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The effective conductivity      is an analytic function 
of the component conductivities       and  
With             ,               has the properties of a 
Stieltjes function: 

¾¤
¾1 ¾2

¾2 = 1

Bergman 1978 (pioneer, but faulty arguments) 
Milton 1981 (limit of resistor networks) 
Golden and Papanicolaou 1983 (rigorous proof) 

¾¤(¾1)

Properties of the effective conductivity 



Representation: 
 
 
 
Realization: 



Bergman-Milton bounds (1980): 



Associated Bounds on Real & Complex Polarizabilities   
of an inclusion (Milton, McKenzie, McPhedran, 1981) 

Rediscovered by  
Miller et. al. 2014  

Solid Curves are 
Polarizability 
of a Square 



For two-dimensional composites it is convenient to introduce 
 
 
Then 

Representation formula: 



Alternate layering the two components 

Gives a complete characterization of the analytic properties: 
Sequentially layered laminates are a representative 
class of materials 



Also a realization for the matrix valued function  
 
 
as a function of the matrix        for  
two-dimensional polycrystals.  
Representative structures: 

¾¤(¾0)

¾0

with Karen Clark (1994),  



Abstract Theory of Composites 

Hilbert Space 

L :H!HOperator 

Given 

Solve 

With 

Then defines  : U !U



Example: Conducting Composites 

- Periodic fields that are square integrable over  
   the unit cell 

-  Constant vector fields 

- Gradients of periodic potentials 

- Fields with zero divergence and zero  
     average value 

- Total electric field 

- Total current field 

L = - Local conductivity 

- Effective conductivity 



For multicomponent composites Golden and  
Papanicolaou  used the integral representation   
with the Szego kernel but it wasn’t useful for getting 
bounds 
 
Now  
   
 
 
 

¾ =
Pn

i=1 ¸iÂi

Âi projects onto the space of ¯elds Pi
that are non-zero only inside phase i.

¡1 projects onto the space E.
¡0 projects onto the space U.



The field equation recursion method (1987):  
obtain a canonical representation of the operators 

U0
(j)

+V0
(j)

= I(j);
Pn

a=1W
(j)
a = I(j);

Ŷ
(j)

a¸;b´ = ±abW
(j)

a;¸;´ ¡W
(j)

a;¸;¿W
(j)

b;¿;´
~W
(j)

a = [W
(j)
a ]¡1;



And a continued fraction representation  
for the effective tensor: 



The optimal bounds involve parts of 
Figure 8’s not just circles! 



Setting of a “Y”-Problem 

Given an element                   find 

maps 

Then 
 
defines 



We should consider a resistor network in conjunction 
with its batteries 

Space                              Space 
 
Combined Space   

H V

K=H©V

A canonical example of a “Y-problem” 



Incidence Matrices: 

Two natural subspaces: 
       the null space of M     (current vectors)  
       the range of M  (potential drops) 
These are orthogonal spaces and  
E
J

K= E ©J

T



Other spaces: 
        Divide the bonds in     into n groups (representing  
the different impedances). 
 
Define        as the space of vectors     with elements  
that are zero if bond j is not in group i.  
 
The projection      onto the space     is diagonal and 
has elements 
 
 
Thus  
This is an orthogonal subspace collection Y(n) 
 
 

Pi

H

P Pj

Pi¤i

f¤igjk



 
The next big breakthrough: minimization 
 variational principles for quasistatics in  
lossy media-made by Cherkaev and  
Gibiansky (1994) 
 
Beauty of the method: easily applied to 
multiphase or polycrystalline composites 
recovers existing bounds on the complex 
dielectric constant + new ones   



Consider the electrostatic equation 

or equivalently 

in a body       with dielectric constant  



Assume  complex dielectric constant 
 
 
Rewrite constitutive law:                  as D= "E



Partial Legendre transforms convert  
saddle-shaped quadratic functions into  
convex quadratic functions. 
Equivalent to rewriting constitutive law: 

Positive Definite! 



Gibiansky- 
Milton 
bounds 

Bounds using  
Variational 
Principles 
go hand in hand  
with bounds using 
Analytic Properties 



Complex shear modulus bounds also 
obtained with us and Berryman 
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New Methods for Imaging 
 
 



Key idea: making a direct link between  
Dirichlet-to-Neumann maps for bodies 
and effective tensors for composites. 



Abstract Theory of Composites 

Hilbert Space 

L :H!HOperator 

Given 

Solve 

With 

Then defines  : U !U



Example: Conducting Composites 

- Periodic fields that are square integrable over  
   the unit cell 

-  Constant vector fields 

- Gradients of periodic potentials 

- Fields with zero divergence and zero  
     average value 

- Total electric field 

- Total current field 

L = - Local conductivity 

- Effective conductivity 



Variational principles if      is self-adjoint  and 
positive definite:  

L

Leading to the elementary bounds: 



Formula for the effective operator 

where       is the projection onto     . 
Leads to series expansions:  
 
 
 



Dirichlet-to-Neumann Map 

Specify boundary potential 
Measure current flux  
            

V0(x)

n ¢ j(x)

Body 



We want to reformulate it as a problem in  
the abstract theory of composites, so we 
can apply the machinery of the theory of 
composites. 



Remove boundary conditions, by expressing the 
problem in terms of the fields that solve the problem 
when      is filled with a homogeneous material  

Body      conductivity  = 1

j(x) = e(x)

r ¢ j = 0

e=¡rV
V = V0 on @

Assume solved 



Now let 

consist of those fields                        that solve 
the equations as the boundary potential 
          varies.  

j(x) = e(x)

V0(x)

consist of fields                      with E=¡rV V (x) = 0

n ¢ J= 0 on @

consist of fields      with 
and  

r¢ J= 0J

Three spaces are orthogonal 



Note that fields                         in  
can be parameterized either by the boundary 
values of                             or by the boundary 
values of               . 

j(x) = e(x)

V = V0 on @

n ¢ j(x)



The abstract problem in composites consists in 
finding for a given field           in  
(with associated boundary potential            ) the  
fields which solve: 
 
 
with  
 
 
which is exactly the conductivity problem we would 
solve for the Dirichlet problem. 
 
 

e(x)

V0(x)

j0(x) +J(x) = ¾(x)[e(x) +E(x)]

j0(x) 2 U; J(x) 2 J ; E(x) 2 E



Furthermore if we knew the effective operator 
 
 

: U !U

Then we have  
 
 
and the boundary values of                allow us 
to determine the Dirichlet-to-Neumann map 
assuming the fields in       have been numerically 
calculated 

j0 = L¤e

n ¢ j0(x)



Analyticity properties of effective tensors as 
functions of the moduli of the component materials 
(Bergman, Milton, Golden and Papanicolaou) 
extend to the Dirichlet-to-Neumann map 
 
 
 
The Dirichlet-to-Neumann map is a Herglotz function 
of the matrices                              in the domain where 
these have positive definite imaginary parts, modulo 
a rotation in the complex plane. 

¾(x) =R(x)T [
Pn

i=1Âi(x)¾i]R(x)

¾1; ¾2; : : : ¾n



Easiest to prove using an approach of Bruno: 
The truncated series expansion, 
 
 
 
 
with                     is a polynomial in the matrix 
elements of                               and hence  
will be an analytic function of them in the  
domain of convergence of the series 
 
One obtains integral representation formulas for  

m

L =
¾1; ¾2; : : : ¾n

¼



Time Harmonic Equations: 

Acoustics: 

Elastodynamics: 

Maxwell: 



In all these examples  Z has positive semidefinite 
imaginary part (that often can be made positive 
definite by a slight rotation in the complex plane)  

The analog of the variational principles of  
Cherkaev and Gibiansky are then the variational 
principles of 
 
Milton, Seppecher, and Bouchitte (2009) 
Milton and Willis (2010) 
 
For acoustics, electromagnetism, elastodynamics 
 
 



Variational principles for Electromagnetism 
 
Maxwell’s equations: 
 
 

Let 



When      is real : 

The infimum is over fields with prescribed 
tangential  components of 

and                        at 

Unusual boundary conditions, but can be 
fixed 

@



Minimize  over  

where 

Minimization principles for SchrÄodinger's equation

with complex energies

Ã0

subject to suitable boundary conditions on   Ã0

A= ¹h2I=2m



The Desymmetrization of SchrÄodinger's equation

Replace with: 

Advantage: Can solve iteratively using FFT, and 
the FFT operations only need be done on              , i.e. 
only on two electron co-ordinates not all n electrons. 

A= ¹h2I=2m

Let         denote appropriate symmetrization operator: ¤



For electromagnetism, acoustics and elastodynamics, 
the Dirichlet-to-Neumann map is a Herglotz function 
of the matrices                              of the component  
materials 

Z1; Z2; : : : ; Zn

For electromagnetism an alternative rigorous 
proof  was obtained by Cassier, Welters, and Milton 
(talk by Aaron Welters at this meeting). 



Some inverse problems for two-component bodies 
 
Electromagnetism: 
 
 
Look for special complex frequencies where  
 
 
 
Extrapolate (using representation formulas or bounds) 
measurements at different frequencies, or transient 
responses, to the neighborhood of these special  
frequencies 
 
 
 

Suppose ¹1 = ¹2 is real and frequency independent.



Quasistatic Elastodynamics: 
        
Extrapolate to frequencies where  
 
 
Quasistatic Electromagnetism: 
 
Extrapolate to ratios              close to 1 
 
 
 

"1="2



Note collapse of bounds: they can be used in an 
inverse way to almost exactly recover the volume 
fraction from measurements at this particular time. 
Analogously for Dirichlet to Neumann map, one 
expects to recover geometry 

With Ornella Mattei in new book.  

Rigorous Upper and Lower Bounds on the Stress Relaxation in  
cylindrical composites in antiplane elasticity 
 

Its beneficial to look in the time domain not just the frequency domain! 



Generalizing the concept of function to 
 

                   Superfunctions! 



Adding resistor networks 



Multiplying resistor networks 



Substitution of networks 



Substitution of networks 
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Z(2) 
Y(2) 

F  (1) s

Key: Allow  
nonorthogonal 
Subspace 
collections.  
Then we have a 
whole algebra. 



Numerical scheme of Moulinec and Suquet (1994) 

Application: Accelerating some Fast Fourier 
Transform  Methods in two-component composites 

¾¤ =
P1

j=0¡0¾[¡1(I¡ ¾=¾0]
j¡0

¾0 = (¾1 +1)=2



Numerical scheme of Eyre and Milton (1999) 

¾¤ =

K=
2¾0(¾¡¾0)

¾+¾0
I; ¨= (I¡ 2¡1)=(2¾0)

¾0 =
p
¾1



Ideal scheme: 

We want to do this transformation at the 
level of the subspace collection, to recover the fields 

= what iterative 
scheme?????? 



At a discrete level 

Problem: this substitution shortens the branch cut 
instead of lengthening it. 
Solution:  
Substitute non-orthogonal subspace collections 



Model example: a square array of  
squares at 25% volume fraction 

Obnosov’s exact formula 







Furthermore, any such function can be realized 
 by a mass-spring network 

With Guevara Vasquez and Onofrei (2011): A complete characterization  
 and  synthesis of the dynamic behavior of  linear mass-spring networks  



Thank you! 

Thank you! 

Thank you! 

Thank you! 
Thank you! 
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