1. Representations of finite groups

1.1. Category of group representations. Let G be a group. Let V be a vector space over \mathbb{C}. Denote by $\text{GL}(V)$ the general linear group of V, i.e., the group of all linear automorphisms of V.

A representation (π, V) of G on the vector space V is a group homomorphism $\pi : G \rightarrow \text{GL}(V)$. A morphism $\phi : (\pi, V) \rightarrow (\nu, U)$ of representation (π, V) into (μ, U) is a linear map $\phi : V \rightarrow U$ such that the diagram

$$
\begin{array}{ccc}
V & \xrightarrow{\pi(g)} & V \\
\downarrow & & \downarrow \\
U & \xrightarrow{\nu(g)} & U \\
\end{array}
$$

commutes for all $g \in G$. Morphisms of representations are also called intertwining maps. The set of all morphisms of (π, V) into (ν, U) is denoted by $\text{Hom}_G(V, U)$.

It is easy to check that all representations of G form a category $\mathcal{R}ep(G)$ of representations of G.

An isomorphism $\phi : (\pi, V) \rightarrow (\nu, U)$ in this category is a morphism of representations which is a linear isomorphism of the vector space V with U. If two representations are isomorphic, we say that they are equivalent.

Let (π, V) and (ν, U) be two representations of G. Let U be a subspace of V which is invariant for G, i.e., $\pi(g)(U) \subset U$ for all $g \in G$. Then the linear maps $\pi(g)$ restricted to U define a morphism $\phi : (\pi, V) \rightarrow (\nu, U)$.

If (π, V) and (ν, U) are two representations of G, we can define the representation $\pi \oplus \nu$ of G on $V \oplus V$ such that $(\pi \oplus \nu)(g)(v, u) = (\pi(g)v, \nu(g)u)$ for all $g \in G$, $v \in V$ and $u \in U$. The representation $\pi \oplus \nu$ is called the direct sum of π and ν.

Let (π, V) be a representation of G. Let U be a subspace of V which is invariant for G, i.e., $\pi(g)(U) \subset U$ for all $g \in G$. Then the linear maps $\pi(g)$ restricted to U define a subrepresentation of (π, V).

Let $\phi : (\pi, V) \rightarrow (\nu, U)$ be a morphism of representations. Then, ker $\phi \subset V$ is a G-invariant subspace of V. Hence, ker ϕ is a subrepresentation of (π, V).

Let (π, V) be a representation of G. Let U be an invariant subspace of V. For each $g \in G$ we define a linear operator $\rho(g)$ on the quotient space V/U by $\rho(g)(v + U) = \pi(g)v + U$ for any $g \in G$. Then $(\rho, V/U)$ is a quotient representation of (π, V).

Clearly, the category $\mathcal{R}ep(G)$ is an abelian category.
If the vector space V is equipped with an inner product $(\cdot | \cdot)$ and all linear operators $\pi(g), g \in G$, are unitary with respect to this inner product structure, we say that the representation (π, V) is unitary.

1.2. **Representations of finite groups.** Let G be a group. We say that G is a finite group if G is a finite set.

In this section we assume that the group G is finite. We put $|G| = \text{Card}(G)$.

A representation (π, V) of G is finite-dimensional if V is a finite-dimensional vector space. We put $\dim \pi = \dim \mathbb{C}V$.

1.2.1. **Lemma.** Let (π, V) be a representation of G. Let $v \in V$, $v \neq 0$. Then there exists a finite-dimensional subrepresentation (ν, U) of (π, V) such that $v \in U$.

Proof. Let U be the vector subspace of V generated by vectors $\pi(g)v$, $g \in G$. Then U is G-invariant and finite-dimensional. Moreover, $v = \pi(1)v$ is in U. \square

A representation (π, V) of G is called irreducible if the only G-invariant subspaces in V are $\{0\}$ and V.

1.2.2. **Theorem.** Let (π, V) be an irreducible representation of G. Then π is finite-dimensional.

Proof. Let $v \in V$, $v \neq 0$. By 1.2.1, V contains a finite-dimensional G-invariant subspace U such that $v \in U$. If π is irreducible, we must have $U = V$ and V is finite-dimensional. \square

1.2.3. **Corollary.** Every representation (π, V) of G contains an irreducible subrepresentation.

The main result on representations of finite groups is the following observation.

1.2.4. **Theorem** (Mascke). Let (π, V) be a representation of G. Let (ν, U) be a subrepresentation of (π, V). Then there exists a subrepresentation (ρ, W) of (π, V) such that $\pi = \nu \oplus \rho$.

Proof. Let P be a projector of V onto U. Consider the linear map

$$Q = \frac{1}{|G|} \sum_{g \in G} \pi(g^{-1}) P \pi(g)$$

on V. Clearly, since U is G-invariant, $Q(V) \subset U$. Moreover, for any $u \in U$, we have

$$Qu = \frac{1}{|G|} \sum_{g \in G} \pi(g^{-1}) P \pi(g)u = \frac{1}{|G|} \sum_{g \in G} u = u.$$

Therefore, $U = \text{im} Q$ and $Q^2 = Q$. It follows that Q is a projection onto U along $\ker Q$.

In addition, we have

$$Q \pi(h) = \frac{1}{|G|} \sum_{g \in G} \pi(g^{-1}) P \pi(gh) = \frac{1}{|G|} \sum_{g \in G} \pi(hg^{-1}) P \pi(g) = \pi(h)Q$$

for all $h \in G$, i.e., Q is a morphism of (π, V) into (ν, U). Hence $W = \ker Q$ is a G-invariant subspace and $V = U \oplus W$. \square

Therefore, the category $\text{Rep}(G)$ is semisimple.
1.3. **Schur Lemma.** Let \((\nu, U)\) and \((\pi, V)\) be two irreducible representations of \(G\). Let \(A\) be a morphism of \(\nu\) into \(\pi\). Then, for \(u \in \ker A\), we have \(A(\nu(g)u) = \pi(g)Au = 0\) for any \(g \in G\). Hence, \(\nu(g)u \in \ker A\) for any \(g \in G\), and \(\ker A\) is a \(G\)-invariant subspace of \(U\).

Since \(\nu\) is irreducible, \(\ker A\) is equal to either \(\{0\}\) or \(U\). In the latter case, we see that \(A = 0\). In the first case, \(A\) is injective. Moreover, if \(v \in \text{im } A\), we have \(v = Au\) for some \(u \in U\). Therefore, \(\pi(g)v = \pi(g)Au = A(\nu(g)u)\) is in \(\text{im } A\) for any \(g \in G\). Hence, \(\text{im } A\) is a \(G\)-invariant subspace of \(V\). Since \(A\) is injective, \(\text{im } A\) is not \(\{0\}\). It follows that \(\text{im } A = V\), and \(A\) is an isomorphism.

This implies the following result.

1.3.1. **Proposition.** Let \((\nu, U)\) and \((\pi, V)\) be two irreducible representations of \(G\). Assume that \(\pi\) and \(\nu\) are not equivalent. Then \(\text{Hom}_G(U, V) = \{0\}\). In addition we have the following result.

1.3.2. **Theorem (Schur Lemma).** Let \((\pi, V)\) be an irreducible representation of \(G\). Then \(\text{Hom}_G(V, V) = CI\).

Proof. Let \(A\) be an endomorphism of \(\pi\). Since \(V\) is finite-dimensional, \(A\) has an eigenvalue \(\lambda \in \mathbb{C}\). Therefore, \(B = A - \lambda I\) is an endomorphism of \(\pi\) which is not injective. By the above discussion, it must be equal to 0. Hence, we have \(A = \lambda I\). \(\square\)

1.4. **Regular representation.** Let \(G\) be a finite group. Denote by \(\mathbb{C}[G]\) the space of all complex valued functions on \(G\). Clearly, \(\dim \mathbb{C}[G] = |G|\). The vector space \(\mathbb{C}[G]\) has a structure of inner product space with the inner product

\[
(f | f') = \frac{1}{|G|} \sum_{g \in G} f(g)\overline{f'(g)}
\]

for \(f, f' \in \mathbb{C}[G]\).

For \(g \in G\) and \(f \in \mathbb{C}[G]\) define the function \(R(g)f\) by \((R(g)f)(h) = f(gh)\) for any \(h \in G\). Clearly, \(R(g) : f \mapsto R(g)f\) is a linear map on \(\mathbb{C}[G]\).

Moreover, for \(g, h \in G\), we have

\[
(R(gh)f)(k) = f(kgh) = (R(h)f)(kg) = (R(g)R(h)f)(k)
\]

for any \(k \in K\). Therefore \(R(gh) = R(g)R(h)\). Clearly, \(R(1) = I\). It follows that \((R, \mathbb{C}[G])\) is a representation of \(G\). We call it the **(right) regular representation** of \(G\).

1.4.1. **Lemma.** The right regular representation is unitary.

Proof. Clearly, for \(g \in G\), we have

\[
(R(g)f | R(g)f') = \frac{1}{|G|} \sum_{h \in G} f(hg)\overline{f'(hg)} = \frac{1}{|G|} \sum_{h \in G} f(h)\overline{f'(h)} = (f | f')
\]

for any \(f, f' \in \mathbb{C}[G]\). Therefore, \(R(g), g \in G\), are unitary operators. \(\square\)

The following property of regular representation is critical.

1.4.2. **Lemma.** Let \(g \in G\), \(g \neq 1\). Then \(R(g) \neq I\).
Proof. Denote by δ_h the function on G which is 1 at point $h \in G$ and zero everywhere else. Then we have

$$(R(g)\delta_1)(h) = \delta_1(hg) = \delta_{g^{-1}}(h)$$

for any $h \in G$, i.e., $R(g)\delta_1 = \delta_{g^{-1}} \neq \delta_1$. \hfill \Box

Since R is a direct sum of irreducible representations of G, this result has a following consequence.

1.4.3. Theorem. Let $g \in G$, $g \neq 1$. Then there exists an irreducible representation π of G such that $\pi(g) \neq I$.

In other words, irreducible representations of G separate points in G.

1.5. Abelian finite groups. Let G be a finite group. Let π be an one-dimensional representation of G. Then $\pi(g) = \lambda(g)I$, where $\lambda : G \rightarrow \mathbb{C}^*$ is group homomorphism of G into the multiplicative group of complex numbers different than zero. This implies that $g \mapsto |\lambda(g)|$ is a homomorphism of G into the multiplicative group of positive real numbers \mathbb{R}^*. Since 1 is the only element of that group of finite order, we conclude that $|\lambda(g)| = 1$, i.e., λ is a homomorphism of G into the group of complex numbers of absolute value equal to 1. We call such homomorphisms the characters of G.

Assume that G is abelian finite group. Let (π, V) be an irreducible representation of G. Let $g \in G$. Then

$$\pi(g)\pi(h) = \pi(gh) = \pi(hg) = \pi(h)\pi(g)$$

for all $h \in G$. Therefore, by Schur Lemma, we see that $\pi(g) = \lambda(g)I$ for some complex number $\lambda(g) \neq 0$. By the above discussion, λ is a character of G. This in turn implies that $\dim \pi = 1$.

1.5.1. Proposition. Let G be a finite group. Then the following conditions are equivalent.

(i) G is abelian;

(ii) all irreducible representations of G are one-dimensional.

Proof. We already proved that (i) implies (ii).

Assume that all irreducible representations are one-dimensional. Let $g, h \in G$. Consider the element $a = ghg^{-1}h^{-1}$. Let π be an irreducible representation of G. Then π is one-dimensional and

$$\pi(a) = \pi(ghg^{-1}h^{-1}) = \pi(g)\pi(h)\pi(g)^{-1}\pi(h)^{-1} = I$$

since $\pi(g)$ and $\pi(h)$ commute. By 1.4.3, this implies that $a = 1$, i.e., $ghg^{-1}h^{-1} = 1$. It follows that $gh = hg$ for all $g, h \in G$, i.e., G is abelian. \hfill \Box

Hence, all irreducible representations of an abelian finite group are characters. Let ϕ and ψ be two characters of G. Then we have

$$\phi(g)(\phi \mid \psi) = \frac{1}{|G|} \sum_{h \in G} \phi(gh)\overline{\psi(h)} = \frac{1}{|G|} \sum_{h \in G} \phi(h)\overline{\psi(g^{-1}h)} = \psi(g)(\phi \mid \psi)$$

for any $g \in G$. Hence, if ϕ and ψ are different, they are orthogonal to each other. Moreover, for a character ϕ we have

$$\|\phi\|^2 = (\phi \mid \phi) = \frac{1}{|G|} \sum_{g \in G} \phi(g)\overline{\phi(g)} = \frac{1}{|G|} \sum_{g \in G} \phi(g)\overline{\phi(g)} = 1.$$
Hence, the characters form an orthonormal family of functions in $C[G]$. Moreover, we have the following result.

Proof. Since irreducible representations of G are characters, R is an direct sum of characters. This implies that there is a basis e_i, $1 \leq i \leq |G|$, and characters ϕ_i, $1 \leq i \leq |G|$, such that $R(g)e_i = \phi_i(g)e_i$ for any $g \in G$. This in turn implies that

$$e_i(g) = (R(g)e_i)(1) = \phi_i(g)e_i(1)$$

for all $g \in G$. Since e_i is a nonzero vector, we must have $e_i(1) \neq 0$. Hence e_i is proportional to ϕ_i. Therefore, $C[G]$ is spanned by characters. \qed

Let \hat{G} be the set of all characters of G. Let ϕ, ψ be two characters of G. Define their product as $(\phi \cdot \psi)(g) = \phi(g)\psi(g)$ for all $g \in G$. This defines a binary operation on \hat{G}. It is easy to check that \hat{G} is an abelian group with this operation. By the above result, \hat{G} is finite and $|\hat{G}| = \dim C[G] = |G|$. We call \hat{G} the dual group of G.

Applying the above discussion twice, we get $|\hat{\hat{G}}| = |\hat{G}| = |G|$.

Let $g \in G$. Then the map $\phi \mapsto \phi(g)$ is a character of \hat{G}. This defines a map α from G into $\hat{\hat{G}}$. Moreover,

$$\alpha(gh)(\phi) = \phi(gh) = \phi(g)\phi(h) = \alpha(g)(\phi)\alpha(h)(\phi) = (\alpha(g) \cdot \alpha(h))(\phi)$$

for all $\phi \in \hat{G}$, i.e., $\alpha : G \rightarrow \hat{\hat{G}}$ is a group morphism.

Assume that $\alpha(g) = 1$. Then $\alpha(g)(\phi) = \phi(g) = 1$ for all $\phi \in \hat{G}$. By 1.4.3, it follows that $g = 1$. Therefore, α is an injective morphism. Hence, $\alpha : G \rightarrow \hat{\hat{G}}$ is a group isomorphism.

1.5.3. Theorem. Let G be an abelian finite group and \hat{G} its dual group. Then

(i) $|\hat{G}| = |G|$;
(ii) $\alpha : G \rightarrow \hat{\hat{G}}$ is an isomorphism.

This is a special case of Pontryagin duality.

Since characters form an orthonormal basis of $C[G]$, any function f in $C[G]$ can be written as

$$f = \sum_{\phi \in \hat{G}} (f | \phi)\phi.$$

By Bessel equality, we have

$$\|f\|^2 = \sum_{\phi \in \hat{G}} |(f | \phi)|^2.$$

We define the Fourier transform $\mathcal{F}f$ of f as the function on \hat{G} given by

$$(\mathcal{F}f)(\phi) = \frac{1}{|G|} \sum_{g \in G} f(g)\overline{\phi(g)}, \quad \phi \in \hat{G}.$$

Therefore, the inverse Fourier transform is given by

$$f(g) = \sum_{\phi \in \hat{G}} (\mathcal{F}f)(\phi)\phi(g), \quad g \in G.$$
The above equality then implies that

$$
\|f\|^2 = \sum_{\phi \in \hat{G}} |(Ff)(\phi)|^2.
$$

This is a special case of Plancherel theorem.

1.6. **Unitarity.** Let (π, V) be a finite-dimensional representation of G. Let $\langle \cdot | \cdot \rangle$ be an inner product on V.

Put

$$
(u | v) = \frac{1}{|G|} \sum_{g \in G} \langle \pi(g)u | \pi(g)v \rangle.
$$

Clearly, $(u, v) \mapsto (u | v)$ is a linear in first and antilinear in the second variable. Moreover, we have $(u | v) = (v | u)$. In addition,

$$
(v | v) = \frac{1}{|G|} \sum_{g \in G} \langle \pi(g) | \pi(g)v \rangle \geq 0
$$

for any $v \in V$. If $(v | v) = 0$, we have $\langle \pi(g)v | \pi(g)v \rangle = 0$ for all $g \in G$. In particular $(v | v) = 0$, and $v = 0$. Hence, $(\cdot | \cdot)$ is an inner product on V.

1.6.1. **Lemma.** Inner product $(\cdot | \cdot)$ is G-invariant.

Proof. Let $g \in G$. Then we have

$$
(\pi(g)u | \pi(g)v) = \frac{1}{|G|} \sum_{h \in G} \langle \pi(hg)u | \pi(hg)v \rangle = \frac{1}{|G|} \sum_{h \in G} \langle \pi(h)u | \pi(h)v \rangle = (u | v).
$$

Therefore, there exists an inner product on V such that (π, V) is a unitary representation.

1.7. **Orthogonality relations.** Let (ν, U) and (π, V) be two irreducible representations of G. Let $A : U \rightarrow V$ be a linear map. Define

$$
B = \frac{1}{|G|} \sum_{g \in G} \pi(g)A\nu(g^{-1}).
$$

Then, B is also a linear map from U into V.

Let $g \in G$. Then

$$
\pi(g)B = \frac{1}{|G|} \sum_{h \in G} \pi(gh)A\nu(h^{-1}) = \frac{1}{|G|} \sum_{h \in G} \pi(h)A\nu(h^{-1}g) = B\nu(g).
$$

Hence, it follows that $B \in \text{Hom}_G(U, V)$. If ν and π are not equivalent, by Schur Lemma, we have $B = 0$.

1.7.1. **Lemma.** Let (ν, U) and (π, V) be two inequivalent irreducible representations of G. Then

$$
\frac{1}{|G|} \sum_{g \in G} \pi(g)A\nu(g^{-1}) = 0
$$

for any linear operator $A : U \rightarrow V$.

Consider now an irreducible representation (π, V) and a linear map $A : V \to V$. Let
\[B = \frac{1}{|G|} \sum_{g \in G} \pi(g)A\pi(g^{-1}). \]
Then $B \in \text{Hom}_G(V, V)$. By Schur Lemma, we conclude that $B = \lambda I$ for some $\lambda \in \mathbb{C}$.

Moreover, we have
\[\text{tr} B = \frac{1}{|G|} \sum_{g \in G} \text{tr}(\pi(g)A\pi(g^{-1})) = \frac{1}{|G|} \sum_{g \in G} \text{tr} A = \text{tr} A. \]
This implies the following result.

1.7.2. **Lemma.** Let (π, V) be an irreducible representation of G. Then
\[\frac{1}{|G|} \sum_{g \in G} \pi(g)A\pi(g^{-1}) = \frac{\text{tr} A}{\dim \pi} I \]
for any linear operator $A : V \to V$.

By 1.6.1, we can assume that U and V are equipped with G-invariant inner products. Let $(e_i; 1 \leq i \leq \dim \nu)$ and $(f_j; 1 \leq j \leq \dim \pi)$, be two orthonormal bases of U and V respectively. Denote by $\nu(g)_{pq}$ and $\pi(g)_{rs}$ the matrix coefficients of $\nu(g)$ and $\pi(g)$ respectively. Then we first observe that
\[\sum_{s=1}^{\dim \pi} \sum_{p=1}^{\dim \nu} \frac{1}{|G|} \sum_{g \in G} \pi(g)_{rs} A_{sp} \nu(g^{-1})_{pq} = 0, \]
where A_{sp} are matrix coefficients of A. Since A is arbitrary, we conclude that
\[\frac{1}{|G|} \sum_{g \in G} \pi(g)_{rs} \nu(g^{-1})_{pq} = 0 \]
for all p, q, r, s. Clearly, since $(\nu(g^{-1})_{pq})$ is a unitary matrix, we have $\nu(g^{-1})_{pq} = \nu(g)_{qp}$ for all p, q. Hence, we conclude that
\[\frac{1}{|G|} \sum_{g \in G} \pi(g)_{rs} \nu(g)_{pq} = 0 \]
for all p, q, r, s.

Let (π, V) be an irreducible representation of G. Denote by $M(\pi)$ the vector subspace of $\mathbb{C}[G]$ spanned by matrix coefficients of π. This subspace is independent of choice of the basis of V. Moreover, it depends only on the equivalence class of π.

1.7.3. **Proposition.** Let (π, V) be an irreducible representation of G. Then the subspace $M(\pi)$ is an invariant subspace of the regular representation $(R, \mathbb{C}[G])$.

Proof. Let (e_1, e_2, \ldots, e_n) be a basis of V. Denote by $g \mapsto \pi(g)_{ij}, 1 \leq i, j \leq n$, the matrix coefficients of π in this basis. Then $M(\pi)$ is spanned by these functions.

Let $1 \leq p, q \leq n$. Put $f(g) = \pi(g)_{pq}$ for $g \in G$. Then we have
\[(R(g)f)(h) = f(hg) = \pi(hg)_{pq} = \sum_{s=1}^{n} \pi(h)_{ps} \pi(g)_{sq} \]
for all $h \in G$. Therefore, $R(g)f$ is a linear combination of matrix coefficients of π, i.e., $R(g)f \in M(\pi)$. It follows that $M(\pi)$ is invariant for $R(g)$. \qed
The above calculation proves the following result.

1.7.4. **Proposition.** Let ν and π be two inequivalent irreducible representations of G. Then $M(\nu) \perp M(\pi)$.

Consider now an irreducible representation (π, V). As above, we have

$$\dim \pi \sum_{s=1}^{\dim \pi} \frac{1}{[G]} \sum_{g \in G} \pi(g)_{rs} \pi(g^{-1})_{pq} = \frac{\text{tr} A}{\dim \pi} \delta_{rq}.$$

By selecting A such that $A_{kl} = 1$ for some $k \neq l$, and all other entries are 0, we get

$$\frac{1}{[G]} \sum_{g \in G} \pi(g)_{rk} \pi(g^{-1})_{lq} = 0.$$

If we select A such that $A_{kk} = 1$ for some k, and all other entries are 0, we get

$$\frac{1}{[G]} \sum_{g \in G} \pi(g)_{rk} \pi(g^{-1})_{kq} = \frac{1}{\dim \pi} \delta_{kl} \delta_{rq}.$$

Therefore, we have

$$\frac{1}{[G]} \sum_{g \in G} \pi(g)_{rk} \pi(g^{-1})_{lq} = \frac{1}{\dim \pi} \delta_{kl} \delta_{rq}$$

and

$$\frac{1}{[G]} \sum_{g \in G} \pi(g)_{rk} \pi(g^{-1})_{ql} = \frac{1}{\dim \pi} \delta_{kl} \delta_{rq}$$

for all $1 \leq k, l, q, r \leq \dim \pi$. These are Schur orthogonality relations. This implies that $(\pi(g)_{ij}; 1 \leq i, j \leq \dim \pi)$ is an orthogonal basis of $M(\pi)$.

1.7.5. **Theorem.** Let (π, V) be an irreducible representation of G. Then $\dim M(\pi) = (\dim \pi)^2$.

The next result describes the structure of regular representation.

1.7.6. **Theorem.** We have

$$\mathbb{C}[G] = \bigoplus_{\pi \in \hat{G}} M(\pi).$$

Proof. By 1.7.3, the subspaces $M(\pi)$, $\pi \in \hat{G}$, are invariant subspaces of $(R, \mathbb{C}[G])$. Therefore, their orthogonal sum $M = \bigoplus_{\pi \in \hat{G}} M(\pi)$ is an invariant subspace in $(R, \mathbb{C}[G])$.

Let M^\perp be the orthogonal complement of M. Then M^\perp is also an invariant subspace since R is unitary. Assume that M^\perp is different from $\{0\}$. Then it contains an irreducible representation (ν, U) of G by 1.2.3. Let (f_1, f_2, \ldots, f_m) be a basis of U. Then we have

$$\nu(g) f_i = \sum_{j=1}^{m} \pi(g)_{ji} f_j.$$

Therefore, we have

$$f_i(g) = (R(g) f_i)(1) = (\nu(g) f_i)(1) = \sum_{j=1}^{m} \nu(g)_{ji} f_j(1)$$
for all \(g \in G \). Hence, we have \(f_i \in M(\nu) \subseteq M \). Therefore, \(f_i \) is orthogonal on itself, and \(f_i = 0 \). This contradicts our choice. It follows that \(M^\perp = \{0\} \), i.e., \(M = \mathbb{C}[G] \). □

This has the following consequence.

1.7.7. Corollary. We have

\[
[G] = \sum_{\pi \in \hat{G}} (\dim(\pi))^2.
\]

1.8. Characters and central functions. Let \((\pi, V)\) be a finite-dimensional representation of \(G \). Define the function \(\text{ch}(\pi) : G \rightarrow \mathbb{C} \) by

\[
\text{ch}(\pi)(g) = \text{tr} \pi(g)
\]

for \(g \in G \). The function \(\text{ch}(\pi) \) on \(G \) is called the character of \(\pi \). The character of \(\pi \) depends only on the equivalence class of \(\pi \).

1.8.1. Example. Let \((R, \mathbb{C}[G])\) be the regular representation of \(G \). For any \(g \in G \), define the function \(\delta_g \) which is equal 1 at \(g \) and 0 everywhere else. Clearly, \((\delta_g, g \in G)\) is a basis of \(\mathbb{C}[G] \).

Let \(g \in G \). Then we have

\[
(R(g)\delta_h)(k) = \delta_h(kg) = \begin{cases} 1, & \text{if } k = hg^{-1}; \\ 0, & \text{if } k \neq hg^{-1} \end{cases} = \delta_{hg^{-1}}(k)
\]

for all \(k \in G \). Hence \(R(g)\delta_h = \delta_{hg^{-1}} \) for all \(h \in G \). It follows that the matrix of \(R(g) \) has nonzero coefficients on the diagonal if and only if \(g = 1 \). Hence we see that \(\text{tr} R(g) = 0 \) if \(g \neq 1 \) and \(\text{tr} R(1) = \dim(R) = [G] \). Therefore, we have \(\text{ch}(R) = [G] \cdot \delta_1 \).

Moreover, if \(\pi = \nu \oplus \rho \) we have

\[
\text{ch}(\pi) = \text{ch}(\nu) + \text{ch}(\rho).
\]

Hence, the character map defines a homomorphism of the Grothendieck group of \(\text{Rep}_{\text{fd}}(G) \) into functions on \(G \).

1.8.2. Theorem. (i) Let \((\pi, V)\) and \((\nu, U)\) be two irreducible representations of \(G \). If \(\pi \) is not equivalent to \(\nu \) we have \((\text{ch}(\pi) | \text{ch}(\nu)) = 0 \).

(ii) Let \((\pi, V)\) be irreducible representation of \(G \). Then we have \((\text{ch}(\pi) | \text{ch}(\pi)) = 1 \).

Proof. This follows immediately from Schur orthogonality relations. □

Therefore, \((\text{ch}(\pi); \pi \in \hat{G})\) is an orthonormal family of functions in \(\mathbb{C}[G] \).

Moreover we see that

\[
\dim \text{Hom}_G(U, V) = (\text{ch}(\nu) | \text{ch}(\pi))
\]

for any two finite-dimensional representations of \(G \).

Clearly, if \(g, h \in G \) we have

\[
\text{ch}(\pi)(hgh^{-1}) = \text{tr}(\pi(hgh^{-1})) = \text{tr}(\pi(h)\pi(g)\pi(h)^{-1}) = \text{tr}(\pi(g) = \text{ch}(\pi)(g).
\]

Hence, characters are constant on conjugacy classes in \(G \).

This has the following consequence.
1.8.3. Proposition. Let (π, V) be an irreducible representation of G. Let f be a matrix coefficient of π. Then

$$\frac{1}{|G|} \sum_{h \in G} f(hg^{-1}) = \frac{f(1)}{\dim \pi} \text{ch}(\pi)(g)$$

for any $g \in G$.

Proof. Clearly, both sides of the equality are linear forms in f on the space $M(\pi)$. Therefore, it is enough to check the equality on a basis of $M(\pi)$.

By 1.6.1 we can assume that π is unitary. Let $(e_i; 1 \leq i \leq \dim \pi)$ be an orthonormal basis of V. Let $g \mapsto \pi(g)_{ij}$ the matrix coefficients of π in that basis. Then they are a basis of $M(\pi)$.

For these functions we have

$$\frac{1}{|G|} \sum_{h \in G} \pi(hg^{-1})_{ij} = \frac{1}{|G|} \sum_{h \in G} \left(\sum_{k=1}^{\dim \pi} \sum_{l=1}^{\dim \pi} \pi(h)_{ik} \pi(g)_{kl} \pi(h^{-1})_{lj} \right)$$

$$= \sum_{k=1}^{\dim \pi} \sum_{l=1}^{\dim \pi} \pi(g)_{kl} \left(\frac{1}{|G|} \sum_{h \in G} \pi(h)_{ik} \pi(h)_{lj} \right) = \frac{1}{\dim \pi} \sum_{k=1}^{\dim \pi} \sum_{l=1}^{\dim \pi} \pi(g)_{kl} \delta_{ij} \delta_{kl}$$

$$= \frac{1}{\dim \pi} \sum_{k=1}^{\dim \pi} \pi(g)_{kk} \delta_{ij} = \frac{1}{\dim \pi} \text{ch}(\pi)(g) \delta_{ij} = \frac{1}{\dim \pi} \text{ch}(\pi)(g)\pi(1)_{ij}.$$

using Schur orthogonality relations. \qed

We say that a function f on G is central if it is constant on conjugacy classes in G. Denote by $C(G)$ the vector subspace of $\mathbb{C}[G]$ consisting of all central functions. Clearly, the dimension of $C(G)$ is equal to the number of conjugacy classes in G.

By 1.8.2, $(\text{ch}(\pi); \pi \in \hat{G})$ is an orthonormal family of functions in $C(G)$.

1.8.4. Theorem. $(\text{ch}(\pi); \pi \in \hat{G})$ is an orthonormal basis of $C(G)$.

Proof. We already know that $(\text{ch}(\pi); \pi \in \hat{G})$ is an orthonormal family in $C(G)$.

Let f be a central function on G orthogonal on all characters $\text{ch}(\pi)$, $\pi \in \hat{G}$. Let $\phi \in M(\pi)$, then we have

$$(\phi \mid f) = \frac{1}{|G|} \sum_{g \in G} \phi(g)f(g) = \frac{1}{|G|} \sum_{g \in G} \left(\frac{1}{|G|} \sum_{h \in G} \phi(g)f(h^{-1}gh) \right)$$

$$= \frac{1}{|G|} \sum_{h \in G} \left(\frac{1}{|G|} \sum_{g \in G} \phi(g)f(h^{-1}gh) \right) = \frac{1}{|G|} \sum_{g \in G} \phi(hg^{-1})f(g),$$

since f is a central function. By 1.8.3, it follows that

$$(\phi \mid f) = \frac{f(1)}{\dim \pi} \frac{1}{|G|} \sum_{g \in G} \text{ch}(\pi)(g)f(g) = \frac{f(1)}{\dim \pi} \text{ch}(\pi)(f) = 0.$$

Hence f is orthogonal to $M(\pi)$ for all $\pi \in \hat{G}$. By 1.7.6, it follows that f is orthogonal to $\mathbb{C}[G]$. Hence $f = 0$. Therefore, $(\text{ch}(\pi); \pi \in \hat{G})$ is a maximal orthonormal family in $C(G)$, i.e., it is an orthonormal basis. \qed

Therefore, $\dim C(G)$ is equal to $\text{Card}(\hat{G})$. This implies the following result.
1.8.5. **Corollary.** \(\text{Card}(G) \) is equal to the number of conjugacy classes in \(G \).

2. **Frobenius Reciprocity**

2.1. **Restriction functor.** Let \(G \) be a a finite group. Let \(H \) be the a subgroup of \(G \). Denote by \(\text{Rep}(G) \), resp. \(\text{Rep}(H) \), the categories of representations of \(G \), resp. \(H \).

Let \((\pi, V)\) be a representation in \(\text{Rep}(G) \). Denote by \(\nu \) the restriction of function \(\pi : G \longrightarrow \text{GL}(V) \) to \(H \). Then \((\nu, V)\) is a representation in \(\text{Rep}(H) \). This representation is called the restriction of \(\pi \) to \(H \) and denoted by \(\text{Res}_H^G(\pi) \) (when there is no ambiguity we shall just write \(\text{Res}(\pi) \)).

Clearly, \(\text{Res}_H^G \) is an exact functor form the abelian category \(\text{Rep}(G) \) into the abelian category \(\text{Rep}(H) \).

2.2. **Induction functor.** Let \((\nu, U)\) be a representation of \(H \). Denote by \(V = \text{Ind}(U) \) the space of all functions \(F : G \longrightarrow U \) such that \(F(hg) = \nu(h)F(g) \) for all \(h \in H \) and \(g \in G \). Let \(F \) be the function in \(V \) and \(g \in G \). Then the function \(\rho(g)F : G \longrightarrow U \) defined by \((\rho(g)F)(g') = F(g'g) \) for all \(g' \in G \), satisfies

\[
(\rho(g)F)(hg') = F(hg'g) = \nu(h)F(g'g) = \nu(h)(\rho(g)F)(g')
\]

for all \(h \in H \) and \(g' \in G \). Therefore \(\rho(g)F \) is a function in \(V \).

Clearly \(\rho(g) \) is a linear operator on \(V \) for any \(g \in G \). Moreover, \(\rho(1) \) is the identity on \(V \). For any \(F \) in \(V \) we have

\[
(\rho(gg')F)(g'') = F(g''gg') = (\rho(g')F)(g'') = (\rho(g)(\rho(g')F))(g'')
\]

for all \(g'', g' \in G \), i.e., we have

\[
\rho(gg')F = \rho(g)(\rho(g')F)
\]

for \(g, g' \in G \). Therefore, \(\rho(gg') = \rho(g)\rho(g') \) for any \(g, g' \in G \) and \(\rho \) is a representation of \(G \) on \(V \).

The representation \((\rho, V)\) of \(G \) is called the induced representation and denoted by \(\text{Ind}_H^G(\nu) \).

If \(H \) is the identity subgroup and \(\nu \) is the trivial representation, the corresponding induced representation is the regular representation of \(G \).

Let \((\nu, U)\) and \((\nu', U')\) be two representations of \(H \) and \(\phi \) a morphism of \(\nu \) into \(\nu' \). Let \(F \) be a function in \(\text{Ind}(U) \). Then \(\Phi(F)(g) = \phi(F(g)) \) for all \(g \in G \) is a function from \(G \) into \(U' \). Moreover, we have

\[
\Phi(F)(hg) = \phi(F(hg)) = \phi(\nu(h)F(g)) = \nu'(h)\phi(F(g)) = \nu'(h)\Phi(F)(g)
\]

for all \(h \in H \) and \(g \in G \). Hence, \(\Phi(F) \) is in \(\text{Ind}(U') \). Clearly, \(\Phi \) is a linear map from \(\text{Ind}(U) \) into \(\text{Ind}(U') \).

Moreover, we have

\[
(\rho'(g)\Phi(F))(g') = \Phi(F)(g'g) = \phi(F(g'g)) = \phi((\rho(g)F)(g')) = \Phi(\rho(g)F)(g')
\]

for all \(g' \in G \). Therefore, \(\rho'(g) \circ \Phi = \Phi \circ \rho(g) \) for all \(g \in G \), and \(\Phi \) is a morphism of \(\text{Ind}_H^G(\nu) \) into \(\text{Ind}_H^G(\nu') \). We put \(\text{Ind}_H^G(\phi) = \Phi \). It is straightforward to check that in this way \(\text{Ind}_H^G \) becomes an additive functor from \(\text{Rep}(H) \) into \(\text{Rep}(G) \).

We call \(\text{Ind}_H^G : \text{Rep}(H) \longrightarrow \text{Rep}(G) \) the induction functor.

The next result is a functorial form of Frobenius reciprocity.
2.2.1. **Theorem.** The induction functor \(\text{Ind}^G_H : \text{Rep}(H) \to \text{Rep}(G) \) is a right adjoint functor of the restriction functor \(\text{Res}^G_H : \text{Rep}(G) \to \text{Rep}(H) \).

Proof. Let \((\nu, U)\) a representation of \(H \). Consider the induced representation \(\text{Ind}^G_H(\nu) \) of \(G \). The evaluation map \(e : \text{Ind}(U) \to U \) given by \(e(F) = F(1) \) for \(F \in \text{Ind}(U) \), satisfies

\[
 e(\rho(h)F)(1) = (\rho(h)F)(1) = F(h) = \nu(h)F(1) = \nu(h)e(F)
\]

for all \(F \in \text{Ind}(U) \), i.e., \(e \) is a morphism of representations of \(H \).

Let \((\pi, V)\) be a representation of \(G \). Let \(\Psi : V \to \text{Ind}(U) \) be a morphism of representations of \(G \). Then the composition \(e \circ \Psi \) is a morphism of \(\text{Res}^G_H(\pi) \) into \(\nu \). Denote the linear map \(\Psi \mapsto e \circ \Psi \) from \(\text{Hom}_G(\pi, \text{Ind}^G_H(\nu)) \) into \(\text{Hom}_H(\text{Res}^G_H(\pi), \nu) \) by \(A \).

Let \(\phi : V \to U \) be a morphism of representations of \(H \). Let \(v \in V \). Then we consider the function \(F_v : G \to U \) given by \(F_v(g) = \phi(\pi(g)v) \) for any \(g \in G \). First, for \(h \in H \), we have

\[
 F_v(hg) = \phi(\pi(hg)v) = \phi(\pi(h)\pi(g)v) = \nu(h)\phi(\pi(g)v) = \nu(h)F_v(g)
\]

for all \(g \in G \). Hence \(F_v \) is a function in \(\text{Ind}(U) \). Consider the map \(\Phi : V \to \text{Ind}(U) \) defined by \(\Phi(v) = F_v \). Clearly,

\[
 \Phi(v + v')(g) = F_{v + v'}(g) = \phi(\pi(g)(v + v')) = \phi(\pi(g)v) + \phi(\pi(g)v')
\]

\[
 = F_v(g) + F_{v'}(g) = \Phi(v)(g) + \Phi(v')(g)
\]

for any \(g \in G \), hence we have \(\Phi(v + v') = \Phi(v) + \Phi(v') \) for all \(v, v' \in V \). In addition,

\[
 \Phi(\alpha v)(g) = \alpha \phi(\pi(g)v) = \alpha \Phi(v)(g)
\]

for all \(g \in G \), hence we have \(\Phi(\alpha v) = \alpha \Phi(v) \) for all \(\alpha \in \mathbb{C} \) and \(v \in V \). It follows that \(\Phi \) is a linear map from \(V \) into \(\text{Ind}(U) \). Moreover, we have

\[
 \Phi(\pi(g)v)(g') = \phi(\pi(g')\pi(g)v) = \phi(\pi(g'g)v) = \Phi(v)(g'g) = (\rho(g)\Phi(v))(g')
\]

for all \(g' \in V \). Hence, we have \(\Phi(\pi(g)v) = \rho(g)\Phi(v) \) for all \(g \in G \) and \(v \in V \). Therefore, \(\Phi \) is a morphism of representations \((\pi, V) \) and \(\text{Ind}^G_H(\nu) \) of \(G \). Denote the map \(\phi \mapsto \Phi \) from \(\text{Hom}_H(\text{Res}^G_H(\pi), \nu) \) into \(\text{Hom}_G(\pi, \text{Ind}^G_H(\nu)) \) by \(B \).

Clearly, for \(\phi \in \text{Hom}_H(\text{Res}^G_H(\pi), \nu) \), we have

\[
 ((A \circ B)(\phi))(v) = (A(\Phi))(v) = \Phi(v)(1) = F_v(1) = \phi(v)
\]

for all \(v \in V \). Therefore, \(A \circ B \) is the identity map.

In addition, for \(\Psi \in \text{Hom}_G(\pi, \text{Ind}^G_H(\nu)) \), we have

\[
 (((B \circ A)(\Psi))(v))(g) = (B(A(\Psi))(v))(g) = A(\Psi)(\pi(g)v)
\]

\[
 = (\Psi(\pi(g)v))(1) = (\rho(g)\Psi(v))(1) = \Psi(v)(g)
\]

for all \(g \in G \). Hence, we have \(((B \circ A)(\Psi))(v) = \Psi(v) \) for all \(v \in V \), i.e., \((B \circ A)(\Psi) = \Psi \) for all \(\Psi \) and \(B \circ A \) is also the identity map.

By Maschke’s theorem, \(\text{Rep}(H) \) is semisimple, and every short exact sequence splits. Therefore we have the following result.

2.2.2. **Theorem.** The induction functor \(\text{Ind}^G_H : \text{Rep}(H) \to \text{Rep}(G) \) is exact.
2.3. **Induction in stages.** Let K be a subgroup of H. Then we have $\text{Res}^G_K = \text{Res}^H_K \circ \text{Res}^G_H$ as functors from $\text{Rep}(G)$ into $\text{Rep}(K)$. Since induction functors are right adjoints, this immediately implies the following result which is called the *induction in stages*.

2.3.1. **Theorem.** Let H be a subgroup of G and K a subgroup of H. Then the functors Ind^G_K and $\text{Ind}^G_H \circ \text{Ind}^H_K$ are isomorphic.

2.4. **Frobenius Reciprocity.** Obviously, the restriction functor Res^G_H maps finite-dimensional representations into finite dimensional representations. From the following result we see that the induction functor Ind^G_H does the same.

2.4.1. **Proposition.** Let (ν, U) be a finite-dimensional representation of H. Then

$$\dim \text{Ind}^G_H(\nu) = \text{Card}(H \setminus G) \cdot \dim(\nu).$$

Proof. Let C be a right H-coset in G. Let g_C be an element in C. Then the functions

$$F_{C,v}(g) = \begin{cases} \nu(gg_C^{-1})v & \text{for } g \in Hg_C; \\ 0 & \text{for } g \notin Hg_C; \end{cases}$$

span $\text{Ind}(U)$. If e_1, e_2, \ldots, e_m is a basis of U, the family F_{C,e_i}, $C \in H \setminus G$, $1 \leq i \leq m$, is a basis of $\text{Ind}(U)$. \hfill \Box$

Let (π, V) be an irreducible representation of G and ν an irreducible representation of H. Then $\text{Ind}^G_H(\nu)$ is finite-dimensional by 2.4.1 and a direct sum of irreducible representations of G. The multiplicity of π in this direct sum is $\text{dim}_C \text{Hom}_G(\pi, \text{Ind}^G_H(\nu))$ by Schur Lemma. By 2.2.1, we conclude that

$$\text{dim}_C \text{Hom}_G(\pi, \text{Ind}^G_H(\nu)) = \text{dim}_C \text{Hom}_H(\text{Res}^G_H(\pi), \nu).$$

The latter expression is the multiplicity of ν in $\text{Res}^G_H(\pi)$.

This leads to the following version of Frobenius reciprocity for representations of finite groups.

2.4.2. **Theorem.** Let π be an irreducible representation of G and ν an irreducible representation of H. Then the multiplicity of π in $\text{Ind}^G_H(\nu)$ is equal to the multiplicity of ν in $\text{Res}^G_H(\pi)$.

2.5. **An example.** Let S_3 be the symmetric group in three letters. We shall show how above results allow us to construct irreducible representations of S_3.

The order of S_3 is $3! = 6$. It contains the normal subgroup A_3 consisting of all even permutations which is of order 3. The quotient group S_3/A_3 consists of two elements.

The identity element is $(1 \ 2 \ 3)$. The other even permutations are $(2 \ 3 \ 1)$ and $(3 \ 1 \ 2)$. We have $(2 \ 1 \ 3)^2 = 1$ and

$$(2 \ 1 \ 3)(2 \ 3 \ 1)(2 \ 1 \ 3) = (3 \ 1 \ 2).$$

Hence nontrivial even permutations form a conjugacy class.

The odd permutations are $(2 \ 1 \ 3)$, $(1 \ 3 \ 2)$ and $(3 \ 2 \ 1)$. Since $(2 \ 1 \ 3)(1 \ 3 \ 2)(2 \ 1 \ 3) = (3 \ 1 \ 2)$, $(1 \ 3 \ 2)$ and $(3 \ 2 \ 1)$ are conjugate. On the other hand, $(1 \ 3 \ 2)^2 = 1$ and

$$(1 \ 3 \ 2)(2 \ 3 \ 1)(1 \ 3 \ 2) = (3 \ 2 \ 1), \text{ and } (2 \ 3 \ 1) \text{ and } (3 \ 2 \ 1) \text{ are conjugate. Therefore all odd permutations form a conjugacy class. It follows that } S_3 \text{ has three conjugacy classes. Therefore } S_3 \text{ has three irreducible representations.}$$
Clearly, two irreducible representations of S_3 are the trivial representation and the sign representation. Since $1^2 + 1^2 + 2^2 = 6$, by Burnside theorem, the third irreducible representation π is two-dimensional. By 1.8.1, the character of regular representation is 6 at the identity element and 0 on all other elements. By Burnside theorem the character of π is one half of the difference of the characters of regular representation and the direct sum of trivial and sign representation. The latter theorem the character of π is 2 on even elements and 0 on odd elements. Therefore, the character of π is 2 at the identity, -1 on nontrivial even elements and 0 at odd elements. It follows that the character of π is supported on A_3.

The group A_3 is cyclic with three elements. It has two nontrivial one-dimensional representations. If we pick a generator $a = (231)$ of A_3 one character maps a into $e^{i\frac{2\pi}{3}}$ and the other maps a to $e^{-i\frac{2\pi}{3}}$. We call the first one ν. By a direct calculation we see that $(231)a(231) = a^{-1}$. The restriction of π to A_3 is a direct sum of two characters of A_3. Since we know that $\text{ch}(\pi)(a) = -1$ we see that it must be

$$\nu(a) + \nu(a)^{-1} = e^{i\frac{2\pi}{3}} + e^{-i\frac{2\pi}{3}} = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = -1.$$

Therefore, $\text{Res}^{S_3}_{A_3}(\pi) = \nu \oplus \nu^{-1}$.

By Frobenius reciprocity, we have

$$\dim \text{Hom}_{S_3}(\pi, \text{Ind}^{S_3}_{A_3}(\nu)) = \dim \text{Hom}_{A_3}(\text{Res}^{S_3}_{A_3}(\pi), \nu) = 1.$$

Hence, π is equivalent to a subrepresentation of $\text{Ind}^{S_3}_{A_3}(\nu)$. Since their dimensions are equal, we have $\pi \cong \text{Ind}^{S_3}_{A_3}(\nu)$. Analogously, we prove that $\pi \cong \text{Ind}^{S_3}_{A_3}(\nu^{-1})$.

Therefore we proved that the dual of S_3 consists of the classes of the trivial representation, sign representation and the induced representation $\text{Ind}^{S_3}_{A_3}(\nu) \cong \text{Ind}^{S_3}_{A_3}(\nu^{-1})$.

2.6. **Characters of induced representations.** Let (ν, U) be a finite-dimensional representation of H. Let $(e_i; 1 \leq i \leq n)$ be a basis of U. In the proof of 2.4.1, we constructed a basis $(F_{C,i}; C \in H \backslash G, 1 \leq i \leq n)$ of $\text{Ind}(U)$. Let $C \in H \backslash G$ and $1 \leq i \leq n$. Let $g \in G$. Then

$$(\rho(g)F_{C,i})(g') = F_{C,i}(g'g)$$

for all $g' \in G$, i.e., $\rho(g)F_{C,i}$ is supported on the coset $D = C \cdot g^{-1}$. Therefore, it is a linear combination of $F_{D,j}, 1 \leq j \leq n$, i.e.,

$$\rho(g)F_{C,i} = \sum_{j=1}^{n} c_j F_{D,j}.$$

Hence, $\rho(g)F_{C,i}$ is a linear combination of $F_{C,j}, 1 \leq j \leq n$, if and only if $D = C$, i.e., g_C and gcg_C^{-1} are in the same H-coset. This implies that $gcg = h g_C$ for some $h \in H$, i.e., $g_C^{-1} g g_C^{-1} = h \in H$. Conversely, if $g_C^{-1} g g_C^{-1} \in H$ for some C, we have

$$C = H g_C = H g_C g = C \cdot g$$

and g_C and gcg are in the same H-coset. Moreover, we have

$$(\rho(g)F_{C,i})(g_C) = F_{C,i}(g_C g) = F_{C,i}(h g_C) = \nu(h) F_{C,i}(g_C)$$

$$= \nu(h) e_i = \sum_{j=1}^{n} \nu(h)_{ji} e_j = \sum_{j=1}^{n} \nu(h)_{ji} F_{C,j}(g_C).$$
This in turn implies that
\[\rho(g)_{F_{C,i}} = \sum_{j=1}^{n} \nu(h)_{j} F_{C,j} \]
if \(C \cdot g^{-1} = C \). Therefore, the matrix of \(\rho(g) \) has a nonzero diagonal entry in the basis \(\{ F_{C,i}, C \in H \setminus G, 1 \leq i \leq n \} \), only if \(C = C \cdot g \) and then these entries are \(\nu(h)_{jj}, 1 \leq j \leq n \). This implies that
\[
\text{ch} \left(\text{Ind}_{H}^{G}(\nu) \right)(g) = \sum_{C \cdot g = C} \text{ch}(\nu)(g_{C}g_{C}^{-1}) = \frac{1}{|H|} \sum_{h \in H} \sum_{g_{C}g_{C}^{-1} \in H} \text{ch}(\nu)(h_{C}g_{C}g_{C}^{-1}h^{-1}) = \frac{1}{|H|} \sum_{g'g^{-1} \in H} \text{ch}(\nu)(g'g'^{-1}).
\]

We extend the character of \(\nu \) to a function \(\chi_{\nu} \) on \(G \) which vanishes outside \(H \). Then we get the following result.

2.6.1. Theorem. The character of induced representation \(\text{Ind}_{H}^{G}(\nu) \) is equal to
\[
\text{ch}(\text{Ind}_{H}^{G}(\nu))(g) = \frac{1}{|H|} \sum_{g' \in G} \chi_{\nu}(g'g'^{-1}).
\]

Therefore the character of the induced representation is proportional to the average of the function \(\chi_{\nu} \) on the equivalence classes in \(G \).

In particular we have the following result.

2.6.2. Corollary. The character of \(\text{Ind}_{H}^{G}(\nu) \) is supported in the union of conjugacy classes in \(G \) which intersect \(H \).

The result is particularly simple if \(H \) is a normal subgroup of \(G \).

2.6.3. Corollary. Let \(H \) be a normal subgroup of \(G \). Then:
\begin{enumerate}
\item the support of the character of \(\text{Ind}_{H}^{G}(\nu) \) is in \(H \);
\item we have
\[
\text{ch}(\text{Ind}_{H}^{G}(\nu))(h) = \frac{1}{|H|} \sum_{g \in G} \text{ch}(\nu)(ghg^{-1})
\]
for any \(h \in H \).
\end{enumerate}

2.7. An example. Consider again the representation \(\pi \cong \text{Ind}_{A_{3}}^{S_{3}}(\nu) \). By the above formula, its character vanishes outside of \(A_{3} \) and is equal to
\[
\text{ch}(\pi)(h) = \frac{1}{3} \sum_{g \in S_{3}} \nu(ghg^{-1})
\]
for \(h \in A_{3} \). If \(h = 1 \), we see that
\[
\text{ch}(\pi)(1) = \frac{6}{3} = 2.
\]
If \(h = a \), we have \(gag^{-1} = a \) for \(g \in A_{3} \). If \(g \) is not in \(A_{3} \), it is in the other \(A_{3} \)-coset. Therefore, it is in the coset represented by \((2 1 3) \). By the calculation done before,
$gag^{-1} = a^{-1}$ for $g \notin A_3$. Therefore, we have

$$\text{ch}(\pi)(a) = \frac{1}{3} \sum_{g \in S_3} \nu(gag^{-1}) = \nu(a) + \nu(a^{-1}) = -1.$$

This agrees with the calculation of the character of π done before.

2.8. Characters and Frobenius reciprocity. Now we are going to give a proof of 2.4.2 based on character formula for the induced representation and the orthogonality relations.

We denote by $(\cdot \mid \cdot)_G$ the inner product on $\mathbb{C}[G]$ and by $(\cdot \mid \cdot)_H$ the inner product on $\mathbb{C}[H]$. Let π be a finite-dimensional representation of G and ν a finite-dimensional representation of H. Then we have

$$\begin{aligned}
(\text{ch}(\text{Ind}_G^H(\nu)) \mid \text{ch}(\pi))_G &= \frac{1}{|G|} \sum_{g \in G} \text{ch}(\text{Ind}_G^H(\nu))(g) \overline{\text{ch}(\pi)(g)} \\
&= \frac{1}{|G||H|} \sum_{g \in G} \sum_{g' \in G} \chi_\nu(g' gg'^{-1}) \overline{\text{ch}(\pi)(g)} \\
&= \frac{1}{|H|} \sum_{h \in H} \frac{1}{|G|} \sum_{g \in G} \chi_\nu(g) \overline{\text{ch}(\pi)(h)} \\
&= (\text{ch}(\nu) \mid \text{ch}(\text{Res}_H^G(\pi)))_H.
\end{aligned}$$