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Walser 1999:

Macroscopic composites having a manmade,
three-dimensional, periodic cellular architecture
designed to produce an optimized combination,
not available in nature, of two or more responses
to specific excitation.

Browning and Wolf 2001:

Metamaterials are a new class of ordered
composites that exhibit exceptional properties
not readily observed in nature.



It's constantly a surprise to find what
properties a composite can exhibit.

One interesting example:
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Hall Voltage



In elementary physics textbooks one
IS told that In classical physics the
sign of the Hall coefficient tells one
the sign of the charge carrier.

However there is a counterexample!



Geometry suggested by artist Dylon Whyte

A material with cubic symmetry having
a Hall Coefficient opposite to that of the
constituents (with Marc Briane)



Simplification of Kadic et.al. (2015)
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Experimental Realization of Kern, Kadic, Wegener




Another example: negative expansion from positive expansion
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Original designs: Lakes (1996); Sigmund & Torquato (1996, 1997)
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One can get a similar effect for poroelasticity
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Qu, et.al 2017



New classes of elastic materials (with Cherkaev, 1995)

A three dimensional pentamode material
which can support any prescribed loading

y

Like a fluid it only supports one
loading, unlike a fluid that
loading may be anisotropic
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Realization of Kadic et.al. 2012




Application of Pentamodes:

Cloak making an object “unfeelable™.
Buckmann et. al. (2014)




Negative Refraction Simulation: Hess 2008
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Negative
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- Ml frequencies:

Valentine et. al.(2008)




Focusing beyond the diffraction limit: the superlens (Pendry, 2000)
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. First Discovery of a Ghost Source
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Ghost sources and anomalous resonance are the
essential mechanisms that explain superlensing.
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When the shéll waé hollow we found it was
completely invisible to any applied field



Cloaking due to anomalous
resonance

With Botten, Mcphedran
Nicorovici 2006,2007

Many other works
in particular
by Hoai Minh Nguyen



Similarly for the perfect lens there are anomalously resonant regions:

Work by Garcia and Nieto-Vesperinas (2002) and
Pokrovsky and Efros (2002) indicated large fields
between the ghost sources.
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Numerical Results of Cummer (2003) showing the
anomalously resonant regions on both sides of the lens

In fact instead of getting perfect transmission sometimes the transmission is zero!



Unidirectional Cloak: Landy and Smith (2013)



An important parallel:
Maxwell's Equations:
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might have similar properties

Specifically a similar dependence on frequency



There is a close connection between negative
density and negative magnetic permeability

Split ring structure of David Smith



In two dimensions the Helmholtz equation
describes both antiplane elastodynamics
and TE (or TM) electrodynamics

Split ring resonantor structure behaves as an
acoustic band gap material (Movchan and
Guenneau, 2004)



Sheng, Zhang, Liu, and Chan (2003) found
that materials could exhibit a negative
effective density over a range of frequencies

Il = Lcad = Rubber [ ]= Stiff
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Experiment: Liu et. al (2000)

Mathematically the observation goes back to
Zhikov (2000) also Bouchitte & Felbacqg (2004)



A simplified one-dimensional model:
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(With John Willis)




Early work recognizing anisotropic and negative densities

Aurialt and Bonnet (1994, 1995)

“The monochromatic macroscopic behavior is elastic, but with an

effective density o°" of tensorial character and depending on the
pulsation”

"hatched areas correspond to negative densities o°™,
i.e., to stopping bands."



Anisotropic Density
Simplified Model:

Anisotropic density in
layered materials:
Schoenberg and Sen (1983)

The springs could have some damping in which
case the mass will be complex (With John Willis)



Realized by Buckmann, et.al., 2015
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Seemingly rigid body
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Eigenvectors of the effective mass | N
density can rotate with frequency (With John Willis)



What do we learn?
For materials with microstructure, Newton’s law

F = ma

needs to be replaced by

F(t) = /t K(t' —t)a(t") dt’

It takes some time for the internal masses to respond to the macroscopically
applied force.

(With John Willis)



Models for the Willis equations

o —Stress
(0‘) B (C S) (Vu) p—Momentum
p/) \D p/\v u-Displacement
v—Velocity

Analog of the bianisotropic equations
of electromagnetism
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The Black circles have positive effective mass
The White circles have negative effective mass






Yellow=Compliant, Blue=Stiff
Red=Rubber, Black=Lead

Time harmonic acceleration with no strain
gives stress: Example of a Willis material



Linear elastic equations under a Galilean transformation
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r(x) / Also a non-symmetric stress

“Transformation Optics” that dates
to Dolin (1961)

Also Guoliang Huang, et.al.



Unimode and Bimode
Affine Materials



Examples of nonlinear 2d unimode materials

Larsen et. al. Milton

(c) (d)

Garima and Fvane



Three Dimensional Dilational materials

Buckmann,, Schittny,
Thiel, Kadic, Milton
Wegener (2014)



Experiment of R. Lakes (1987)

Normal Foam

These are ideal
“Auxetic” materials

F. 5. Lakes



Unimode:

g
N

What trajectories \i(t) = X\2(t) = 0(t) are realizable? (Answer: any trajectory!)

In a bimode material there i1s a surface of
realizable motions.



Cell of the perfect expander: a unimode material
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Cell of a bimode material




However neither are affine materials:

(2) (b)

SO0 can one get affine bimode materials?



Bimode material for which the only easy modes of deformations
are affine ones




Characteristic Feature of Affine Materials:
They dislike strain gradients
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Example of Pierre Seppecher
Like a Pantograph:
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Field Patterns: A new type of Wave

Ornella Mattei and Graeme Milton,
Department of Mathematics, The University of Utah







Space-time microstructures

(aue)y—(bux), =0

Static materials: a = a(x) and b = b(x)

Space-time microstructures: a = a(x, t) and b = b(x, 1)

Activated materials: Kinetic materials:

The property pattern moves The material itself moves

tA
X

[K.A. Lurie, An Introduction to the Mathematical Theory of Dynamic Materials
(2007)]




Dynamic composites

Pure space interface = Pure time interface
t A




Dynamic composites

Pure space interface = Pure time interface
tA tA




What happens at a time interface?
\:ITM

>l > 1+ 2Nt Time

Bacot, Labousse, Eddi, Fink, and Fort, Nature 2016



Evolution of a disturbance in a space-time checkerboard
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Transmission conditions:
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Evolution of a disturbance in a space-time checkerboard
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Transmission conditions:

Vi=VW
n- 0‘17\/1 =n- UQVVQ



How to avoid this complicated cascade?

‘t

Lurie, Onofrei, and Weekes (2009) suggested having a zero
impedance mismatch:




Curiously they found accumulations of the characteristic lines:
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A bit like a shock but in a linear medium!



Field patterns in a space-time checkerboard
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a=a=c > f=8




Families of field patterns




Families of field patterns

Field patterns are a new type of wave propagating along orderly patterns
of characteristic lines which arise in specific space-time microstructures
whose geometry in one spatial dimension plus time is somehow
commensurate to the slope of the characteristic lines.



Multidimensional nature of field patterns
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Multidimensional space: V/(xq, xo, ..

Multicomponent potential: V(x, t)



Checkerboard geometries where there is no blow up
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A New Wave



Checkerboard geometries where there is no blow up




Checkerboard geometries where there is no blow up
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Breaking time's arrow, ala Boltzmann.



Blow up
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Dispersion diagrams for the three—phase checkerboard
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Bloch Waves are:
Infinitely Degenerate!
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