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   Mechanical Metamaterials         



Walser 1999: 

 

Macroscopic composites having a manmade,  

three-dimensional, periodic cellular architecture  

designed to produce an optimized combination,  

not available in nature, of two or more responses  

to specific excitation. 

 

Browning and Wolf 2001: 

 

Metamaterials are a new class of ordered  

composites that exhibit exceptional properties  

not readily observed in nature. 



It’s constantly a surprise to find what 

properties a composite can exhibit. 

One interesting example: 

 

In elementary physics textbooks one 

is told that in classical physics the  

sign of the Hall coefficient tells one 

the sign of the charge carrier. 

However there is a counterexample! 



A material with cubic symmetry having 

a Hall Coefficient opposite to that of the  

constituents (with Marc Briane) 

Geometry suggested by artist Dylon Whyte 



Simplification of Kadic et.al. (2015) 



Another example: negative expansion from positive expansion 

Original designs: Lakes (1996); Sigmund & Torquato (1996, 1997) 



What linearly elastic materials can be realized?  

 

(joint with Andrej Cherkaev, 1995)  

 



Landscape of isotropic materials 



Experiment of R. Lakes (1987) 

Normal Foam 



A material with Poisson’s ratio close to -1  

(a dilational material) is an example of a 

unimode extremal material. 

 

It is compliant with respect to one strain 

(dilation) yet stiff with respect to all orthogonal 

loadings (pure shears) 

 

The elasticity tensor has one eigenvalue which 

is small, and five eigenvalues which are large. 

 

Can one obtain all other types of extremal 

materials?  



A two-dimensional laminate is a bimodal material 

In three-dimensions such a laminate is a trimode 

extremal material  

Two eigenvalues of the elasticity tensor are small 



A bimode material which supports any biaxial 

loading with positive determinant 



Two-dimensional Metal-water constructed by the 

group of Norris (2012) 

  



A bimode material which supports any  

biaxial loading with negative determinant 



A unimode material which is compliant to any  

loading with negative determinant 



A unimode material which is compliant 

to any given loading 



Compare with bounds of Cherkaev and Gibiansky (1993) 



Related structure of  

Larsen, Sigmund and Bouwstra 



A three dimensional pentamode material 

which can support any prescribed loading 

For hydrostatic loadings some other pentamode 

structures were found independently by Sigmund  



Realization of  Kadic et.al. 2012 







Cloak making an object “unfeelable”: 

Buckmann et. al. (2014) 

Application of Pentamodes: 



By superimposing appropriate pentamode 

material structures one can generate all possible 

unimode, bimode, trimode, and quadmode 

extremal materials.   

 

Having obtained all possible extremal materials 

one can use them as building blocks and  

laminate them together to obtain a material with 

any desired 6 by 6 symmetric positive definite 

matrix as its elasticity tensor. 

All elasticity tensors are realizable! 

 

Camar Eddine and Seppecher (2003) have 

characterized all possible non-local responses 



One can also get interesting dynamic effects 

(joint with Marc Briane and John Willis) 



Maxwell’s Equations: 

Continuum Elastodynamics: 

Suggests that  and 

might have similar properties 

    

An important parallel: 



Sheng, Zhang, Liu, and Chan (2003) found 

that materials could exhibit a negative 

effective density over a range of frequencies 

Red=Rubber, Black=Lead, Blue=Stiff Matrix 

Mathematically the observation goes back to  

Zhikov (2000) also Bouchitte & Felbacq (2004) 



Split ring structure of David Smith 

There is a close connection between negative 

density and negative magnetic permeability 



In two dimensions the Helmholtz equation 

describes both antiplane elastodynamics  

and TE (or TM) electrodynamics 

Split ring resonantor structure behaves as an  

acoustic band gap material (Movchan and  

Guenneau, 2004) 



 

A simplified one-dimensional model: 



Eigenvectors of the effective mass 

density can rotate with frequency 

Seemingly rigid body 



Upshot: 

 

For materials with microstructure (and at some 

level, everything has microstructure) 

 

Newton’s law 

 

 

needs to be replaced by 

 

 

 

[On modification’s to Newton’s second law and 

linear continuum elastodynamics, with J.R. Willis] 

F=ma or p=mv, and F= @p=@t

p(t) =
R t
t0=¡1K(t¡ t0)v(t0)dt0; F= @p=@t



Electric dipole array 

generates 

polarization field 

 

Force dipole array 

generates 

stress field 



Yellow=Compliant, Blue=Stiff 

Red=Rubber, Black=Lead 

Time harmonic acceleration with no strain  

gives stress: Example of a Willis material 

 



The Black circles have positive effective  mass 

The White circles have negative effective mass 

Such materials may be useful for elastic cloaking 



Linear elastic equations under a Galilean transformation 

(looks a bit like conductivity) 

Galilean transformation: 

Has Willis type couplings!  

Also a non-symmetric stress 



How do you define unimode, bimode, trimode etc. 

in the non-linear case? 



Larsen et. al. Milton 

Grima and Evans 

Examples of nonlinear 2d unimode materials 



The Expander 

lies on the ellipse 

So what functions 

 

are realizable? 

 

Main Result: Everything 

¸2 = f(¸1)



What trajectories                          are realizable? 

 

In a bimode material there is a surface of  

realizable motions.  

Unimode: 



A parallelogram array of bars is a non-linear 

non-affine trimode material  



What trajectories  are realizable in deformation 

space? 

 

 

Answer: Anything! (so long as the deformation 

remains non-degenerate along the trajectory) 

 

True both for two and three dimensional  

materials 

 

USES A HIGHLY MULTISCALE CONSTRUCTION 

 

MAIN RESULT FOR AFFINE  

UNIMODE MATERIALS  

 



In some sense its an extension to materials of 

Kempe’s famous 1876 universality theorem, 

proved in 2002 by Kapovich and Millson 

P Traces 

Example of 

   Saxena 
Rods can cross 



Reversor Multiplicactor 

Additor Translator 



Ideal Expander:               is approx realizable 



A Dilator 



A Dilator with arbitrarily large flexibility window 

A pea can be made as large as a house 



The Adder 

Corner structures 

are supports that 

in the limit have 

vanishingly small 

contribution 

Cell of periodicity 



The Subtractor: structure at the corner of a 

cell of periodicity. Green: square dilator cells 

g=s-r Corner 

support 



The composer: unit cell of periodicity 

Blue: 

 t = f1(h)

Red: 

g = f2(t)

Therefore: 

g = f2(f1(h))



The Squarer: vertical expansion the square of 

horizontal expansion  



Multiplier by a constant 



Realizing any polynomial 

 

that is positive on the interval of       of interest. 

Proof by induction, suppose its true for              .  Can realize n= 2m

¸1

are each realizable, and so too is their sum           in terms of which 

  

 

which is the difference of two realizable functions, and hence 

realizable if it is positive on the interval of interest. 

 

¸2m+21 = (¸m+11 )2 (¸1+1)2m+2 = ¸2m+21 +(2m+2)¸2m+11 + g(¸1)



Realizing any function                   which is 

positive on an interval     of      .  By the 

Weierstrass approximation theorem 

 

 

 

 

 

for some polynomial 

¸2 = f(¸1)

I ¸1

¸1

p(¸1)



Realizing an arbitrary orthotropic material 

(¸1; ¸2) = (f1(t); f2(t))Hence                                       is realizable 

Green: square 

dilator cells 



An angle adjuster 

®Angle      can be any desired function of t 



Realizability of an arbitrary oblique material 

Unit cell of periodicity: 

Green: dilator cells; Yellow: angle adjusters 



What about three-dimensions? 



Three Dimensions: From Cells to Panels 



Three Dimensional Dilator 

with Buckmann,  Kadic, Thiel, Schittny, Wegener 



with Buckmann,  Kadic, Thiel, Schittny, Wegener 



with Buckmann,  Kadic, Thiel, Schittny, Wegener 



Another 3d dilational material 



Yet another idea for 3d dilational materials 

In 2d: 

In 3d use a  

Sarrus linkage 



Realizing an arbitrary orthotropic response 

 is realizable (¸1; ¸2; ¸3) = (f1(t); f2(t); f3(t))

Tubes with the  

two-dimensional 

structures on the 

faces of the tube. 

 

Green dilator 

cell at the corner  



Realizing an arbitrary triclinic response 

Corner of a cell of periodicity: 

Need 3 angle adjusters 



What about non-linear bimode materials? 

 

 

Do they exist? 



Cell of the perfect expander: a unimode material 



Cell of a bimode material 



However neither are affine materials: 

So can one get affine bimode materials? 



A u-structure 



A b-structure 



Bimode material formed from a tiling  

of a b-structure. 



A non-linear bimode material: awaits construction 

Black=Rigid 

White=Void 

Only macroscopic 

deformations are 

affine ones 



OPEN PROBLEM: 

 

In two-dimensional materials, can one get 

non-linear affine trimode materials? 


