)

Gl—plane

z—plane

Taylor series converges
in the unit disk in the
z-plane, corresponding
to the right-half plane in
the ¢ plane.

Expect better convergence
if there is no singularity
near the origin.

X marks position of singularity, assumed here near the origin o; = 0.



Benchmark model example: a square array of
squares at 25% volume fraction

Obnosov’s exact formula

0. =V (1+301)/(B+01), a=1/3, B=3



Remark: there is also an exact formula for the
effective conductivity of a 4-phase checkerboard

W o1020304(1 /01 + 1 /o2 + 1 /o3 + 1/04) (01 + 04) (02 + 03)
| (01 + 02 + 03 + 04)(01 + 02)(03 + 04) ’

2 01020304(1 /oy + 1 /oy + 1 /o3 + 1/04) (01 + 02) (03 + 04)
: (01 + 02 +03 +04)(01 + 04)(02 + 03) '

Conjectured by Mortola and Steffe (1985);
proved indendently and by different approaches by
Craster and Obnosov (2001) and Milton (2001)



Series expansion coefficients:
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Obnosov’s microstructure, discretization 512 x 512 pixels. MS scheme. Contrast
z = 0.1. Coefficients dj, of the series (59) with different Green’s operators: continuous operator
(blue), Miiller’s operator [20] (black), Willot-Pellegrini operator [22] (red). (a): iterations 1 to
60. (b): close-up on iterations 10 to 235.



Or for a more realistic geometry:
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(a) Microstructure: 4 circular inclusions, volume fraction 50%. (b) Coefficients dj. of
the series (33) at different resolutions. MS scheme.

Upshot: it does not make sense too iterate too many times



“Improved” FFT approach of Eyre and Milton (1999)
based on the series expansion

o, = 0'01 + Z;i() FoK(TK)jFO, P = Z;X;O K(TK)jeo

K=[+ (6 —0oo)M] Yo —00ol), ¥ =M—(I'y/0p)

M is an arbitrary constant tensor, now Y can have eigenvalues of both signs.

Key point: the action of Y is most easily evaluated in Fourier space, while
the action of K is most easily evalauated in real space. Therefore go back and
forth between real and Fourier space, using FFT's, until the series converges.

With 09 = /0103, 02 = 1 and M = I/20( one gets an expansion of the form

M\,—_sz (\/CJ)

Complex analysis provides the theory for the convergence of such expansions.
The convergence and asymptotic rate of converegence is dictated by the nearest

singularity to the origin in the (\/o; — 1)/(y /o1 + 1)-plane.



Quick explanation of the “enhanced” rate of
convergence of the Eyre-Milton Scheme

Let w = /o1, z=(w—-1)/(w+1)

G, —plane

z—plane

If we want a series expansion which converges in the entire the o;-plane minus the negative
real o,-axis, then we first make a square root transformation which maps the cut complex &,-plane to
the right half of the w-plane, followed by a fractional linear transformation which takes it to the unit disk
in the z-plane, and find an expansion in powers of 2. The scheme of Eyre and Milton (1999) provides

such an expansion.



Comparison of convergence for the Obnosov array of squares:

Here z = 04 /09, and z = 01 /09,
TS=Theoretical Scheme, NS=Numerical Scheme
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Obnosov problem. Comparison between the convergence of the theoretical series
(TS) and the numerical series (NS) for different contrasts. (a) Reference medium: matrix
(B-scheme). (b) Reference medium: arithmetic mean (MS-scheme). (c¢) Reference medium:
geometric mean (EM-scheme). Discretization: 512 x 512 pixels.

None of the three schemes are entirely satisfactory



Brown scheme
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Snapshots of the rate of convergence for the 3 schemes in the plane (53, 2). The
brighter the color, the faster the rate of convergence.



If we know «, 5 then the ideal scheme should be:
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But we want to do this transformation at the
level of the “subspace collection”, to recover the fields
We need a new series expansion for the fields.



We need to find a FFT scheme that has an
associated series expansion
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One idea: at a discrete level

il Resistors R,
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(a) unit cell
koR
kle —ANN—
—AMNM—— gets replaced by AAAM S
R 1 _1\/\/‘\/5_
(b) k3R,

Locally, replace a 1-dimensional subspace by a 3-dimensional subspace

Problem: this substitution shortens the branch cut
instead of lengthening it. Solution:
Substitute “non-orthogonal subspace collections”



Non-orthogonal subspace collections
allow one to generalize the concept of
function to

Superfunctions!



Adding resistor networks
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With non-orthogonal
subspace collections
one can subtract
“resistor networks”



Multiplying resistor networks
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With non-orthogonal subspace collections one
can divide “resistor networks”.



Substitution of networks

Z,

1Z
(b) B AN gets replaced by 4\/\/\}‘+ +—
Zq

J,

C]kzz 5

One is free to substitute a non-orthogonal
subspace collection into an orthogonal one.
This is precisely what we will do.



We should consider a resistor network in conjunction
with its batteries
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Incidence Matrices:

+1 if the
—1 if the

/10 0 -1

1 —1 0 0

L 1 0 —1 0
— AT —

T M = 0 1 =1 0

0O 1 0 =1

\0 0 1 —I

arrow of bond i points towards node j,

arrow of bond i points away from node j,

= 0 if bond i and node j are not connected.

Two natural subspaces:
J the null space of M" (current vectors)
& the range of M (potential drops)
These are orthogonal spacesand |IC =& @ T



Other spaces:
Divide the bonds in H into n groups (representing
the different impedances).

Define 'P; as the space of vectors P with elementsP,
that are zero if bond j is not in group i.

The projection Xi onto the space Pi is diagonal and
has elements

{xitjx = 1 if j =k and bond j is in group ¢,
= 0 otherwise.

This is an orthogonal subspace coIIection Y(n)



Abstract Theory of Composites; the Z(2)-problem

Hilbert Space H=UDPEP T =P1 D P>
Operator L = oyx1 + 02X2, X; projects on P;
Given Eg ¢ U

Solve Jop+J=L(Ey+E)

With JoeU, JeJg, EeC&.

Then Jo=L.E; defines L.,:U —U

and L, is an analytic function of o1 and o9, L, (01, 02)



Example: 2-Phase Conducting Composites

‘H - Periodic fields that are square integrable over
the unit cell
.{ - Constant vector fields (the “applied fields”)

& - Gradients of periodic potentials

J - Fields with zero divergence and zero
average value

P; - Fields that are non-zero only in phase 7

Eo + E(x) - Total electric field
Jo + J(x) - Total current field

L = o(x) - Local conductivity

L. = o.- Effective conductivity



Abstract Theory of Composites; the Y(2)-problem
Hilbert Space C =8 T =V O H, H=P SP
Operator L = oyx1 + 02X2, X; projects on P;

Given Ey €V
Solve J; = LE;
With J.EieH, Jog+Ji1€dJ, Eg+E €€

Then Jo = -Y.Eq; defines Y,:V—>YV

and Y, is an analytic function of o1 and o3, Y. (01, 09)



Y(n) subspace collection:
K=EGT=VEP1EP2F---F Pn,
Z(n) subspace collection:
H=UDERT =P1®Pa@---B Py,

Superfunction F”(n): Y(n) subspace collection
with

V=V'aV
“Subspace collections” need not have
orthogonal subspaces
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J
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Key: Allow nonorthogonal . F5(1)

“subspace collections”. Then
we have a whole algebra:
can define “subtraction”

and “division” of subspace
collections. (C)




The vector subspace collection that we substitute
into the original subspace collection

koR
. . kiR, — A .
Want an analog of replacing —‘\/\R/\/‘— with v o using non-orthogonal subspaces
1
k3R,

Now consider a 3—dimensional subspace collection H' consisting of 3 component vectors P = [Py, P, PB]T

with inner product
3
Y PP,
i=1

where the overline denotes complex conjugation. The projection x' = p®p projects onto the one dimensional
space of fields proportional to the unit vector p where p = [pl,,pg,pg]T and pi, p2, p3 are given constants
such that p? + p2 + p2 = 1. The p’s could be complex but we do not mean |p; |>+|p2|*>+|p3|?= 1. Thus x’ is
a projection but not an orthogonal projection when the p’s are complex, as then x’ = p ® p is not Hermitian.
We take the following:

(P,P)

T

?

T

H

T

H

U’ is the space of fields proportional to (1,0,0
&' is the space of fields proportional to (0,1,0
J' is the space of fields proportional to (0,0, 1

| S . T

P, is the space of fields proportional to (pq, ps, p3)7T,
P, is the space of fields (P;, Py, P3)T
such that p1 Py + poPo + p3P3 = 0.



The field equations become

Y =[t—o02)Xx +02]E, EeclUafl, YecuaJ,

where the constant ¢ will be chosen so the associated “effective modulus™ is o1. That is
I‘L‘]..]IIr = JlI‘DEr?

where T’y is the projection onto U, so that

J, = o1E}.
Without loss of generality we can choose E{ = 1, J{ = o4 so the field equations become
Ji pi  pPip2  Pip3 Ej Eq
0| =(t—o02) P2 p3 pap3| |E5| +o2|ES
Js 1P3 P2p3s D3 0 0
xi‘

From the middle equation we get
(t — 02)p1p2 B + [(t — 02)p3 + 2] Ey =0,

which with E] = 1 gives
(02 — t)p1p2
(t—o2)p3 + 02

Ey =



So we have
(02 — t)°pip3
(t —o3)p3 + 02
ploa(t — o9)
(t — o2)ps + 02
P%Jz
p3 +o2/(t —o2)’

or=J7 = pi(t—o9)+0s—

which with o5 = 1 is satisfied with

op—1 (o1 —1)(B— )
t=1+ =1+ ’
p? —pi(og — 1) (o1 +B)(1+ a)
where
p?
a = —1-— :
ps—1
2
_ _q1_P
B = p3

The parameters p; and ps need to be complex.



The Hilbert space after the substitution

Now consider the Hilbert space ‘H'’ consisting of all periodic fields of the form

0 Qx) Qx)
P/(x) = | SG) | x(0+ | 0 | = | x(0S(x) |-
\T(x) 0 x()T(x)

- L. -

eEP1R(EBIT") EHRU’

Up
uwx)=| 0| eUl.
0
Fields in £” take the form

0 E(x) E(x)
E'(x)=|Sx) | x(x)+| 0 |=]Sxxx)]:
0 0 0

ey "y

Fields in A" take the form

eP1RE cE@I’

where E(x) € . Fields in J" take the form

( 0 ) J(x) J(x)
Jx)=| 0 |xx)+| 0 |= 0 , =
1o \ 0 J T () () where J(x) € J.




The space P; consists of all vectors of the form

m
Cc | P2 3

3

and Py consists of all fields P(x) of the form

p1C(x)
p2C(x) | x(x) € Py @ P;.
3C(x)

Also P;, consists of all vectors of the form

1
c|ao where pi1g1 + p2g2 + pags =0,
R



and P4 consists of all fields P(x) of the form

Q1(x) R(x)
Q2 (x) | x(x) + (1 —x(x)) 0 where p1Q1(x) + p2Qa(x) + p3Qs(x) = 0.
Qs3(x) 0

L -

E(P1@P3+P2@U")

The inner product on H" is defined to be

(P.P) = / 569 860) + TG - T9x(x) + Q) - Q)

We define x”" = (p® p)x.ie..

0 Q(x) pil  pipl pipsl\ /Q(x)
x" S(x) | x(x)+ 0 = | pip2I P31 popsl S(x) | x(x),
T (x) 0 o3l popsI p3l T(x)



The field equations become

J' = [(t _ '72)?(:” + G'QI]E”, E'cU" & E”, J' e @ J”.
These are easy to solve given periodic solutions J(x) and E(x) to the equations in the Hilbert space H. i.e..

J=[(o1—o2)x +o2]E, V-J=0, VxE=0.

E(x) J(x)
E" = EJE(xX)x(x) |, J'= 0 :
0 J3J(x)/oy

Note that we have E e U" @ E" and J" e U" & J". Also, with oo = 1, we have

We take (with £ = 1)

1
(t—o2)x" +02)E" = (p@p(t—02)+03)) (EEE(X)X(X))
0
(E(X)(l - x(X)))
+ 0
0
JIE(x) E(x)
= 0 x(x)+ 1 0 j(1-x(x)
JLE(x) 0



Finally if T'y is the projection onto U" we have

(E) (E

LZE" = 0 | x(x)+ | 0 |)(1-x(x),
0 0
(J) (J)

reJ” = | 0 |x(x)+| 0 | (1—x(x),
0 0

and since (J) = o.(E) we deduce that
ryJ’ =o. T E".

UPSHOT: o, is still the effective tensor.

As expected, the Hilbert space substitution did not change it, but it does change
the convergence rate of series expansions.



The operator " is easily evaluated in real space. The operator T'] which projects onto £” is easily
evaluated in Fourier space since

Q(x) ' Q(x)
I | x(x)S(x) | = [ x(x)S(x) | (8.46)
x (x)T(x) 0
where in Fourier space
- k®kQ(k)
r,Q(K) —{ S K2 8.47)

Hence the Fast Fourier Transform methods of Moulinec and Suquet and of
Milton and Eyre can be diectly applied in the Hilbert soace H”.



Does the idea work? YES!

error on the effective property: calculated vs theoretical (in %)
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error on the effective property: calculated vs theoretical (in %)
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Remark: The analysis relied heavily on knowledge of the parameters a and
B that are associated with the spectrum of the operator I'yxI'1. For periodic
arrays of disks or spheres, bounds on the spectrum have been obtained by Bruno
(1991). For more general geometries, and for elasticity and other problems, a
new approach to getting bounds on the spectrum can be found here:

JOURNAL OF MATHEMATICAL PHYSICS 59, 061508 (2018)

A new route to finding bounds on the generalized
spectrum of many physical operators

Graeme W. Milton?
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA

(Received 3 April 2018; accepted 11 June 2018; published online 28 June 2018)

Also available on ArXiv: arXiv:1803.03726 [math-ph]



Thank you!
Thank you!

Thank you!
Thank you!
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And chapters 7 and 8 of the book:

am a;on 4 Extending the Theory of Composites to Other Areas of Science
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