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This talk is about a new mathematical object- a new sort of wave
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Space-time microstructures

(aug)y — (buy), =0

Static materials: a = a(x) and b = b(x)

Space-time microstructures: a = a(x, t) and b = b(x, t)

Activated materials: Kinetic materials:
The property pattern moves The material itself moves
t
Q-0 =0 O0=0 =
o O=y O=U0
X
[K.A. Lurie, An Introduction to the Mathematical Theory of Dynamic Materials
(2007)]
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Realization of space-time microstructures

o Liquid crystals
o Ferroelectric, ferromagnetic materials

e Pump wave + small amplitudes waves: parametric resonance [e.g.
Louisell & Quate (1958)]

@ Transmission line with modulated inductance [e.g. Cullen (1958)]
@ Experiments and more references in [Honey & Jones (1958)]

e Walking droplets [e.g. Couder et al. (2005), Couder & Fort (2006), Bush
(2015)]

@ Breaking reciprocity, artifical magnetism for photons [e.g. Fang et al.
(2012), Boada et al. (2012), Celi et al. (2014), Yuan et al. (2016)]

e Time reversal [e.g. Fink (2016), Goussev et al. (2016)]
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An example: space-time laminates

@ Screening from long wave disturbances
t [Lurie (1997)]

@ Energy conservation for low frequency
waves [Lurie & Weekes (2003)]

@ Energy exponential growth for high
frequency waves [Cassedy (1967)]

X @ Homogenization for low frequencies
[Lurie (1997)]

G. Milton The theory of field patterns 6 /38



Another example: space-time checkerboards

@ Limit cycles + energy exponential
growth [Lurie & Weekes (2006), Lurie
et al. (2009)]

@ Linear shocks — Quantum
mechanics???

@ No homogenization in the classic
sense!

[Lurie (2007)]
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What are field patterns?

Field patterns arise in wave equations with a space-time microstructure,
when the microstructure has the interesting feature that a disturbance
propagating along a characteristic line, and subsequently interacting with
the microstructure, does not evolve into a cascade of disturbances, but
rather concentrates on a pattern of characteristic lines. This pattern is the
field pattern!
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Statement of an equivalent " conductivity” problem

2D Conductivity problem
j(x) = o(x)e(x), where V-j=0, e=-VV,
o(x) = x(x)o1 + [1 —x(x)]o2

x; O o 0
"1:<o —rsl>' “2:<o —62>'

N.B. For the analogous dielectric problem—Hyperbolic materials!! [e.g.
Fisher & Gould (1969), Naik et al. (2013), Korzeb et al. (2015)]

62V 62V
2 =B
X1 — X, Xo — t
Vil t) = Vi (x— Gt + Vi (x+Gt) 6= %
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Another way of thinking about the d'Alembert solution

s S
R = =

Conducting wires
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Transmission and initial conditions

@ Transmission conditions at a space-time interface with slope w

N.B. To have uniqueness and existence of the solution: [Lurie (1997)]

(w? =) (w?—c5) >0

Vi = Vs
T.C. { n-(erV1 :I”I'O"QVVQ

@ Initial conditions

V(x,0) = H(x—a)
.c. { Jalx,0) = 8(x — a)jo
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Green function for a generic space-time microstructure

tA

G. Milton The theory of field patterns 12 / 38



Green function for a special microstructure
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Green function for another special microstructure




Geometry: Relation to Characteristic Lines

G. Milton The theory of field patterns 15 / 38



Multidimensional nature of field patterns

Y

VO(,‘ (X,‘, t)

m
=

-Xm) :Z'

Multidimensional space: V/(x1,x2, ...

Multidimensional potential: V(x, t)
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The unit cell of the microstructure with aligned inclusions
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The unit cell problem

VI (x,t) =al [l —H(x—ct)], Vi (x,t)=a; H(x+ ct)

1

, 1 .
im=a VB (i’) §(x — cit) = af yi—— (i’) 5(x — ¢it)
v Jiie
—ci 1 o
im =a Vi ( 1@) d(x+cit)=a; vi——m— ( 16,) d(x — ¢jt)
\/14¢c?

with vi = v/ «i(a; + B;)
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Symmetric dynamics
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Antisymmetric dynamics
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" Effective properties”

" Effective conductivity tensor”:

ala+2c)(yit+y2) 0
o. — Ko 0 — vila+e)
*T\N0 =B/ 0 _ (ate)PR+(v2/v1)]

cla+2c)(vit+vy2)

" Effective speed”:

cila +2c)(v1 +v2) 1
Cx = \/ Kx * —
/B a+o Y1(2y1 +v2)

Homogenized equation: V - 0,VV = 0777
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Numerical results: Transfer Matrix

N N

- S
s TR

_j(k, m,n+1) = Z T(kym),(kylm/)j(k',m’,n)

k', m’

Tikm),(k'm') = Gk (m—m')
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Eigenvalues of the transfer matrix
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An example of a solution that does not blow up
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Associated field patterns
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Associated field patterns
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Associated field patterns

@ Associated field patterns of the first degree:

o
Wix, t, a1, &) = J Vix, t, o) da

X1

@ Associated field patterns of the second degree:

X12 X22
Y (x, t, 011, ®12, &1, X22) :J dO(lJ doy W(x, t, a1, x2).
x11 X21
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Associated field patterns
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Part 2: Field patterns in temporal laminates

Main ideas due to Alexander and Natasha Movchan and Hoai Minh
Nguyen
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Figure: Wave split at temporal interfaces



Exponential growth of the edge wave

For 2n+ 1 layers, including n+ 1 of Q;—type and n of Qy—type, the
“edge wave” coefficient is equal to

1 1 JauP x2[32
€ = 2 (1 * 4(\/06252 \/06151 ) ' ()

which grows exponentially, as n — oo for all cases where the positive
coefficients o« and 3 are chosen in such a way that «;31 # aof32. The
graphs of G, for different values of the contrast parameter k = zlgl are
shown in the Figure below.




Edge wave amplitude
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Figure: Edge wave amplitude for different values of the contrast parameter .



Future work

Add a small non-linearity
Add a small imaginary part to o(x)
2D + time, 3D + time

Other wave equations

Effective equation
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The million dollar question

Are the fundamental objects in the
universe, not particles, not waves,
but field patterns?

Thank you for your attention!!
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New book

Extending the Theory
of Composites to Other
Areas of Science

Edited By

Graeme W, Milton

= -3

14 chapters; 4 coauthored with Maxence Cassier, Ornella Mattei, Moti
Milgrom, and Aaron Welters

Only $ 80.00, Available at http://www.math.utah.edu/~milton/
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Green function for the aligned geometry (1)

G(9,1,—-1)=1; G(10,1,—1) = V1+V2;
(1,2,0) = B Y1T7Y2
G(12,1, 1) = Y112
Y1+7Y2
G(1,2,0) = — 1212, G(3,2,0) = L2,
j(2,2,00=1 = Yi+7v2 y1+v2
G(6,2,0) =
j(3,200=1 = G(11,3,-1)=1
j(420=1 = G(8,40)=1
G(1,5,0) = 1; G(4,5,0) = +V2
j(5,2,0) = = iy Y1T7Y2
G(6,5,0) = — 112
Y1+Y2
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Green function for the aligned geometry (2)

J(6,2,0) =

J(7,2,0) =

J(8,2,0) =

j(9,2,0) =
j(10,2,0) =

G. Milton

G(7,6,0) = —YL—Y2. c(9.6,0) =
= 'Yl Yz
G(10,6,0) =
G(3,7.0)=1: G(4,7,0) = YL~ 2.
Y1 +Y2
= Y1—7Y2
G(6,7,0) = —
Y1+ Y2
G(7,8,0) = — YL~ Y2. c9 8 0) =
= Y1+ Yz
G(12,8,0) =
= G(5,9,0)=1
=  G(210,1) =

The theory of field patterns

— Y2,
Y1 + Y2'

— Y2,
Y1 + Y2'
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Symmetric dynamics for the staggered geometry
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Antisymmetric dynamics for the staggered geometry
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