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It's constantly a surprise to find what
properties a composite can exhibit.

One interesting example:

LB

Hall Voltage



In elementary physics textbooks one
IS told that In classical physics the
sign of the Hall coefficient tells one
the sign of the charge carrier.

However there is a counterexample!



Geometry suggested by artist Dylon Whyte

A material with cubic symmetry having
a Hall Coefficient opposite to that of the
constituents (with Marc Briane)



Simplification of Kadic et.al. (2015)

(a) 20 = T T T T T T
| od/R=-0.44
ad/R=-0.12
10 | o dR = +0.44
| =
E 0 =
T
D i \‘\‘o\_k
-10F[— R =0.10
 |—r/R=0.14
5 —r/R=0.18 . .
0 0.25 0.5 0.75 1
B, (T)
-+ /R=0.10 |_

-»-/R=0.14




Fooling %

HALL EFFECT

E- Spectrosmpyof
" antihydrogen

: -
& Boosting diversity in
graduate education

H;w Boulder became

30 [ "
w& ascience dit

Experimental Realization of Kern, Kadic, Wegener
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Another example: negative expansion from positive expansion
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Original designs: Lakes (1996); Sigmund & Torquato (1996, 1997)



An important parallel:
Maxwell's Equations:
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might have similar properties

Specifically a similar dependence on frequency



Sheng, Zhang, Liu, and Chan (2003) found
that materials could exhibit a negative
effective density over a range of frequencies

Il = Lcad = Rubber [ ]= Stiff
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Experiment: Liu et. al (2000)

Mathematically the observation goes back to
Zhikov (2000) also Bouchitte & Felbacqg (2004)



A simplified one-dimensional model:
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(With John Willis, 2007)




Early work recognizing anisotropic and negative densities

Aurialt and Bonnet (1984); Aurialt (1994)

“The monochromatic macroscopic behavior is elastic, but with an

effective density o°" of tensorial character and depending on the

pulsation”
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Anisotropic Density
Simplified Model:

Anisotropic density in
layered materials:
Schoenberg and Sen (1983)

The springs could have some damping in which
case the mass will be complex (With John Willis,2007)



Seemingly rigid body
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Eigenvectors of the effective mass | N
density can rotate with frequency (With John Willis)



What do we learn?
For materials with microstructure, Newton’s law

F = ma

needs to be replaced by

F(t) = /t K(t' —t)a(t") dt’

It takes some time for the internal masses to respond to the macroscopically
applied force.

(With John Willis,2007)



Models for the Willis equations

o —Stress
(0‘) B (C S) (Vu) p—Momentum
p/) \D p/\v u-Displacement
v—Velocity

Analog of the bianisotropic equations
of electromagnetism
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The Black circles have positive effective mass
The White circles have negative effective mass






Yellow=Compliant, Blue=Stiff
Red=Rubber, Black=Lead

Time harmonic acceleration with no strain
gives stress: Example of a Willis material



Linear elastic equations under a Galilean transformation
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V-J=0, J=ZVv. (looks a bit like conductivity)
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p(x) / Also a non-symmetric stress Norris, Huang (2017)

“Transformation Optics” that dates
to Dolin (1961)




Unimode and Bimode
Affine Materials



Examples of nonlinear 2d unimode materials

Larsen et. al. Milton

(c) (d)

Garima and Fvane



Three Dimensional Dilational materials

Buckmann,, Schittny,
Thiel, Kadic, Milton
Wegener (2014)



Unimode:

g
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What trajectories \i(t) = X\2(t) = 0(t) are realizable? (Answer: any trajectory!)

In a bimode material there i1s a surface of
realizable motions.



Cell of the perfect expander: a unimode material
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Cell of a bimode material




However neither are affine materials:

(2) (b)

SO0 can one get affine bimode materials?



Bimode material for which the only easy modes of deformations
are affine ones




Characteristic Feature of Affine Materials:
They dislike strain gradients
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Example of Pierre Seppecher
Like a Pantograph:
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Dynamic Response of
Mass-Spring Networks



In some sense any linear elastic metamaterial can be approximated by a mass-spring network.
So what responses can these have? First lets look at statics- no masses.

Multiterminal networks
X\

S, £ =0,

We say the system of forces is
balanced



Relation between the displacements and forces at the terminal nodes

f1 uj

f, u,

1. W>0, W symmetric
2. Each column of W is a balanced
system of forces



Mass-spring networks (with Guevara-Vasquez and Onofrei)

Any network of has the response matrix
2

W

p
W(w) = W(0) —w’M+ y
i=1

where

« W(0) satisfies (1) and (2)

« M is diagonal with the masses at
the terminals along the diagonal

c C; >0



Conversely given any placement of

terminals x;,xs,...,x,
Given any W (0) satisfying (1) and (2),

G

G
G
G

iven any diagonal M with repeated
elements In each block

lven any p
iven any set of matrices CV, ..., C® >
lven any set of frequencies wy, ..., w,

One can construct a network which has the
response W(w) given by (*).



Proof: Realize each part of (*) separately
and superimpose.

Realizing M Is trivial

Realizing W (0) using a spring network
without masses follows the approach of
Camar-Eddine and Seppecher (2003) but
need to treat the degenerate case and 2d



Remains to realize

where £1 = (f{ 5 ,... 1 ).

2 _ 2
W &

Add two new points x,+1and x,,, 5 and
choose f,.,; and f,_., such that

{(f1,x1), (F2,%2), ..., (Fng1, Xnt1), (B2 Xny2)

IS a balanced system. Attach a mass m
to both of these 2 additional nodes



There Is an elastic network with a rank-1
response matrix:
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Realizing networks that only support one loading.
Inductive proof of Camar-Eddine and Seppecher (2003)

Here we introduce an alternative approach.

Pentamodes: Introduced with Cherkaev 1995
Realization of Kadic et.al. 2012

Key observation: It only supports a single
stress because 4 elements meet

at each junction- the tension in one
determines the tension in the others,

by balance of forces.




The Inverse Problem for inextensible Wire Webs under Tension

o(x) =RIVVe(x)R., R, — (_01 [1])

The Airy Stress Function must have non-negative curvature!



Theorem 1. A set of points X1.Xa,...,X, at the vertices of a convex poly-
gon, numbered clockwise, can support balanced forces tqi,to. ..., t, at these

4 4

vertices, with a truss with all its elements under tension, if and only if for
all © and 7,

Z(Xk —X;) - [Rity] >0, (1.4)

and we have assumed 1 > 7, if necessary by replacing i by i+n and identifying
where necessary X;, and ty with X;,_,, and t;_,,.

The net anticlockwise torque going clockwise around the boundary must be non-negative



Combining Networks under Compression and Tension to support any balanced
set of forces




Field Patterns: A new type of Wave

Ornella Mattei and Graeme Milton,
Department of Mathematics, The University of Utah







Space-time microstructures

(aue)y—(bux), =0

Static materials: a = a(x) and b = b(x)

Space-time microstructures: a = a(x, t) and b = b(x, 1)

Activated materials: Kinetic materials:

The property pattern moves The material itself moves

tA
X

[K.A. Lurie, An Introduction to the Mathematical Theory of Dynamic Materials
(2007)]




Green function for a generic space-time microstructure




Green function for a special microstructure
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Characteristic lines lie on a pattern—the field pattern.

Note the P-T symmetry of the microstructure.



Green function for another special microstructure

‘A

- 5
0

Again, note the P-T symmetry of the microstructure.



Geometry: Relation to Characteristic Lines




Multidimensional nature of field patterns
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Multidimensional potential: V(x, t)



Numerical results: Transfer Matrix

Tik.m). (k/m") = Grkr(m—m’)



Blow up
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Eigenvalues
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i Bloch Wave:
N Infinitely Degenerate!







Checkerboard geometries where there is no blow up
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A New Wave



Checkerboard geometries where there is no blow up

S+ &

Breaking time's arrow, ala Boltzmann.



Checkerboard geometries where there is no blow up




=1 w=10,w=10

Dispersion diagrams for the three—phase checkerboard

alm =1, v2=20, =10

Bloch Waves are:
Infinitely Degenerate!
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