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Motivation
A direct mathematical “isomorphism" between the theory of effective
tensors of composites and the theory of the DtN map for bodies.
As a result of this, many of the tools/machinery that have been
developed in the theory of composite materials essentially carry over
directly to DtN maps, e.g.,

variational principles for composites map over to variational principles
for boundary-value problems;
theory of bounds on effective tensors carries over to an analogous
theory of bounds on DtN maps;
analyticity properties of effective tensors as functions of the component
moduli map over to analyticity properties of the DtN map as functions
of the component tensors within the body.

Advantage: Directly apply the theory of composites to bear on a
much wider class of problems, e.g., inverse problems6, which could
indirectly have an impact on the theory of composites.

6G. W. Milton, The inverse problem: Obtaining information about what’s inside a
body, Chap. 5—Explores bounds on the DtN map and the associated inverse problem of
what can be said about the distribution of materials inside a body from surface
measurements, using connection between DtN maps and effective tensors in composites.



Herglotz functions
Herglotz functions: key role in analytic methods used to derive
bounds/limitations in composites1 & electromagnetism7.
Definition (Herglotz function)
Let m, n, d ∈N. Define C+ := {ω ∈ C : Im ω > 0},
M+
n (C) := {M ∈ Mn (C) : ImM > 0}, and T = (C+)d or
T = (M+

n (C))
d . A function h : T → C or h : T → Mm (C) is a called a

Herglotz function if h is an analytic function satisfying
Im h (Z) ≥ 0, ∀Z ∈ T ,

where Im h (Z) = (2i)−1
(
h(Z)− h (Z)∗

)
denotes the imaginary part.

Theorem (Integral representation)
A necessary and suffi cient condition for h : C+ → C to be a Herglotz
function is that there exist α, β ∈ R with α ≥ 0 and a positive regular
Borel measure µ for which

∫
R

(
1+ λ2

)−1
dµ (λ) is finite such that

h (ω) = β+ αω+
∫

R

(
1

λ−ω
− λ

1+ λ2

)
dµ (λ) , for ω ∈ C+.

1See Chap. 27: Bounds using the analytic method.
7A. Welters, Y. Avniel, & S. G. Johnson, Speed-of-light limitations in passive linear

media, Phys. Rev. A, vol. 90, no. 2, 2014.



Main Points
For the time-harmonic Maxwell’s equations in passive linear
multicomponent media, the electromagnetic (EM) DtN map is an
analytic function of frequency ω and, more generally, of the dielectric
permittivities and magnetic permeabilities tensors of each phase.

Including tensors (as opposed to scalars) is necessary for bodies
containing anisotropic materials, e.g., gyrotropic materials.
Essentially, the DtN map is a Herglotz function of these parameters.

Many important impacts and consequences of theory of Herglotz
functions.

Connection to the theory of holomorphic functions on tubular domains
with nonnegative imaginary part and multivariate passive linear systems
theory8.

Applications in electromagnetism, e.g., inverse problems,
bounds/limitations on certain physical quantities, and studying EM
phenomenon in composites with high-loss and lossless components.

8N. K. Bose, Multidimensional Systems Theory & Applications, 2nd ed., Springer,
2003; V. S. Vladimirov, Methods of the Theory of Generalized Functions, Taylor &
Francis, 2002.



Overview

I. Time-harmonic Maxwell’s equations, Poynting’s Theorem, and the
connection to the EM DtN map

Integrating a conservation law in divergence form over a body, connects
the EM fields in the body to the EM fields on the boundary via the EM
“Dirichlet-to-Neumann” (DtN) map which depends on the materials in
the body.

II. EM DtN map for layered media
Reduction of Maxwell’s equations to ODEs.
Explicit expression for the EM DtN map in terms of the 4× 4 transfer
matrix.
Analytic properties of the DtN map in the context of matrix
perturbation theory.

III. EM DtN map for bounded media
large class of different 3D geometries includes domains with nonsmooth
boundary, e.g., polyhedra
variational reformulation of time-harmonic Maxwell’s equations.
well-posedness and analyticity of the DtN map based on variational
methods.
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Time-harmonic Maxwell’s equations for passive linear
media

The time-harmonic Maxwell’s equations (in Gaussian units without
sources) at a fixed frequency ω:

∇× E = iω
c
B, ∇×H = −iω

c
D, D = εE, B = µH,

where c denotes the speed of light in a vacuum with the electric field
E (x), electric displacement field D (x), magnetic field H (x),
magnetic induction B (x).
For passive linear (local) media filling a region Ω, the electric
permittivity ε (ω, x) and magnetic permability µ (ω, x) have the key
properties:

for fixed x ∈ Ω and Im ω > 0:

ε (ω, x) , µ (ω, x) are analytic functions of ω with

Im [ωε (ω, x)] ≥ 0, Im [ωµ (ω, x)] ≥ 0.
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Poynting’s Theorem: divergence form

From Maxwell’s equations (∇×H = −i ω
c B) we have

0 = cE·
(
∇×H

)
+ E·iωD.

Using the vector identity

∇ · (a× b) = b · (∇× a)− a · (∇× b)
with a = E and b = H we get

0 = c
[
H · (∇× E)−∇ ·

(
E×H

)]
+ E·iωD.

From Maxwell’s equations (∇× E = i ω
c B) and the constitutive

relations (D = εE, B = µH) we arrive at a divergence form of
Poynting’s Theorem:

0 = −c∇ ·
(
E×H

)
+H · (iωµH) + E·

(
iωεE

)
.
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Poynting’s Theorem: integral form

Integrating this form over the body Ω and applying the divergence
theorem, we arrive at an integral form of Poynting’s Theorem:∫

Ω
H · (iωµH) + E·

(
iωεE

)
dx =

∫
Ω
c∇ ·

(
E×H

)
dx

=
∫

∂Ω
n ·
(
cE×H

)
dS ,

where n is the outward unit (n · n = 1) normal vector on the
boundary ∂Ω of Ω.
Also, we have∫

∂Ω
n ·
(
cE×H

)
dS = c

∫
∂Ω
E·
(
H× n

)
dS

= −c
∫

∂Ω
(E× n) ·

(
n×H× n

)
dS ,

which follows from the vector identity

(a× b) · (c× d) = (a · c) (b · d)− (a · d) (b · c)
with a = E, b = n, c = n, and d = H× n.
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Poynting’s Theorem: EM DtN map form

Definition (EM DtN map)
The electromagnetic Dirichlet-to-Neumann map
Λ = Λ (ω) = Λ (ωε (ω, ·) ,ωµ (ω, ·)) is defined on EM fields E,H by

Λ (E× n|∂Ω) = in× (H× n) |∂Ω.

Multiplying by −i we arrive at the DtN form of Poynting’s Theorem:

(ωµH,H)− (E,ωεE) =
∫

Ω
H · (ωµH)− E·

(
ωεE

)
dx

= −i
∫

∂Ω
n ·
(
cE×H

)
dS = −c

∫
∂Ω
(E× n|∂Ω) · [Λ (E× n|∂Ω)]dS

= −c (E× n|∂Ω,Λ (E× n|∂Ω)) .

Connection to EM energy loss:

0 ≤ (Im (ωµ)H,H) + (E, Im (ωε)E) = −
∫

∂Ω
n · Re

(
cE×H

)
dS

= c Im (Λ (E× n|∂Ω) ,E× n|∂Ω) = c (Im[Λ] (E× n|∂Ω) ,E× n|∂Ω) .
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Main problems
Problem (Well-posedness)
Is the EM DtN map Λ well-defined? Is it a continuous linear operator?

Problem (Dependence on parameters)

Is the map ω 7→ Λ (ωε (ω, ·) ,ωµ (ω, ·)) an analytic function? Is it a
Herglotz function? For composite media, what is the analytic dependency
of the map Λ on ωε (ω, ·) ,ωµ (ω, ·)?

Definition (Analyticity)
Let E and F be two Banach spaces and U and open set of E . A function
h : U → F is said to be analytic if it is differentiable on U.

L (E ,F ) —the Banach space of all continuous linear operators from E
into F (with E ,F Banach spaces) equipped with the operator norm;
〈·, ·〉 —the duality product of F and its dual F ∗; Cn —the Hilbert
space with inner product (u, v) := u · v := v∗u, where v∗ = vT ;
recall, Mn (C), L (Cn,Cn), and Cn

2
as Banach spaces are isomorphic.

In particular, the sets (C+)n, and M+
n (C) are open.



Key theorems on analyticity

Theorem (weak analyticity implies strong analyticity9)

Let U be an open subset of C and h : U → L (E ,F ), where E and F are
Banach spaces. If the function

hφ,ψ (ω) := 〈h (ω) φ,ψ〉 , for ω ∈ U
is analytic on U for all φ and ψ in dense subsets of E and F ∗,
respectively, then h is analytic.

Theorem (Hartog’s Theorem10)
If h : U → E is a function on an open set U ⊆ Cn in to a Banach space E
then h is a multivariate analytic function (i.e., jointly analytic) if and only
if it is an analytic function of each variable separately.

Theorem (analytic and invertible implies analytic inverse9)

If h : U → L (E ,F ) is an analytic function on an open set U ⊆ Cn, where
E and F are Banach spaces, and h (Z) is invertible for all Z ∈ U then the
function Z 7→ h (Z)−1 is analytic from U into L (F ,E ).

9T. Kato, Perturbation Theory for Linear Operators, Springer, 1995.
10J. Mujica, Complex Analysis in Banach Spaces, North-Holland, 1986.



Layered media: composite geometry

Figure: A plane-parallel layered medium consisting of two phases (ε1, µ1 in Ω1
and ε2, µ2 in Ω2) of passive linear materials with layers normal to z-axis
occupying a region Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅, where −d ≤ z ≤ d .
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Layered media: formulation of the EM problem
Consider passive linear two-component layered media (layers normal
to z-axis) occupying a region Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅ (Ω1, Ω2

measurable sets) with z ∈ [−d , d ], ω ∈ C+:

ε = ε (ω, z) = χΩ1
(z) ε1 (ω) + χΩ2

(z) ε2 (ω) ,

µ = µ (ω, z) = χΩ1
(z) µ1 (ω) + χΩ2

(z) µ2 (ω) ;

χΩj
— indicator function of Ωj (x ,y independent);

Herglotz functions —ωεj (ω) , ωµj (ω) : C+ → M+
3 (C) .

Consider the solutions of the time-harmonic Maxwell’s equations at a
fixed frequency ω ∈ C+ in the separable form[

E
H

]
=

[
E (z)
H (z)

]
e i (k1x+k2y ),

where x , y ∈ R, z ∈ [−d , d ], κ : = (k1, k2) ∈ R2, E (z), H (z) ∈ C3.
Boundary conditions require ψ ∈ (AC ([−d , d ]))4, where

ψ (z) =
[
E1 (z) E2 (z) H1 (z) H2 (z)

]T
is the vector of tangential electric and magnetic field components.



Layered media: Reduction to ODEs

EM solutions of this type correspond to the solutions of the linear
ODEs:

dψ

dz
= iJA (z)ψ (z) , ψ ∈ (AC ([−d , d ]))4 ,

J =
[
0 ρ
ρ∗ 0

]
, ρ =

[
0 1
−1 0

]
,

A : z 7→ A (z) , A (·) ∈ M4
(
L1 ([−d , d ])

)
.

The matrix-valued function A : C+ → M4
(
L1 ([−d , d ])

)
is analytic,

where

A : ω 7→ A (·,Z (ω)) ,
Z (ω) = (ωε1 (ω) ,ωε2 (ω) ,ωµ1 (ω) ,ωµ2 (ω)) .

More generally, A :
(
M+
3 (C)

)4 → M4
(
L1 ([−d , d ])

)
is analytic,

where
A : Z 7→ A (·,Z) .
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Layered media: transfer matrix

Maxwell’s equations reduce to a linear Hamiltonian system of ODEs.

Theorem (Analyticity of the transfer matrix)

For each z0 ∈ [−d , d ], the IVP
dψ

dz
= iJA (z)ψ (z) , ψ (z0) = ψ0,

has a unique solution ψ in (AC ([−d , d ]))4 for each ψ0 ∈ C4. The
solution is given in terms of the transfer matrix T (z0, z) ∈ M4 (C) by

ψ (z) = T (z0, z)ψ0, for all z ∈ [−d , d ] .
Furthermore, for the function T (z0, ·) : z 7→ T (z0, z) we have
T (z0, ·) ∈ M4 (AC ([−d , d ])) and, for each z ∈ [−d , d ], the function
T (z0, z , ·) : C+ → M4 (C) defined by

T (z0, z , ·) : ω 7→ T (z0, z ,Z (ω)) ,
Z (ω) = (ωε1 (ω) ,ωε2 (ω) ,ωµ1 (ω) ,ωµ2 (ω))

is analytic. More generally, T (z0, z , ·) :
(
M+
3 (C)

)4 → M4 (C) is analytic,
where T (z0, z , ·) : Z 7→ T (z0, z ,Z) .
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Layered media: EM DtN Map

For the region Ω(z0, z1) lying between the planes z = z0 and z = z1
(e.g., Ω = Ω(−d , d)), the outward pointing unit normal vector n to
∂Ω(z0, z1) is n = e3 :=

[
0 0 1

]T
on the plane z = z1 and

n =− e3 on plane z = z0. With respect to the standard orthonormal
basis vectors of C3, we have

e3× =

0 −1 0
1 0 0
0 0 0

 , − e3 × e3× =
1 0 0
0 1 0
0 0 0

 .
For layered media and EM fields E, H in the separable form, we can
define the EM DtN map Λ = Λ (z0, z1) ∈ M6 (C) to be the block
operator matrix

Λ
[
E× n|z=z1
E× n|z=z0

]
=

[
in×H× n|z=z1
in×H× n|z=z0

]
,

where E× n = −n× E and n×H× n = −n× n×H.
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Layered media: EM DtN Map

Define the projection Pt and, with respect to the decomposition
C4 = C2 ⊕C2, define the matrix Γ = Γ (z0, z1) ∈ M4 (C) in terms of
the transfer matrix T = T (z0, z1) as

Pt =

1 0
0 1
0 0

 , T = [T11 T12
T21 T21

]
, Γ: =

[
T22T−112 T21 −T22T−112 T11
T−112 −T−112 T11

]
,

Theorem (DtN map is well-defined and analytic)

For each ω ∈ C+, the matrix T12 (z0, z1,Z (ω)), [where
Z (ω) = (ωε1 (ω) ,ωε2 (ω) ,ωµ1 (ω) ,ωµ2 (ω))] is invertible and the
EM DtN map Λ = Λ (z0, z1,Z (ω)) belongs to M+

6 (C) and is given by

Λ (z0, z1,Z (ω)) = i
[
Pt 0
0 Pt

]
Γ (z0, z1,Z (ω))

[
Pt 0
0 Pt

]T [e3× 0
0 −e3×

]
.

Furthermore, the function Λ : C+ → M+
6 (C) defined by

ω 7→ Λ (z0, z1,Z (ω)) is a Herglotz function. More generally, the function
Λ :

(
M+
3 (C)

)4 → M+
6 (C) defined by Z 7→ Λ (z0, z1,Z) is a Herglotz

function.
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Bounded media: composite geometry

Figure: An electromagnetic medium composed of two isotropic homogeneous
materials which fills an open connected bounded Lipschitz domain Ω ⊆ R3. The
two phases (ε1, µ1 in Ω1 and ε2, µ2 in Ω2) of passive linear materials occupy the
region Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅.
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Bounded media: formulation of the EM problem
Consider passive linear two-component bounded media occupying an
open connected bounded Lipschitz domain Ω ⊆ R3, Ω = Ω1 ∪Ω2,
Ω1 ∩Ω2 = ∅ (Ω1, Ω2 measurable sets) with x ∈ Ω, ω ∈ C+:

ε = ε (ω, x) = χΩ1
(x) ε1 (ω) + χΩ2

(x) ε2 (ω) ,

µ = µ (ω, x) = χΩ1
(x) µ1 (ω) + χΩ2

(x) µ2 (ω) ;

χΩj
— indicator function of Ωj ;

Herglotz functions —ωεj (ω) , ωµj (ω) : C+ → C+.
The time-harmonic Maxwell’s equations (in Gaussian) units for the
electromagnetic fields E, H in Ω:

(P)


∇× E− ic−1ωµH = 0 in Ω,
∇×H+ ic−1ωεE = 0 in Ω,

E× n = f on ∂Ω,

where n denotes the outward unit normal vector on the boundary ∂Ω
of Ω and f is given boundary data.11

11For classical functional spaces associated with the solutions of (P) see, for instance:
A. Kirsch and F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell’s
Equations, Springer-Verlag, 2015.



We seek solutions (E,H) ∈ H (curl,Ω)2 of the problem (P) for data
f ∈ H− 1

2 (div, ∂Ω), where L2 (Ω) is the Hilbert space with inner
product

(u, v)L2(Ω) =
∫

Ω
u (x) · v (x)dx, for u, v ∈ L2 (Ω) ,

H (curl,Ω) =
{
u ∈ L2 (Ω) : ∇× u ∈ L2 (Ω)

}
,

H−
1
2 (div, ∂Ω) = {(u× n)∂Ω : u ∈ H (curl,Ω)} .

To define the EM DtN map, we introduce the spaces
H0 (curl,Ω) = {u ∈ H (curl,Ω) : u× n = 0 on ∂Ω} ,

H−
1
2 (curl, ∂Ω) = {n× (u× n)∂Ω : u ∈ H (curl,Ω)} .

H (curl,Ω) and H0 (curl,Ω) are Hilbert spaces with inner product
(u, v)H (curl,Ω) = (u, v)L2(Ω) + (∇× u,∇× v)L2(Ω).

H−
1
2 (div, ∂Ω) and H−

1
2 (curl, ∂Ω) are Banach spaces and satisfy the

duality relation
(
H−

1
2 (div, ∂Ω)

)∗
= H−

1
2 (curl, ∂Ω) with respect to

their duality product 〈·, ·〉:
〈n× (v× n)∂Ω , (u× n)∂Ω〉 =

∫
Ω
u· (∇× v)−v· (∇× u) dx,

for all u, v ∈ H (curl,Ω).



Bounded media: EM DtN Map
Theorem (DtN map is well-defined and analytic)

For each ω ∈ C+, the EM DtN map

Λ (Z (ω)) : H−
1
2 (div, ∂Ω)→ H−

1
2 (curl, ∂Ω)

[where Z (ω) = (ωε1 (ω) ,ωε2 (ω) ,ωµ1 (ω) ,ωµ2 (ω))] defined by

Λ (Z (ω)) (f) = in× (H× n)∂Ω , f ∈ H−
1
2 (div, ∂Ω)

where H is the magnetic field in the solution of problem (P) with
boundary data f, is well-defined and

Λ (Z (ω)) ∈ L(H− 1
2 (div, ∂Ω) ,H−

1
2 (curl, ∂Ω)).

Furthermore, the function Λ : C+ → L(H−
1
2 (div, ∂Ω) ,H−

1
2 (curl, ∂Ω))

defined by Λ : ω 7→ Λ (Z (ω)) is an analytic function. Moreover, the
function hf : C+ → C+ (f 6= 0) defined by

hf : ω 7→
〈
Λ (Z (ω)) (f), f

〉
is a Herglotz function.

Similarly for Λ : (C+)4 → L(H−
1
2 (div, ∂Ω) ,H−

1
2 (curl, ∂Ω))

defined by Λ : Z 7→ Λ (Z).



EM DtN map representation

This theorem essentially follows from the representation of the EM
DtN map Λ (Z (ω)):

Λ (Z (ω)) (f) = iγTPT (Z (ω)) (f) , for all f ∈ H−
1
2 (div, ∂Ω) ,

where γT ∈ L
(
H (curl,Ω) ,H−

1
2 (curl, ∂Ω)

)
,

P ∈ L
(
H (curl,Ω)2 ,H (curl,Ω)

)
, and

T (Z (ω)) ∈ L
(
H−

1
2 (div, ∂Ω) ,H (curl,Ω)2

)
are defined by

γT (H) = n× (H× n)∂Ω for all H ∈ H (curl,Ω) ,

P (E,H) = H for all (E,H) ∈ H (curl,Ω)2 ,

T (Z (ω)) (f) = (E,H) for each f ∈ H− 1
2 (div, ∂Ω) ,

where (E,H) ∈ H (curl,Ω)2 is the unique solution to problem (P)
with boundary data f.
The operator T (Z (ω)) (f) = (E,H) is given by

E = R (f) + A (Z (ω))−1 L (Z (ω))R (f) , H = c (iωµ)−1∇× E.
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EM DtN map representation

The operator R ∈ L
(
H−

1
2 (div, ∂Ω) ,H (curl,Ω)

)
is the lifting

operator, i.e.,

(R (f)× n)∂Ω = f for all f ∈ H−
1
2 (div, ∂Ω) .

The operators A (Z (ω)) ∈ L
(
H0 (curl,Ω) ,H0 (curl,Ω)∗

)
,

L (Z (ω)) ∈ L
(
H (curl,Ω) ,H0 (curl,Ω)∗

)
[where H0 (curl,Ω)∗ is

the dual to H0 (curl,Ω) with duality product 〈·, ·〉H0 ] are defined by

〈A (Z (ω)) φ,ψ〉H0 =
∫

Ω
−c2 (ωµ)−1 (∇× φ) · (∇× ψ) + (ωε) φ · ψdx,

〈L (Z (ω)) ϕ,ψ〉H0 =
∫

Ω
c2 (ωµ)−1 (∇× ϕ) · (∇× ψ)− (ωε) ϕ · ψdx,

for all φ,ψ ∈ H0 (curl,Ω) and all ϕ ∈ H (curl,Ω).
Invertibility of A (Z (ω)) follows from Lax-Milgram Theorem by
coercivity following from the hypothesis: for ω ∈ C+,
Z (ω) = (ωε1 (ω) ,ωε2 (ω) ,ωµ1 (ω) ,ωµ2 (ω)) ∈ (C+)

4.
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Conclusion

For bounded media, can generalize results to anisotropic media with
ω ∈ C+,
Z (ω) = (ωε1 (ω) ,ωε2 (ω) ,ωµ1 (ω) ,ωµ2 (ω)) ∈

(
M+
3 (C)

)4,
ω 7→ ωεj (ω) and ω 7→ ωµj (ω) are Herglotz functions for j = 1, 2.

For both layered and bounded media, can extend results to case of
medium Ω composed with N anisotropic homogeneous phases with
passive media in sense: the jth material ω 7→ ωεj (ω) and
ω 7→ ωµj (ω) are Herglotz functions, for j = 1, 2, . . . ,N.
Generalization for analyticity of EM DtN map: ω 7→ Λ (Z (ω)),
Z (ω) = (ωε1 (ω) , . . . ωεN (ω) ,ωµ1 (ω) , . . . ,ωµN (ω)) ∈(
M+
3 (C)

)2N to Z 7→ Λ (Z), Z ∈
(
M+
3 (C)

)2N .
Looking forward: Apply the theory of composites to bear on a much
wider class of electromagnetic problems, e.g., inverse problems,
bounds/limitations on certain physical quantities, and studying EM
phenomenon in composites with high-loss and lossless components.
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