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Optical and dielectric properties of partially resonant composites
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We analyze the two-dimensional potential around a coated cylinder placed in a nonuniform field.
In two special cases the system behaves as if the core of the cylinder were enlarged and the shell
absent. These are when the shell dielectric constant is the negative of either the core dielectric
constant or the matrix dielectric constant. When the shell dielectric constant has a small imaginary
part, the field can exhibit large fluctuations which remain localized near the surface of the coated
cylinder.

Under certain circumstances the dielectric response of
a three-phase composite structured as a square array of
coated cylinders embedded in a matrix of dielectric con
stant Cm can be exactly the same as the response of a
square array of solid cylinders embedded in the same
matrix material.’ This occurs when the core dielectric
constant (e,) and the shell dielectric constant (e9) sat
isfy some special relations.

Two of these circumstances are genuinely surprising:
c, -I- e, = 0, when the core properties are extended up
to the outer boundary of the shell, and e + Em = 0,
the properties of the core being extended beyond the
shell into the matrix. Both of these are what we call
a partially-resonant system.

More generally, we take partially-resonant to mean a
compound system, containing a component with a given
volume fraction (f), whose properties are equivalent to
those of a system with that component having a larger
volume fraction.

In particular, it may be possible for a partially-resonant
system with a van.ishingly small concentration to exhibit
properties like those of a concentrated system. In the
cases studied here, the “magnified” component is the
core, and this behavior is due to some new sort of res
ace, what we might call partial resonance since the
system has a finite, rather than an infinite, response to
the applied field.

Here we will show that the notion of partial resonance
extends to bodies containing any number of coated-
cylinder inclusions, each aligned parallel to the z axis,
and is not just particular to regular arrays. Also we will
show the equivalence extends to coated inclusions with
noncircular boundaries. Naturally, for either e + c, = 0
or e1 + Em = 0 to be satisfied, at least one dielectric
constant must be the negative of another dielectric con
stant. Although seemingly unphysical, this condition
comes close to being satisfied for various pairs of ma
terials at frequencies in the visible and infrared. As an
example, the pair SiC-voids has esIc = —1 + 0.li and
Evoida = 1 at A = 10.550 j.m.

For the equivalence to hold, the radii of the equivalent
solid cylinders must be much smaller than A. Otherwise,
scattering becomes important and we need to use the
full Maxwell equations, rather than just the quasistatic
approximation used here.

From the viewpoint of electrical tomography (whereby
the distribution of dielectric material within a body is to
be determined by placing a set of test electrodes at the
body surface and measuring the currents that result from
various combinations of oscillating potentials applied to
the electrodes)2the body containing the coated cylinders
is indistinguishable from the body containing the equiv
alent solid cylinders, with respect to test fields that are
independent of z.

There is another unusual effect associated with this
equivalence. We will see that when the shell dielec
tric constant has a small imaginary part, with e1 =
(1 + i6)Cm so that the relation e. + Em = 0 is only
approximately satisfied, then the field in the vicinity of
the coated cylinder can exhibit large fluctuations, with
these fluctuations growing to infinity and becoming more
rapid as 6 — 0. The length scale of these oscillations
is much shorter than the wavelength of the applied ra
diation (which is infinite in the quasistatic limit). By
introducing molecules into the region of these high-field
fluctuations, we would expect to see enhanced Raman
scattering.3 In contrast to the phenomena of resonance
where there is global increase in the field magnitude
as resonance is approached, these field fluctuations re
main localized: at sufficiently large distances from the
coated cylinder the field remains smooth and approxi
mately equal to that found around the equivalent solid
der.

To analyze the equivalence let us consider a coated
cylinder embedded in a body, possibly containing other
coated cylinders. The coated cylinder, centered on the
origin of coordinates, is characterized by the core radius
(re), the shell radius (r1), and the corresponding dielec
tric constants (e,e,). We suppose the external medium
has dielectric constant Em, at least within a radius rm
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around the cylinder center. Assuming the quasistatic
approximation is valid, the two-dimensional electrical po
tential can be expressed in the form V(r,y) = Re1V()1.
in which z = x + iy = rexp(iO) and V(z) is a complex
potential satisfying V (eVV) = 0. Since V(z) is an ana
lytic function of z in each of the three regions it has thc
expansions (see Fig. 1)

which characterize the jumps in dielectric constant across
the boundary separating the external medium from the
shell (‘ims) and across the boundary separating the shell
from the core (ij). With these notations, by means of
the boundary conditions of continuity of the potential
and the normal component of the electric displacement
at the core and shell surfaces, we may express the coeffi
cients B,,C,, D,, E, in terms of the A,:

y

FIG. 1. A coated cylinder in the field of a dipole at the
finite distance z0. There are marked also the points at dis
tances a = r/r and Z =a3/r. along the x axis.

which indicate an extension of the core properties beyond
the limits of the shell, into the matrix, the equivalent
solid cylinder having radius a > r5 and dielectric con
stant e. In other words we can replace the coated cylin
der by a solid cylinder of dielectric constant e and radius
a without altering the potential outside the radius a pro
vided a < rm. In the special case when both e. + e = 0
and e + Em = 0, the coated cylinder can be replaced
by matrix material without disturbing the external field.
A related equivalency occurs in two-dimensional elastic
ity. Mansfield’ found that certain reinforced holes can
be introduced in a plane sheet without altering the stress
distribution in the main body of the sheet, assuming the
loading acts within the plane of the sheet. In contrast
to the coated cylinder, where the electrical equivalence
holds for all imposed fields, the elastic equivalence of
Mansfield is limited to a particular (but arbitrary) load
ing: the shape of the reinforced holes needs to be adjusted
according to the loading.

l(z) = A0 + (A,z’ + B,z’) for r, r

V.(z)=Co+E(C,z’+D,z) forr<r<r.,

V(z)=Eo+E,z’ forr<r.

Let us introduce the dimensionless parameters

EmCs
77ma = , —

Cm+E,

B, = [Tim. + 77.c(rc/r.)2t}’4t// , (5)

Ct = (1 + 7imi)At/ , (6)

= Ti,c(l + 7lms)7’Ai/I , (7)

= (1 + 7J,,,.)(1 + ij.)A,/, (8)

where = 1 +
Analyzing the relationship between the coefficients A,

and B, which defines the response of a coated cylinder
to an external field, we may distinguish six special cases
when the coated cylinder is equivalent to a solid cylinder,
i.e., when the relation between A, and B, is exactly the
same as that for a solid cylinder. First, we find the two

(2) banal equivalences corresponding to e5 = Cm (solid cylin
(icr of radius r and dielectric constant e) and e5 =
(solid cylinder of radius r5 and dielectric constant er).
Second, for e5 = 0 or c9 —4 ±00 the shell shields the
core and the coated cylinder resembles a solid cylinder

(3) of radius r, and dielectric constant e5 = 0 or e, -4 ±oo,

respectively.
The last. two special cases, namely c + e5 = 0 and

e5 + Em = 0, are completely different. The first leads us
to the relations

B,
Cl,, +

(4) i.e., without changing the external potential V we can
replace the coated cylinder by a solid cylinder having the
radius r5 and dielectric constant e (the core properties
being extended up to the outer boundary of the shell). It
follows that the dielectric properties of a solid cylinder of
dielectric constant e5 and radius r, change dramatically
if we insert a core of radius r and dielectric constant
--e,. Even when r is infinitesimal the dielectric prop
erties transform to those of a solid cylinder of dielectric
constant —e5 and radius r,. In the second case the coef
ficients of the external potential satisfy the relations

B
= Cm

— Cca2tAt
, a = r/r, (9)

Em + C

a z z
C 0
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In order to clarify this remarkable behavior, let us now
specialize to the case of a coated cylinder embedded in an
infinite medium, subject to a nonuniform external field
created by a line dipole of prescribed magnitude parallel
to the coated-cylinder axis and located at zo (see Fig. 1).
This specialization can be made without loss of generality
since an arbitrary external field can be generated by a
superposition of such dipole source terms, with possibly
complex coefficients. Also let us choose our axes so that
z0 is located on the positive x axis, i.e., so that zo is real
and positive. The magnitude of the dipole is chosen such
that its potential is 1/(z — zo), and may be expanded in
z, with coefficients A = —(1/zo)’.

Since the analysis for the case e1 + r = 0 is similar to
that for case C, +Cm = 0, let us focus on the latter. From
(5)—(8) and (1)—(3) we see that when z0 > z, =a2/r, the
potential is

(z)=1_C:a/zo for IZIra, (10)

,(Z) _C2 +

_lP for r jzr,, (11)
2T,/ZO L.

H,r’’ _LIi

— Cm Cc 1 2Cm r/a2 Z
(z)

— Cm +CcZO
+

Cm

c Zj/o.- for 0<j z r. (12)

We will call this the partially-resonant potential. Nat
urally the expression for Ve(z) coincides for r > a with
that for the solid cylinder of radius a and can be regarded
as resulting from a dipole at z0 and an image dipole at
a2/zo. This image dipole, which has no physical signifi
çance for the solid-cylinder problem, begins to take
physical meaning for the coated-cylinder problem
,pproaches z. When this happens the image dipole ap
proaches he surface of the coated cylinder, and accord
ingly the potential and fields start to diverge to infinity
there.

If z0 < z,,, the ratio test shows the series (1) for Ve(z)
fails to converge for r, <r < a2/zo and shows the series
(2) for V,(z) fails to converge for zor/a2 < r < r,.
Also the solution (10) is no longer appropriate since the
image dipole at a2/zo is located in the niatri creating
an unphysical singularity, at which the expansion of V
diverges; there appears also an image dipole at zor/a2
in the shell, producing an unphysical singularity of V..
Consequently, there is no physical solution of the problem
if C, = Cm and z0 < z.

To guarantee the existence of a physical solution we
need to add a small imaginary part to the dielectric con
stant of the shell so that it becomes lossy. If we take the
dielectric constant of the shell to be C, = (—1 + 16)Cm,
where I 6 I4 1, then the potential remains close to the
valueØven by (10)-(1Txcept in the annulus zpr].

the first-order approximation:

1 / 2i\ fr2’ 1n6
B,_I1+_II_!.I fort>

Z0 \ 6 zoj lnfr/r,)

This asymptotic behavior guarantees the convergence
of the series expansions (1)—(3) provided only that z0>
r,. Consequently, the problem has a physical solution for
a source dipole placed at any position zo > r, and the
potential is finite over the entire z-y plane excepting at
the point z = z0. Since the potential is harmonic in the
core, shell, and matrix it follows by the maximum prin
ciple that any local maxima or minima of the potential
must be located at the interface between phases or at z0.

As an example, Fig. 2(a) shows that the nonanalytic
potential V(x) exhibits singularities in the shell and in
the matrix. By contrast, the actual potential remains
finite, but exhibits local extrema on the core and shell
boundaries (so long as C> 0). As 6 -4 0, these extrema
tend to —no and no, respectively. At the same time,
the potential around the outer shell boundary r =

exhibits large fluctuations which are particularly intense
in the vicinity of 0 = 0 Lsee Fig. 2(b)]. These fluctuations
become less pronounced at larger and smaller r,
out in the limit 6 — 0 for all r > a2/zn and for all
r <zgr/a2,with the potential V(z) converging to V(zL
in these regions.

—

( r\cZ. cL_ s-i

5 0.8x

FIG. 2. The case a < Zo < z,, displaying the potentials
(a) V(z) and (b) V(r,,0) given by (10)—(12) (dashed curve)
and for e, = —1 + 16 (solid curve), with 6 = 0.01, e = 5,
and £m = 1. The geometry of the system is characterized by

= 0.35,r, = 0.40,a = 0.46,z = O.52,zo = 0.49.
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tial hasi completely different behavior.
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From (5) and (4) it can be seen that the multipole
coefficients Bj, for any finite order , tend to the corre
sponding niultipole coefficients in (9). In other words,
the tnultipole coefficients always exhibit the nonanalytic
property, even at radii where the potential series diverges
as <5 — 0.

From these results we can analyze the dielectric prop
erties of composites containing random distributions of
coated cylinders. For example, suppose we start with
a regular square lattice of coated cylinders each with
core radius r, shell radius r,, and with spacing d be
tween cylinder centers such that d is only slightly larger
than 2r/r. The core, shell, and surrounding matrix
material have dielectric constants e, 6a, and e,. Now
suppose we randomly select lattice sites and remove the
coated cylinder situated there (replacing it by matrix ma
terial) until a proportion p of the original coated cylin
ders remain. When c, = (—1 +i<5frm and <5 is sufficiently
small, the effective dielectric constant of this random ar
ray will be close to that of the equivalent, nonanalytic,
array of nearly touching solid cylinders, each of radius
a = ,-/r d/2. In particular, when e >> cm and p
is above the percolation threshold, the field will be con
centrated across the gaps between these nearly touching
cylinder pairs, and the effective dielectric constant of this
random array will be close to that of an associated ran
dom capacitor network, where each capacitor represents
the capacitance across the small gap between neighboring
solid-cylinder pairs. Critical exponents which describe
the behavior of the effective dielectric constant of the
network when p is close to the site percolation threshold5
will also be appropriate to describing the behavior of the
effective dielectric constant of both the random array of
solid cylinders and the equivalent array of coated cylin
ders. In other words, the description involving critical
exponents is appropriate even though there is no obvious
geometrical percolation in the random array of coated
cylinders: unlike the equivalent two-phase composite, the
connectedness of this three-phase composite is insensi
tive to perturbations in p, r, or r. In the vicinity of
the coated cylinders the field will oscillate wildly (due to
the presence of image charges which lie outside the ra
dius r, in the equivalent solid-cylinder problem), but at

r = d/2 the field will be smooth and concentrated at the
midpoints between the coated-cylinder pairs.

This equivalence also extends tocqdclindersj_
noncircular boundaries. Indeed, suppose (z) represents
a conformal mapping from the disk of radius rm to some
region Sl(rm). Let 11(r) denote the image under this con
formal mapping of a disk of radius r. Then a coated
inclusion with the core and shell occupying the regions
11(r) and 11(r8) excluding Q(r) and surrounded by ma
trix material at least within the region !l(rm) is equiva
lent to a solid inclusion occupying the region l(r8) when
eg ± e, = 0 and rm > r9, and is equivalent to a solid
cylinder occupying the region 11(r/r) when e, +e, 0
and > r/r. This is because the equations of two-
dimensional electrostatics are preserved under conformal
transformations, the dielectric constant and the potential
at any point z’ = (z) being taken equal to their former
values at, the point z. To prove this equivalence, one maps
the potential around the coated noncircular cylinder to
the corresponding potential around the coated circular
inclusion, replaces it by the equivalent solid cylinder, and
then maps the potential back to the solid noncircular
cylinder. The field in the exterior region, outside the
equivalent, solid inclusion, is left undisturbed by this pro
cedure. By the Riemnanu mapping theorem6we can find a
mapping (z) which takes the disk r <rrn to an arbitrar
ily shaped simply connected region 1Z(Trn). Since 11(r)
is almost circular when r is sufficiently small, it follows
that an infinitesimal coated cylinder with almost circu
lar boundaries can be equivalent to an arbitrarily shaped
solid cylinder when e+em = 0. In other words the shape
of the equivalent solid cylinder is extremely sensitive to
the shape of the coated cylinder when r < r.
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