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Rewriting some of the linear 
equations of Physics. 



Constitutive Law: 

Differential Constraints: 

Key Identity: 
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Time Harmonic Equations: 

Acoustics: 

Elastodynamics: 

Maxwell: 



Thermoacoustics:  ( (          ) 

Key Identity: 

s= 0



Acoustics in the time domain: 

Key Identity: 



Elastodynamics in the time domain: 

Key identity: 



Elastodynamics in a moving frame: Galilean transformation 

Matrix in the constitutive law now has Willis type couplings: 



Yellow=Compliant, Blue=Stiff 
Red=Rubber, Black=Lead 

Time harmonic acceleration with no strain  
gives stress: Example of a Willis material 
 



Electric dipole array 
generates 
polarization field 
 

Force dipole array 
generates 
stress field 



Piezoelectricity in the time domain: 

Key identity: 



Biot equations in the time domain  (             ) 

Key identity: 

s= 0



Thermal Conduction and Diffusion: 

Key Identity: 



Thermoelasticity in the time domain: 

Key Identity: 



Maxwell’s equations in the time domain: 

Differential constraints 

Key Identity: 



Key Identity: 

A= ¹h2I=2m



Key identity still holds, and the above equation reduces to: 

¹h= 1(          ) 



Minimize  over  

where 

Minimization principles for SchrÄodinger's equation

with complex energies

Ã0

subject to suitable boundary conditions on   Ã0

A= ¹h2I=2m



The Desymmetrization of SchrÄodinger's equation

Replace with: 

Advantage: Can solve iteratively using FFT, and 
the FFT operations only need be done on              , i.e. 
only on two electron co-ordinates not all n electrons. 

A= ¹h2I=2m

Let         denote appropriate symmetrization operator: ¤





Are there other boundary field equalities or inequalities  
that use partial information about what is inside the body? 

Following the ideas of Straley,  Milgrom and Shtrikman 
suppose there is a matrix         such that 



In two dimensions suppose 

Following ideas of Keller, Dykhne and Mendelson, we have 
the boundary field equality 

Due to the fact that the equations are satisfied with 





To establish the inequality  one needs to pick a 
such that the volume average of  
is non-negative for any  C-periodic function 
satisfying the appropriate differential constraints 
which we write as       

Find               such that                      is positive 
semidefinite for all  

Then we have the boundary field inequality: 
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New Methods  
for Imaging 

 
 
 



Key idea: making a direct link between  
Dirichlet-to-Neumann maps for bodies 
and effective tensors for composites. 



Abstract Theory of Composites 

Hilbert Space 

L :H!HOperator 

Given 

Solve 

With 

Then defines  : U !U



Example: Conducting Composites 

- Periodic fields that are square integrable over  
   the unit cell 

-  Constant vector fields 

- Gradients of periodic potentials 

- Fields with zero divergence and zero  
     average value 

- Total electric field 

- Total current field 

L = - Local conductivity 

- Effective conductivity 



Variational principles if      is self-adjoint  and 
positive definite:  

L

Leading to the elementary bounds: 



Formula for the effective operator 

where       is the projection onto     . 
Leads to series expansions:  
 
 
 





We want to reformulate it as a problem in  
the abstract theory of composites, so we 
can apply the machinery of the theory of 
composites. 









The abstract problem in composites consists in 
finding for a given field           in  
(with associated boundary potential            ) the  
fields which solve: 
 
 
with  
 
 
which is exactly the conductivity problem we would 
solve for the Dirichlet problem. 
 
 

e(x)

V0(x)

j0(x) +J(x) = ¾(x)[e(x) +E(x)]

j0(x) 2 U; J(x) 2 J ; E(x) 2 E



Furthermore if we knew the effective operator 
 
 

: U !U

Then we have  
 
 
and the boundary values of                allow us 
to determine the Dirichlet-to-Neumann map 
assuming the fields in       have been numerically 
calculated 

j0 = L¤e

n ¢ j0(x)



Analyticity properties of effective tensors as 
functions of the moduli of the component materials 
(Bergman, Milton, Golden and Papanicolaou) 
extend to the Dirichlet-to-Neumann map 
 
 
 
The Dirichlet-to-Neumann map is a Herglotz function 
of the matrices                              in the domain where 
these have positive definite imaginary parts, modulo 
a rotation in the complex plane. 

¾(x) =R(x)T [
Pn

i=1Âi(x)¾i]R(x)

¾1; ¾2; : : : ¾n



Easiest to prove using an approach of Bruno: 
The truncated series expansion, 
 
 
 
 
with                     is a polynomial in the matrix 
elements of                               and hence  
will be an analytic function of them in the  
domain of convergence of the series 
 
One obtains integral representation formulas for  
and hence for the Dirichlet to Neumann map. 

m

L =
¾1; ¾2; : : : ¾n

¼



Time Harmonic Equations: 

Acoustics: 

Elastodynamics: 

Maxwell: 



In all these examples  Z has positive semidefinite 
imaginary part (that often can be made positive 
definite by a slight rotation in the complex plane)  

The analog of the variational principles of  
Cherkaev and Gibiansky are then the variational 
principles of 
 
Milton, Seppecher, and Bouchitte (2009) 
Milton and Willis (2010) 
 
For acoustics, electromagnetism, elastodynamics 
 
 



Minimization variational principles for 
electromagnetism at fixed, possibly complex, 
frequency in lossy materials. 
 
Maxwell’s equations: (here we assume real     )  
 
 

Let 

!





For electromagnetism, acoustics and elastodynamics, 
the Dirichlet-to-Neumann map is a Herglotz function 
of the matrices                              of the component  
materials 

Z1; Z2; : : : ; Zn

For electromagnetism an alternative and rigorous 
proof  was obtained with Maxence Cassier  
and Aaron Welters (in the new book) 



Some inverse problems for two-component bodies 
 
Electromagnetism: 
 
 
Look for special complex frequencies where  
 
 
 
Extrapolate (using representation formulas or bounds) 
measurements at different frequencies, or transient 
responses, to the neighborhood of these special  
frequencies 
 
 
 



Quasistatic Elastodynamics: 
        
Extrapolate to frequencies where  
 
Quasistatic Electromagnetism: 
 
Extrapolate to ratios              close to 1  
 
 
 

"1="2



Note collapse of bounds: they can be used in an inverse 
way to almost exactly recover the volume fraction from 
measurements at this particular time. Analogously for 
Dirichlet to Neumann map, one expects to recover 
geometry 

With Ornella Mattei in new book,  

Rigorous Upper and Lower Bounds on the Stress Relaxation in  
cylindrical composites in antiplane elasticity 
 



Generalizing the concept of function to 
 

                   Superfunctions! 



Adding resistor networks 



Multiplying resistor networks 



Substitution of networks 



We should consider a resistor network in conjunction 
with its batteries 

Space                              Space 
 
Combined Space   

H V

K=H©V



Incidence Matrices: 

Two natural subspaces: 
       the null space of M     (current vectors)  
       the range of M  (potential drops) 
These are orthogonal spaces and  
E
J

K= E ©J

T



Other spaces: 
        Divide the bonds in     into n groups (representing  
the different impedances). 
 
Define        as the space of vectors     with elements  
that are zero if bond j is not in group i.  
 
The projection      onto the space     is diagonal and 
has elements 
 
 
Thus  
This is an orthogonal subspace collection Y(n) 
 
 

Pi

H

P Pj

Pi¤i

f¤igjk



Y(n) subspace collection: 
 
 
Z(n) subspace collection: 
 
 
Superfunction F  (n): Y(n) subspace collection 
with  
  
Subspace collections need not have  
orthogonal subspaces 

s



TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAA 

P2
P1

P2
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E
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P1E

J

U

J

E

VI

VO

Z(2) 
Y(2) 

F  (1) s

Key: Allow  
nonorthogonal 
Subspace 
collections.  
Then we have a 
whole algebra. 



The effective conductivity      is an analytic function 
of the component conductivities       and  
With             ,               has the properties of a 
Stieltjes function: 

¾¤
¾1 ¾2

¾2 = 1

Bergman 1978 (pioneer, but faulty arguments) 
Milton 1981 (limit of resistor networks) 
Golden and Papanicolaou 1983 (rigorous proof) 

Application: Accelerating some Fast Fourier Transform  
Methods in two-component composites 

¾¤(¾1)



Numerical scheme of Moulinec and Suquet (1994) 



Numerical scheme of Eyre and Milton (1999) 



Ideal scheme: 

But we want to do this transformation at the 
level of the subspace collection, to recover the fields 



At a discrete level 

Problem: this substitution shortens the branch cut 
instead of lengthening it. 
Solution:  
Substitute non-orthogonal subspace collections 



Model example: a square array of  
squares at 25% volume fraction 

Obnosov’s exact formula 







Thank you! 

Thank you! 

Thank you! 

Thank you! 
Thank you! 


