On the elasticity tensors of
2d and 3d printed materials

Graeme W. Milton,
Marc Briane, and
Davit Harutyunyan



q

Group of
Martin Wegener



Group of Julia Greer




A fundamental question:

What elasticity tensors can be realized In
3-d printed materials, given the volume
fraction and given the elastic constants
of the constituent material?

The set of possible elasticity tensors Is
known as the G-Closure GU;



Another example: negative expansion from positive expansion

B TR N TR N T

(a)

A 5 Ed R

(b)

()
Original designs: Lakes (1996); Sigmund & Torguato (1996, 1997)



Geometry suggested by artist Dylon Whyte
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A material with cubic symmetry having
a Hall Coefficient opposite to that of the
constituents (with Marc Briane)



Simplification of Kadic et.al. (2015)
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Experimental Realization of Kern, Kadic, Wegener
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Their experimental
results confirming
lall-effect reversal




Back to the question of finding the set of possible
elasticity tensors: these have 18 invariants

Not an easy question:

A distorted square In
2-dimensions Is specified
by eight parameters:

(z1,91),  (72,%2), (73,¥3), (T4,Yy4)

In 18 dimensions, need 4.7 million numbers
to specify a distorted hypercube.



What linearly elastic materials can be realized?

(Joint with Andre] Cherkaev, 1995)



Landscape of isotropic materials
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Experiment of R. Lakes (1987)
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Two dimensional Dilational materials
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Three Dimensional Dilational materials

Buckmann,, Schittny,
Thiel, Kadic, Milton
Wegener (2014)



A material with Poisson’s ratio close to -1
(a dilational material) iIs an example of a
unimode extremal material.

It Is compliant with respect to one strain
(dilation) yet stiff with respect to all orthogonal
loadings (pure shears)

The elasticity tensor has one eigenvalue which
Is small, and five eigenvalues which are large.

Can one obtain all other types of extremal
materials?



A two-dimensional laminate I1s a bimodal material
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Two eigenvalues of the elasticity tensor are small

In three-dimensions such a laminate is a trimode
extremal material



A bimode material which supports any biaxial
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| Metal-water constructed by the

group of Norris (2012)
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A bimode material which supports any
biaxial loading with negative determinant




A unimode material which is compliant to any
loading with negative determinant




Compare with bounds of Cherkaev and Gibiansky (1993)
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A unimode material which is compliant
to any given loading




A three dimensional pentamode material
which can support any prescribed loading
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Realization of Kadic et.al. 2012
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Cloak making an object “unfeelable”:
Buckmann et. al. (2014)




By superimposing appropriate
pentamode material structures one can
generate all possible elasticity tensors.

All elasticity tensors are realizable!

Camar Eddine and Seppecher (2003) have
characterized all possible non-local
responses
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Recall: A convex set G can be characterized by
Its Legendre transform:

f(n) =minn - c.
cels




G-closures are not convex sets but can be
characterized by their W-transform

Wi(N,N') = Cuilit%f(c:*. N) + (C7LN).

( N.C ) = 4\73 kit (\Ff gkt

() {C:(C.N)+ (CLN) > WN.N)} = GU;.

N.N'>0
NN’ =0

W-transforms generalize the idea of Legendre
transforms
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Need to know the 7 energy functions
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Orthogonality conditions
(€. O'E,-}) = 0, (e €)) =0, (O’?. o)) =0
for all 7,9, k, ¢ with1+# 95, 1 # k, 7 # L.

Result of Avellaneda (1987): If C; > Cs then
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can be easily computed



They are attained by sequentially layered
laminates, and we call the material which attains

the minimum In
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Obvious bounds:
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Main result: in many cases these bounds are sharp



Theorem
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When e has one zero eigenvalue, and the
other elgenvalues of opposite signs,

UJ}((:Fl o).04, 0. 0% €) Zcr Hol. o505, 09, 05.0)]" ?
When {-h-«t(el + te)) =0 has at least two roots

and e(t) = €\ +te) IS never positive or negative
definite
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ldea of proof: Insert into the Avellaneda
material a thin walled structure with sets of
parallel walls:

(a) (b)

Inside the wallls put the appropriate multimode
material



e.g. to show

il_l}%” YoV, 0Y.09. €. €. €)) = ZO‘? ; {Cj?(d’?.O’%.O‘%.0.0.0ﬂ_ldg

Look in the three dimensional space spanned by
€|. €5, €5 and search for three independent

symmetrized rank-one matrices

(k)

e”) = (ayn]. + nza;)/2.

that form a basis for the space (algebraic problem)

The 114, give the directions of the walls and the
strain in them is a multiple of €*

Wallls support o7. 0.0, compliant to €. . €;



Modifying the pentamodes:




Extending the Theory Chapters
o . coauthored with:
of Composites to Other

Areas of Science Maxence Cassier
Fdited R}- Orne”a Mattel
(Graeme W. Milton MOU |\/|I|gr0m

Aaron Welters

9 saysodiod Jo 108y ay) Suipualy

wouso  3IUIaI19S J0 Sealy 13yl 0}

‘SMET NONRAISUE) 10 SUORTIRINGY | ]

SASNOLSTY INFISNVE ] NO SaNNOY 1'.""

PUBLISHING




Thank you!
Thank you!

Thank you!
Thank you!



