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In Chapter 1 we review many of the linear equations of physics, and write them in a canonical form
appropriate to the theory of composites. We show how conservation laws, which have played a key
role throughout the history of science, can be generalized to equalities which we call “boundary field
equalities and inequalities”. Chapter 2 reviews the abstract theory of composites, both for the effective
tensor and for the associated *Y -tensor’. Chapter 3 shows that the problem of finding the Dirichlet-to-

Neumann map which governs the response of inhomogeneous bodies, for acoustics, elastodynamics,
Read more



Rewriting some of the linear
equations of Physics.



Constitutive Law:

£(x) Sx) DPx) Q(x) a(x)
dx) | = [D"(x) =(x) Bx)]|ex)
b(x) Q'x) AT(x) px)/ \h(x)

g

Differential Constraints:

e = [Vu+(Vu)']/2, V.o=0;
V-d = 0, e=-VV;
V:-b = 0, h=-Vu.

(x)\ [o(x)
Key |dent|ty (dtx ) : (e{j}c}) = Vu(x) : a(x) — VV(x) - d(x) — Vi (x) - b(x) = V - Q(x),

b(x) h(x)
Q(x) = o(x)u(x) — V(x)d(x) — L (x)b(x),

€(x) a(x)
/ dix) |- | e(x) | = / n-[o(xu(x) — V(x)d(x) — (x)b(x)].
Jo\ 1 ) Jan

b(x) h(x)



Time Harmonic Equations:

Acoustics: —iv \ _ (—(wp)™" 0\ (VP\
—iV -V 0 w/K P
L™ - L e o e -
Gix) Z(x) Fix)

Elastodynamics: ("‘T’““”‘”“') — (_C-’I‘*" ”) (v“).

( —ih ) B —[wg{}:}:_l 0 ) ('f*' X E‘)
Maxwell: iVxh/ 0 we(x) e |’
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( q(x) )_ (—A 0 )('G':;"[}{])
Schrodinger equation, \V-qx)) ~\ 0 E-V(x))\ ¢x) )



Thermoacoustics: (s = ()
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Acoustics in the time domain:
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Elastodynamics in the time domain:

( = ) B (—Efl[x] () ) (—% :’Fv—I—‘FvT])
V.o 0 plx) ?TT

Z(x)
Key identity:
ar —= [Vv + VvT] der dv Vv
T . 2 ] — =Y Yvie V.- 2 )
(%) 7% ) = (@) v (5) T
AVv)
_U'_ ‘I:}t



Elastodynamics in a moving frame: Galilean transformation

"'iﬂ':f T wl = _ L +w(V-o)l
V'i-o' 0 1 V.o V-o '
(—T'v’) ( T [J)_I (—’Fv) B ( Vv )
o Iw? 1 o X +wlVy

Matrix in the constitutive law now has Willis type couplings:

T wl Z(x) I 0

0 I Iw! 1

—C(x) + wp(x) w! wpo(x)
plx)w! plx)

Z'(x)



Yellow=Compliant, Blue=Stiff
Red=Rubber, Black=Lead

Time harmonic acceleration with no strain
gives stress: Example of a Willis material
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Piezoelectricity in the time domain:

% % . T
4 —C(x) 0 —a(x)\ /-1 [Vv4+Vv]
V.o = (0 o x) 0 %
% —al(x) 0O £(x) =
Z(x)
Key identity:
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Biot equations in the time domain (S = O)

otk

(22N [ 0 0 M 0\ [/ -Vv)
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_ap M 0 0 M M||-V- -w,

)

\M¢,) \N0O 0 0 M M/\ s

Key identity:
(N [T
V.o =
_vp|- _%ﬁ. :(T';)( o % — P
) — & oV -v— PV -w,
_% B v ot

\M¢i) \ s )



Thermal Conduction and Diffusion:

aQ. ik(x) 0 0 VT
( % )= N (—T)
V. q.+ 3¢ 0o == T

2

L™ i
o

&(x)
Key Identity:
Qx VT f _
dl s,
qi o = qT-?T+q[E+T?~qI+Tﬂ—T
?~qr-|—"—j;3} T
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Thermoelasticity in the time domain:

/ k3 \  [-icZ 0 0 B, 0\ [/ —Vu )
V.o 0 ipZ 0 0 0 fu
iq -1 0 0 iflor+ 0 0 —V8 /8
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||L.E- (? = -l:l -I— ﬁ'!:iﬂ” )}J ‘-lll\ r.-_l' {:] {:] llgﬂj?{' —iﬁ[]ﬁJ%}JJ lll. —E_I-"IH.D )IJ
ZE:]

Key Identity:

[ T Vo =Vu

R Hu

e ot \% i _ igf/f,
o V| = (—i) ‘ (m%t u -+ 3';.:15'!?) '
ipSHy _U_l“% i :

\i (V-a+252)) \ 6/t )



Maxwell’s equations in the time domain:
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Schrodinger’s equation in the time domain
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Schrodinger’s equation in a magnetic field (h = 1)

Qs = 0 22\ vy
g - 0o o il
V-aq, + 5% e 1 V) \ Y

Key identity still holds, and the above equation reduces to:

Ind

ol

Vi
i = Er”[l?-l—t“ff" “w + eV,



Minimization principles for Schrodinger’s equation
with complex energies

Ev(x)=-V - AViy(x)+ V(x)(x) — h(x)t A= h21/2m
Minimize over 1)’
W', p) = Z] [pl:‘.‘i{]]z + {E'”]E[-:-I'-‘F[:x:]l]2 + 20pp(x)h(x) dr
L O S ——————— —

I(p.')
where

p(x) = p(x,4') =V - AV + (E' — V(x))¥/,

subject to suitable boundary conditions on )’



The Desymmetrization of Schrodinger’s equation

':l[}i::] —A 0 0 Vb
V - ':l[x:] ) — ( 0 E — ]r"'[}{:l h[l{:]) ( P ) A_ — hQI/zm
V- v(x)+ Sp 0 h(x)  d(x) fo

Replace with:
J(x) = L(x)E(x), Let A denote appropriate symmetrization operator:

11] T E]{(X}} L[J{] = a{}{1,}{g) Q{Kl,xg] E(x) = ( L )

0
V- v(x () ?I:Jﬁ . }{3) d{:}:] . K:Ej 6"{]

Advantage: Can solve iteratively using FFT, and
the FFT operations only need be done on (x1.X2), i.e.
only on two electron co-ordinates not all n electrons.



A new perspective on conservation laws:
Boundary field equalities and inequalities

If?*onithhenuprn+Q:0

IfV-QZ‘-_?'Oiﬂchenfmn-Q?jO

Requires information about what is

happening inside {2 namely that
V- Q=0o0rV-Q>01m Q.



Are there other boundary field equalities or inequalities
that use partial information about what is inside the body?

j-_[:-:jl) ~ falx)I e(x)IV fe1(x)

j2(x)/)  \e(x)T b(x)I) \ea(x)/’

V-ji=0, V-ja=0 e =-VV, es=-NVV.

M(x) = (n-:_:-:] f'_[x]) : Al = Mix) =z al, forsome = a =10,

clx) b(x)

Following the ideas of Straley, Milgrom and Shtrikman
suppose there is a matrix W such that

wMwT — (¢ 0y
() b (x)

( J.-] [‘{]) =wT (fl:{;{:l) for x € iﬁi'ﬂ-» Wai[n - ji(x)] + Wasn - jo(x)] =0, forall x € 812,



In two dimensions suppose
e(x) =0 b(x) = a?fa(x)

Following ideas of Keller, Dykhne and Mendelson, we have
the boundary field equality

n-ja(x) = —at-eq(x) when t-es(x)=a 'n-ji(x).
Due to the fact that the equations are satisfied with

e3(X) = f.1_]n.J_j-_':K} j2(x)= aR | e1(x)

0 1
here R =
where L (—l D)



Some boundary field inequalities (with D. Harutyunyan)

Look for functions f(E) = E. TE and constants f;,
just dependent on the boundary fields such that

/ flE(x)) 2 fo

for all fields E(x) satisfying appropriate
differential constraints and the boundary
conditions. To get f;, one could solve the Euler
Lagrange-equations

Jo(x)=TEp(x). Jp € Jo. Eg € &q. fo = fp E_I}'JD



To establish the inequality one needs to picka T
such that the volume average of f(E) =E-TE
is non-negative for any C-periodic function E{x]
satisfying the appropriate differential constraints
which we writeas E € £

Find ¢ > 0 such that L(x) —¢T is positive
semidefinite for all x € {2

Then we have the boundary field inequality:

0 < / EX) - Lx)E(x) — ef(E(x)) < —cfo + [ n- Q).
J ) o 02



New Methods
for Imaging




Key idea: making a direct link between
Dirichlet-to-Neumann maps for bodies
and effective tensors for composites.



Abstract Theory of Composites

HilbertSpace H=UBE DB T
Operator L:H—H
Given Eg € U

Solve Jop+J=L(Ey+E)
With Jocu., JeJ, Ecé&.

Then J,=L.E, defines L.:U —>U



Example: Conducting Composites

‘H - Periodic fields that are square integrable over
the unit cell

[/ - Constant vector fields

& - Gradients of periodic potentials

J - Fields with zero divergence and zero
average value

Eq + E(x) - Total electric field
Jo + J(x) - Total current field

L. = o0 (X)- Local conductivity
L. = o .- Effective conductivity



Variational principles if LL is self-adjoint and
positive definite:

(Jo.L71J0) = nf (Jo+J L' (Jo+J))

(Eo, LyEqg) = éléfg(Eo + E,L(E; + E))

Leading to the elementary bounds:

L,>0, L,<T\Ll,, L;'<T\L'T

I is the projection onto U



Formula for the effective operator
L,=TLI+T;(L/oy—1)] 'Ty

where I'1 is the projection onto &.
Leads to series expansions:

oo

L. = Z FOL[Fl(I — L/Uoﬂjroa
5=0
Jo = Z ToL[I — Ty (L/0o))’ Eo.
5=0
E = [I‘1(I — L/U[))}jE[}?
5=0

LI (I—L/og)] Eo.

|
'M?%

L
|
o



Dirichlet-to-Neumann Map

% Body (2

Specify boundary potential 15(x)
Measure current flux n - j(x)



We want to reformulate it as a problem in
the abstract theory of composites, so we
can apply the machinery of the theory of
composites.



Remove boundary conditions, by expressing the
problem in terms of the fields that solve the problem
when (2 is filled with a homogeneous material

Py Body 2 conductivity o(x) =1

j(x) = e(x)

V-3=0

e=—-VV
V =15 on 90f2

Assume solved



Now let

I{ consistof thosefields j(x) = e(x) that solve
the equations as the boundary potential
Vo(x) varies.

E consistof fields E = —VV with
V(x) =0 on 0

7 consistof fields J withV -J =0
and n-J =0 on 99

Three spaces are orthogonal



Note that fields j(x) =e(x) in /4

can be parameterized either by the boundary
valuesof V =1, on 00 or by the boundary
valuesof n- j(x).



The abstract problem in composites consists in
finding for a given field e(x)in U

(with associated boundary potential 1;(x) ) the
fields which solve:

' (%) +JI(x) = o(x)[e(x) + E(x)]
with

ix)eU, Jx)cJ, Exx) c&
which is exactly the conductivity problem we would
solve for the Dirichlet problem.



Furthermore if we knew the effective operator

L*Z/{%Z/{

Then we have

j =L.e

and the boundary values of n . j’(x) allow us

to determine the Dirichlet-to-Neumann map
assuming the fields in {/ have been numerically
calculated



Analyticity properties of effective tensors as
functions of the moduli of the component materials
(Bergman, Milton, Golden and Papanicolaou)
extend to the Dirichlet-to-Neumann map

o(x) = R(x)" X1 xi(x)oi]R(x)

The Dirichlet-to-Neumann map is a Herglotz function
of the matrices 071, 092, ... 0, inthe domain where
these have positive definite imaginary parts, modulo
a rotation in the complex plane.



Easiest to prove using an approach of Bruno:
The truncated series expansion,

m
L., /& » T\L[I(I-L/oy)]'T,
=0
with T, = o (x) is a polynomial in the matrix
elements of o1, 09, ... 0, and hence L,
will be an analytic function of them in the
domain of convergence of the series

One obtains integral representation formulas for L.
and hence for the Dirichlet to Neumann map.



Time Harmonic Equations:

Acoustics: —iv \ _ (—(wp)™" 0\ (VP\
—iV -V 0 w/K P
L™ - L e o e -
Gix) Z(x) Fix)

Elastodynamics: ("‘T’““”‘”“') — (_C-’I‘*" ”) (v“).

( —ih ) B —[wg{}:}:_l 0 ) ('f*' X E‘)
Maxwell: iVxh/ 0 we(x) e |’

S, P —
G

( q(x) )_ (—A 0 )('G':;"[}{])
Schrodinger equation, \V-qx)) ~\ 0 E-V(x))\ ¢x) )



In all these examples Z has positive semidefinite
imaginary part (that often can be made positive
definite by a slight rotation in the complex plane)

The analog of the variational principles of
Cherkaev and Gibiansky are then the variational
principles of

Milton, Seppecher, and Bouchitte (2009)
Milton and Willis (2010)

For acoustics, electromagnetism, elastodynamics



Minimization variational principles for
electromagnetism at fixed, possibly complex,

frequency in lossy materials.

Maxwell’s equations: (here we assume real ()

VXE=wB, VxH=-—wD

D=¢E, B=uH.
Let
/! 1 N\ —1 1 1 1\ —1
8(5 +e'(e") e (e )j

(gﬁ)—lgl (gﬁ)—l



When p isreal:  Y(E') = inf Y/(E).
Ef

.:JEF
fﬂ( VUV E) )'E(—Tw (V x E)fuw- )

rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

tangential components of

E' and p 'V xE at 00

Unusual boundary conditions (BC), but can
be replaced by more normal BC: see
paper with John Willis.



For electromagnetism, acoustics and elastodynamics,
the Dirichlet-to-Neumann map is a Herglotz function
of the matrices Z,, Z,, ..., Z, of the component
materials

For electromagnetism an alternative and rigorous
proof was obtained with Maxence Cassier
and Aaron Welters (in the new book)



Some inverse problems for two-component bodies

Electromagnetism:

Suppose i1, to are equal and frequency independent

Look for special complex frequencies where

e1(w) = e2(w)

Extrapolate (using representation formulas or bounds)
measurements at different frequencies, or transient
responses, to the neighborhood of these special
frequencies



Quasistatic Elastodynamics:
Extrapolate to frequencies where 1 (w) = po (wgf)
Quasistatic Electromagnetism:

Extrapolate to ratios £1 /g5 close to 1



Rigorous Upper and Lower Bounds on the Stress Relaxation in
cylindrical composites in antiplane elasticity
2 T T T

— N0 information
m—— \Olume fraction
m——Volume fraction and isotropy

15 Note collapse of bounds: they can be used in an inverse -
way to almost exactly recover the volume fraction from
measurements at this particular time. Analogously for
Dirichlet to Neumann map, one expects to recover

E geometry
e ]
8 : ..
With Ornella Mattei in new book,
0.5 — _ i
D | | 1 e e ]
0 2 4 B 8 10



Generalizing the concept of function to

Superfunctions!



Adding resistor networks




Multiplying resistor networks




Substitution of networks

k,z .

klZ 4 A
(b) —AANA— gets replaced by
Z

| kisz,




We should consider a resistor network in conjunction
with its batteries

Q O C |1
\, v !
C4l ::” N CiZy 1

'\.t\_< —— /,
C5Zia§>dY2\_;Zl “1, G2, //
y -

(a) (b)

Space H Space YV

Combined Space K=H &V



Incidence Matrices:

/10 0 -1
I -1 0 0
I 0 —1 0
0 1 =1 0
0 1 0 —I
\0 0 1 —I

il
<

M =

M;; = +1 if the arrow of bond i points towards node j,

—1 if the arrow of bond i points away from node j,

= 0 if bond i and node j are not connected.

Two natural subspaces:
7 the null space of M? (current vectors)
E the range of M (potential drops)

These are orthogonal spacesand x=c9 7



Other spaces:
Divide the bonds in H into n groups (representing
the different impedances).

Define P; as the space of vectors P with elements P
that are zero if bond j is not in group i.

The projection A, onto the spaceP; is diagonal and
has elements
{A;};r = 1 if j =k andbond j is in group i,
= 0 otherwise.

Thus K=£2J=VaPi&P2&---& Pa.
This is an orthogonal subspace collection Y(n)



Y(n) subspace collection:
K=EaT=VEP1EP2P---F Pn,
Z(n) subspace collection:
H=UGEDRT =1 BPaB---P P,

Superfunction F(n): Y(n) subspace collection
with )

V=V'aV’
Subspace collections need not have
orthogonal subspaces



Z(2) J
Po
J
—;--7)1
(a) ¢ (b) P,
Key: Allow I
nonorthogonal )
Subspace Ex F*(1)
collections. P1_>

Then we have a J

whole algebra. Ve
: (c)



Application: Accelerating some Fast Fourier Transform
Methods in two-component composites

The effective conductivity g, is an analytic function
of the component conductivities g1and o9
With 02 = 1, 0.(01) has the properties of a
Stieltjes function:

}Im(c))

R e L ! = Re(0,)
—_ —_— O, = 1 1
3 05 ! 1
Bergman 1978 (pioneer, but faulty arguments)
Milton 1981 (limit of resistor networks)

Golden and Papanicolaou 1983 (rigorous proof)



Numerical scheme of Moulinec and Suquet (1994)
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Numerical scheme of Eyre and Milton (1999)

o. /oL =1+ ib” (

n=1

Y
GI—[JIEII]E'

-\/fT_l—l mn
Jor+1)

w—plane

z—plane



|deal scheme:

.......

w—plane

But we want to do this transformation at the
level of the subspace collection, to recover the fields



At a discrete level

GwiJ Resistors R,

S _ :E::g Resistors R,

v
[
e
l::

(a) unit cell
kle —ANNS—
—ANAM—  gets replaced by  -AAAM —
R, VYV
(b) k;R,

Problem: this substitution shortens the branch cut
instead of lengthening it.

Solution:

Substitute non-orthogonal subspace collections



Model example: a square array of
squares at 25% volume fraction

ObnosoV’s exact formula

Oy = y’f{l +301) /(3 +01),



error on the effective property: calculated vs theoretical (in %)

0.o1

0.0001

1e-06

1e-08

I I
Moulinec-Sugquet basic scheme (theoretical) ———
Moulinec-Suquet basic scheme (computed) —4—
new basic scheme (computed) —é—

0 ] 10 15 20

iteration number



error on the effective property: calculated vs theoretical (in %)

100

0.01

0.0001

1e-06

1e-08

I T
Eyre-Milton accelerated scheme (computed) —=—
new Eyre-Milton scheme (computed) —¢—

10 15
iteration number

20



Thank you!
Thank you!

Thank you!
Thank you!



