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The effective conductivity      is an analytic function
of the component conductivities       and 
With             ,                 has the properties of a
Stieltjes function:

Bergman 1978 (pioneer, but faulty arguments)
Milton 1981 (limit of resistor networks)
Golden and Papanicolaou 1983 (rigorous proof)

Accelerating some Fast Fourier Transform  Methods in 
two-component composites



Original FFT approach of Moulinec and Suquet (1994,1998) 
based on the series expansion (Brown, Kroner, Willis…)



Numerical scheme of Moulinec and Suquet (1994)

Taylor series converges
in the unit disk in the
z-plane, corresponding
to the right-half plane in
the        plane.

Expect better convergence
if there is no singularity
near the origin.



Benchmark model example: a square array of 
squares at 25% volume fraction

Obnosov’s exact formula



Remark: there is also an exact formula for the 
effective conductivity of a 4-phase checkerboard 

Conjectured by Mortola and Steffe (1985);
proved indendently and by different approaches by 
Craster and Obnosov (2001) and Milton (2001)



Series expansion coefficients:



Or for a more realistic geometry:

Upshot: it does not make sense too iterate too many times



“Improved” FFT approach of Eyre and Milton (1999) 
based on the series expansion



Quick explanation of the “enhanced” rate of 
convergence of the Eyre-Milton Scheme 



Comparison of convergence for the Obnosov array of squares:

None of the three schemes are entirely satisfactory





If we know           then the ideal scheme should be:

But we want to do this transformation at the
level of the “subspace collection”, to recover the fields
We need a new series expansion for the fields.



We need to find a FFT scheme that has an 
associated series expansion



One idea: at a discrete level

Problem: this substitution shortens the branch cut
instead of lengthening it. Solution: 
Substitute “non-orthogonal subspace collections”

Locally, replace a 1-dimensional subspace by a 3-dimensional subspace



Non-orthogonal subspace collections 
allow one to generalize the concept of 
function to

Superfunctions!



Adding resistor networks

With non-orthogonal 
subspace collections 
one can subtract
“resistor networks”



Multiplying resistor networks

With non-orthogonal subspace collections one
can divide “resistor networks”.



Substitution of networks

One is free to substitute a non-orthogonal
subspace collection into an orthogonal one.
This is precisely what we will do.



We should consider a resistor network in conjunction
with its batteries

Space                              Space

Combined Space  



Incidence Matrices:

Two natural subspaces:
the null space of M     (current vectors) 
the range of M  (potential drops)

These are orthogonal spaces and 

T



Other spaces:
Divide the bonds in       into n groups (representing 

the different impedances).

Define        as the space of vectors      with elements 
that are zero if bond j is not in group i. 

The projection       onto the space        is diagonal and 
has elements

Thus 
This is an orthogonal subspace collection Y(n)

Pj



Abstract Theory of Composites;  the Z(2)-problem

Hilbert Space

Operator

Given

Solve

With

Then defines 



Example: 2-Phase Conducting Composites

- Periodic fields that are square integrable over 
the unit cell

- Constant vector fields (the “applied fields”)

- Gradients of periodic potentials

- Fields with zero divergence and zero 
average value

- Total electric field

- Total current field

- Local conductivity

- Effective conductivity

- Fields that are non-zero only in phase 



Abstract Theory of Composites;  the Y(2)-problem

Hilbert Space

Operator

Given

Solve

With

Then defines 



Y(n) subspace collection:

Z(n) subspace collection:

Superfunction F  (n): Y(n) subspace collection
with 

“Subspace collections” need not have 
orthogonal subspaces



Z(2)
Y(2)

F  (1)Key: Allow nonorthogonal
“subspace collections”.  Then 
we have a whole algebra:
can define “subtraction”
and “division” of subspace
collections. 



The vector subspace collection that we substitute 
into the original subspace collection 

Want an analog of replacing                         with                                using non-orthogonal subspaces  







The Hilbert space after the substitution













Does the idea work? YES!





Also available on ArXiv: arXiv:1803.03726 [math-ph]



Thank you!

Thank you!

Thank you!

Thank you!
Thank you!
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