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Group of Julia Greer



Another example: negative expansion from positive expansion

hd _§Fd i

(a)

A Hd R/
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()
Original designs: Lakes (1996); Sigmund & Torquato (1996, 1997)



Sheng, Zhang, Liu, and Chan (2003) found
that materials could exhibit a negative
effective density over a range of frequencies

Il = Lcad = Rubber [ ]= Stiff

—

—

Experiment: Liu et. al (200C

Mathematically the observation goes back to
Zhikov (2000) also Bouchitte & Felbacqg (2004)



A simplified one-dimensional model:
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(With John Willis)




Early work recognizing anisotropic and negative densities

Aurialtand Bonnet 1984 1995)

¢ KS Y2V 2drhiopit hehawor is elastic, but with an
effective densityo®™ of tensorialcharacter andlepending orthe
LJdzf & GA 2V E€

"hatched areas correspond to negative densiti€s,
l.e., to stopping bands."



Anisotropic Density
Simplified Model:

Anisotropic density In
layered materials:
Schoenberg and Sen (19¢€

The springs could have some damping in which
case the mass will be complex (With John Willis



Seemingly rigid body

— R
\‘._ 5 _‘.o

Eigenvectors of the effective mass | N
density can rotate with frequency (With John Willis)



What do we learn?
For materials with microstructure, Newton’s law

F = ma

needs to be replaced by

F(t) = /t K(t' —t)a(t") dt’

It takes some time for the internal masses to respond to the macroscopically
applied force.

(With John Willis)



Recall: A convex set G can be characterized by
Its Legendre transform:

f(n) =minn - c.
cels




G-closures are not convex sets but can be
characterized by their YWransform

W;N.N)= min (C,,N)+ (C;* N,
C*E(_'I:E.-'If ) .-
(N C) — *\rz J !L’.EC:F-E. 1kt

(] {C:(C.N)+(C™".N) > W;(N,N')} = GUj.

N,N’>0
NN’=0

W-transforms generalize the idea of Legendre
transforms

2 1
N = E e/ @e, N = E o) ® 0.
i=1 =1



Need to know the 7 energy functions
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Orthogonality conditions

(€. O’?) = 0, (€. €)) =0, (O’?. o)) =0

for all 2, 7. k.0 withi#£ 9, 1 £ k. J # (.

Result of Avellaneda (1987): If C; > C,
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can be easily computed



They are attained by sequentially layered laminates, and we
call the material whiclattains theminimum in

6
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f 1 ) 3 4 5 6 J * j
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the Avellaneda material, with elasticity tensor

A(0 40 -0 0 -0 0
Ci(o],0,,05 0,05 0¢)

Maxwell (1873)




Obvious bounds:
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Main result: in many cases these bounds are sharp



Theorem
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When €/  has one zero eigenvalue, and the
other eigenvalues of opposite signs,

0 0

UJ}((:Fl o).04, 0 0% € Zcr Mol o505, 04, 02.0)] o)

a;

When det(e} + t€) = 0 has at least two roots
and e(t) = €] +tey IS never positive or negative
definite
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ldea of proof: Insert into the Avellaneda material a
thin walled structure with sets of
parallel walls:

(a) (b)

Inside the walls put the appropriate multimode
material



Modifying thepentamodes




An exciting frontier in homogenization theory:
space time microstructures

Systematically studied by Lurie, among others, but much remains to be dot

To illustrate some novel features | will talk about a special class of space
time microstructures supporting a new class of wave: field patterns

Joint work
With OrnellaMattei






