
NOTES ON REPRESENTATIONS OF COMPACT GROUPS

DRAGAN MILIČIĆ

1. Haar measure on compact groups

1.1. Compact groups. Let G be a group. We say that G is a topological group if
G is equipped with hausdorff topology such that the multiplication (g, h) 7−→ gh
from the product space G × G into G and the inversion g 7−→ g−1 from G into G
are continuous functions.

Let G and H be two topological groups. A morphism of topological groups
ϕ : G −→ H is a group homomorphism which is also continuous.

Topological groups and morphisms of topological groups for the category of topo-
logical groups.

Let G be a topological group. Let Gopp be the topological space G with the
multiplication (g, h) 7−→ g ? h = h · g. Then Gopp is also a topological group which
we call the opposite group of G. Clearly, the inverse of an element g ∈ G is the
same as the inverse in Gopp. Moreover, the map g 7−→ g−1 is an isomorphism of G
with Gopp. Clearly, we have (Gopp)opp = G.

A topological group G is compact, if G is a compact space. The opposite group
of a compact group is compact.

We shall need the following fact. Let G be a topological group. We say that
a function φ : G −→ C is right (resp. left) uniformly continuous on G if for any
ε > 0 there exists an open neighborhood U of 1 such that |φ(g) − φ(h)| < ε for
any g, h ∈ G such that gh−1 ∈ U (resp. g−1h ∈ U). Clearly, a right uniformly
continuous function on G is left uniformly continuous function on Gopp.

1.1.1. Lemma. Let G be a compact group. Let φ be a continuous function on G.
Then φ is right and left uniformly continuous on G.

Proof. By the above discussion, it is enough to prove that φ is right uniformly
continuous.

Let ε > 0. Let consider the set A = {(g, g′) ∈ G × G | |φ(g) − φ(g′)| < ε}.
Then A is an open set in G × G. Let U be an open neighborhood of 1 in G and
BU = {(g, g′) ∈ G × G | g′g−1 ∈ U}. Since the function (g, g′) 7−→ g′g−1 is
continuous on G×G the set BU is open. It is enough to show that there exists an
open neighborhood V of 1 in G such that BV ⊂ A.

Clearly, BU are open sets containing the diagonal ∆ in G×G. Moreover, under
the homomorphism κ of G×G given by κ(g, g′) = (g, g′g−1), g, g′ ∈ G, the sets BU
correspond to the sets G×U . In addition, the diagonal ∆ corresponds to G×{1}.
Assume that the open set O corresponds to A.

By the definition of product topology, for any g ∈ G there exist neighborhoods
Ug of 1 and Vg of g such that Vg × Ug is a neighborhood of (g, 1) contained in
O. Clearly, (Vg; g ∈ G) is an open cover of G. Since G is compact, there exists a
finite subcovering (Vgi ; 1 ≤ i ≤ n) of G. Put U =

⋂n
i=1 Ugi . Then U is an open

1



2 DRAGAN MILIČIĆ

neighborhood of 1 in G. Moreover, G× U is an open set in G×G contained in O.
Therefore BU ⊂ A. �

Therefore, we can say that a continuous function on G is uniformly continuous.

1.2. A compactness criterion. Let X be a compact space. Denote by C(X) the
space of all complex valued continuous functions on X. Let ‖f‖ = supx∈X |f(x)|
for any f ∈ C(X). Then f 7−→ ‖f‖ is a norm on C(X), C(X) is a Banach space.

Let S be a subset of C(X).
We say that S is equicontinuous if for any ε > 0 and x ∈ X there exists a

neighborhood U of x such that |f(y)− f(x)| < ε for all y ∈ U and f ∈ S.
We say that S is pointwise bounded if for any x ∈ X there exists M > 0 such

that |f(x)| ≤M for all f ∈ S.
The aim of this section is to establish the following theorem.

1.2.1. Theorem (Arzelà-Ascoli). Let S be a pointwise bounded, equicontinuous
subset of C(X). Then the closure of S is a compact subset of C(X).

Proof. We first prove that S is bounded in C(X). Let ε > 0. Since S is equicontin-
uous, for any x ∈ X, there exists an open neighborhood Ux of x such that y ∈ Ux
implies that |f(y) − f(x)| < ε for all f ∈ S. Since X is compact, there exists a
finite set of points x1, x2, . . . , xn ∈ X such that Ux1

, Ux2
, . . . , Uxn cover X.

Since S is pointwise bounded, there exists M ≥ 2ε such that |f(xi)| ≤ M
2 for all

1 ≤ i ≤ n and all f ∈ S. Let x ∈ X. Then x ∈ Uxi for some 1 ≤ i ≤ n. Therefore,
we have

|f(x)| ≤ |f(x)− f(xi)|+ |f(xi)| <
M

2
+ ε ≤M

for all f ∈ S. It follows that ‖f‖ ≤ M for all f ∈ S. Hence S is contained in a
closed ball of radius M centered at 0 in C(X).

Now we prove that S is contained in a finite family of balls of fixed small radius
centered in elements of S. We keep the choices from the first part of the proof.
Let D = {z ∈ C | |z| ≤ M}. Then D is compact. Consider the compact set Dn.
It has natural metric given by d(z, y) = max1≤i≤n |zi − yi|. There exist points
α1, α2, . . . , αm in Dn such that the balls Bi = {β ∈ Dn | d(αi, β) < ε} cover Dn.

Denote by Φ the map from S into Dn given by f 7−→ (f(x1), f(x2), . . . , f(xn)).
Then we can find a subfamily of the above cover ofDn consisting of balls intersecting
Φ(S). After a relabeling, we can assume that these balls are Bi for 1 ≤ i ≤ k. Let
f1, f2, . . . , fk be functions in S such that Φ(fi) is in the ball Bi for any 1 ≤ i ≤ k.
Denote by Ci the open ball of radius 2ε centered in Φ(fi). Let β ∈ Bi. Then
we have d(β, αi) < ε and d(Φ(fi), αi) < ε. Hence, we have d(β,Φ(fi)) < 2ε, i.e.,
Bi ⊂ Ci. It follows that Φ(S) is contained in the union of C1, C2, . . . , Ck.

Differently put, for any function f ∈ S, there exists 1 ≤ i ≤ k such that |f(xj)−
fi(xj)| < 2ε for all 1 ≤ j ≤ n.

Let x ∈ X. Then x ∈ Uxj for some 1 ≤ j ≤ n. Hence, we have

|f(x)− fi(x)| ≤ |f(x)− f(xj)|+ |f(xj)− fi(xj)|+ |fi(xj)− fi(x)| < 4ε,

i.e., ‖f − fi‖ < 4ε.
Now we can prove the compactness of the closure S̄ of S. Assume that S̄ is

not compact. Then there exists an open cover U of S̄ which doesn’t contain a
finite subcover. By the above remark, S̄ can be covered by finitely many closed
balls {f ∈ C(X) | ‖f − fi‖ ≤ 1} with fi ∈ S. Therefore, there exists a set K1
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which is the intersection of S̄ with one of the closed balls and which is not covered
by a finite subcover of U . By induction, we can construct a decreasing family
K1 ⊃ K2 ⊃ · · · ⊃ Kn ⊃ · · · of closed subsets of S̄ which are contained in closed
balls of radius 1

n centered in some point of S, such that none of Kn is covered by
a finite subcover of U .

Let (Fn;n ∈ N) be a sequence of functions such that Fn ∈ Kn for all n ∈ N.
Then Fp, Fq ∈ Kn for all p, q greater than n. Since Kn are contained in closed
balls of radius 1

n , ‖Fp − Fq‖ ≤ 2
n for all p, q greater than n. Hence, (Fn) is a

Cauchy sequence in C(X). Therefore, it converges to a function F ∈ C(X). This
function is in S̄ and therefore in one element V of the open cover U . Therefore,
for sufficiently large n, there exists a closed ball of radius 2

n centered in F which
is contained in V . Since F is also in Kn, we see that Kn is in V . This clearly
contradicts our construction of Kn. It follows that S̄ must be compact. �

1.3. Haar measure on compact groups. Let CR(G) be the space of real valued
functions on G. For any function f ∈ CR(G) we define the maximum M(f) =
maxg∈G f(g) and minimum m(f) = ming∈G f(g). Moreover, we denote by V (f) =
M(f)−m(f) the variation of f .

Clearly, the function f is constant on G if and only if V (f) = 0.
Let f, f ′ ∈ CR(G) be two functions such that ‖f − f ′‖ < ε. Then

f(g)− ε < f ′(g) < f(g) + ε

for all g ∈ G. This implies that

m(f)− ε < f ′(g) < M(f) + ε

for all g ∈ G, and

m(f)− ε < m(f ′) < M(f ′) < M(f) + ε.

Hence

V (f ′) = M(f ′)−m(f ′) < M(f)−m(f) + 2ε = V (f) + 2ε,

i.e., V (f ′)− V (f) < 2ε. By symmetry, we also have V (f)− V (f ′) < 2ε. It follows
that |V (f)− V (f ′)| < 2ε.

Therefore, we have the following result.

1.3.1. Lemma. The variation V is a continuous function on CR(G).

Let f ∈ CR(G) and a = (a1, a2, . . . , an) a finite sequence of points in G. We
define the (right) mean value µ(f,a) of f with respect to a as

µ(f,a)(g) =
1

n

n∑
i=1

f(gai)

for all g ∈ G. Clearly, µ(f,a) is a continuous real function on G.
If f is a constant function, µ(f,a) = f .
Clearly, mean value f 7−→ µ(f,a) is a linear map. Moreover, we have the

following result.

1.3.2. Lemma. (i) The linear map f 7−→ µ(f,a) is continuous. More pre-
cisely, we have

‖µ(f,a)‖ ≤ ‖f‖
for any f ∈ CR(G);



4 DRAGAN MILIČIĆ

(ii)
M(µ(f,a)) ≤M(f)

for any f ∈ CR(G);
(iii)

m(µ(f,a)) ≥ m(f)

for any f ∈ CR(G);
(iv)

V (µ(f,a)) ≤ V (f)

for any f ∈ CR(G).

Proof. (i) Clearly, we have

‖µ(f,a)‖ = max
g∈G
|µ(f,a)| ≤ 1

n

∑
g∈G

max
g∈G
|f(gai)| = ‖f‖.

(ii) We have

M(µ(f,a)) =
1

n
max
g∈G

(
n∑
i=1

f(gai)

)
≤ 1

n

n∑
i=1

max
g∈G

f(gai) = M(f).

(iii) We have

m(µ(f,a)) =
1

n
min
g∈G

(
n∑
i=1

f(gai)

)
≥ 1

n

n∑
i=1

min
g∈G

f(gai) = m(f).

(iv) By (ii) and (iii), we have

V (µ(f,a)) = M(µ(f,a))−m(µ(f,a)) ≤M(f)−m(f) = V (f).

�

Denote by Mf the set of mean values of f for all finite sequences in G.

1.3.3. Lemma. The set of functions Mf is uniformly bounded and equicontinuous.

Proof. By 1.3.2 (ii) and (iii), it follows that

m(f) ≤ m(µ(f,a)) ≤ µ(f,a)(g) ≤M(µ(f,a)) ≤M(f).

This implies that Mf is uniformly bounded.
Now we want to prove that Mf is equicontinuous. First, by 1.1.1, the function

f is uniformly continuous. Hence, for any ε > 0, there exists an open neighborhood
U of 1 in G such that |f(g) − f(h)| < ε if gh−1 ∈ U . Since, this implies that
(gai)(hai)

−1 = gh−1 ∈ U for any 1 ≤ i ≤ n, we see that

|µ(f,a)(g)− µ(f,a)(h)| = 1

n

∣∣∣∣∣
n∑
i=1

(f(gai)− f(hai))

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|f(gai)− f(hai)| < ε

for g ∈ hU . Hence, the family Mf is equicontinuous. �

By 1.2.1, we have the following consequence.

1.3.4. Lemma. The set Mf of all right mean values of f has compact closure in
CR(G).

We need another result on variation of mean value functions. Clearly, if f is a
constant function µ(f,a) = f for any a.
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1.3.5. Lemma. Let f be a function in CR(G). Assume that f is not a constant.
Then there exists a such that V (µ(f,a)) < V (f).

Proof. Since f is not constant, we have m(f) < M(f). Let C be such that m(f) <
C < M(f). Then there exists an open set V in G such that f(g) ≤ C for all
g ∈ V . Since the right translates of V cover G, by compactness of G we can find
a = (a1, a2, · · · , an) such that (V a−1

i , 1 ≤ i ≤ n) is an open cover of G. For any

g ∈ V a−1
i we have gai ∈ V and f(gai) ≤ C. Hence, we have

µ(f,a)(g) =
1

n

n∑
j=1

f(gaj) =
1

n

f(gai) +
∑
j 6=i

f(gaj)


≤ 1

n
(C + (n− 1)M(f)) < M(f).

On the other hand, by 1.3.2.(iii) we know that m(µ(f,a)) ≥ m(f) for any a.
Hence we have

V (µ(f,a)) = M(µ(f,a))−m(µ(f,a)) < M(f)−m(f) = V (f).

�

Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bm) be two finite sequences in G.
We define a · b = (aibj ; 1 ≤ i ≤ n, 1 ≤ j ≤ m).

1.3.6. Lemma. We have

µ(µ(f,b),a) = µ(f,b · a).

Proof. We have

µ(µ(f,b),a) =
1

m

m∑
i=1

µ(f,b)(gai) =
1

nm

m∑
j=1

n∑
i=1

f(gaibj) = µ(f,a · b).

�

1.3.7. Lemma. For any f ∈ CR(G), the closure Mf contains a constant function
on G.

Proof. By 1.3.4, we know that Mf is compact. Since, by 1.3.1, the variation V is

continuous on CR(G), it attains its minimum α at some ϕ ∈Mf .
Assume that ϕ is not a constant. By 1.3.5, there exists a such that V (µ(ϕ,a)) <

V (ϕ). Let α− V (µ(ϕ,a)) = ε > 0.
Since V and µ(·,a) are continuous maps by 1.3.1 and 1.3.2.(i), this implies that

there is b such that |V (µ(ϕ,a))− V (µ(µ(f,b),a))| < ε
2 . Therefore, we have

V (µ(µ(f,b),a)) ≤ V (µ(ϕ,a)) +
ε

2
= α− ε

2
.

By 1.3.6, we have

V (µ(f,a · b)) < α− ε

2

contrary to our choice of α.
It follows that ϕ is a constant function. In addition α = 0. �
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Consider now left mean values of a function f ∈ CR(G). We define the left mean
value of f with respect to a = (a1, a2, . . . , an) as the function

ν(f,a)(g) =
1

n

n∑
i=1

f(aig)

for g ∈ G. We denote my Nf the set of all left mean values of f .
Let Gopp be the compact group opposite to G. Then the left mean values of f

on G are the right mean values of f on Gopp.
Hence, from 1.3.7, we deduce the following result.

1.3.8. Lemma. For any f ∈ CR(G), the closure Nf contains a constant function
on G.

By direct calculation we get the following result.

1.3.9. Lemma. For any f ∈ CR(G) we have

ν(µ(f,a),b) = µ(ν(f,b),a)

for any two finite sequences a and b in G.

Proof. We have

ν(µ(f,a),b)(g) =
1

m

m∑
j=1

µ(f,a)(bjg) =
1

nm

n∑
i=1

m∑
j=1

f(bjgai)

=
1

n

n∑
i=1

ν(f,b)(gai) = µ(ν(f,b),a)(g)

for any g ∈ G. �

Putting together these results, we finally get the following.

1.3.10. Proposition. For any f ∈ CR(G), the closure Mf contains a unique func-
tion constant on G.

This function is also the unique constant function in Nf .

Proof. Let ϕ and ψ be two constant functions such that ϕ is in the closure of
Mf and ψ is in the closure of Nf . For any ε > 0 we have a and b such that
‖µ(f,a)− ϕ‖ < ε

2 and ‖ν(f,b)− ψ‖ < ε
2 .

On the other hand, we have

‖ν(µ(f,a),b)− ϕ‖ = ‖ν(µ(f,a),b)− ν(ϕ,b)‖

= ‖ν(µ(f,a)− ϕ,b)‖ ≤ ‖µ(f,a)− ϕ‖ < ε

2
.

In the same way. we also have

‖µ(ν(f,b),a)− ψ‖ = ‖µ(ν(f,b),a)− µ(ψ,a)‖

= ‖µ(ν(f,b)− ψ,a)‖ ≤ ‖ν(f,b)− ψ‖ < ε

2
.

By 1.3.9, this immediately yields

‖ϕ− ψ‖ ≤ ‖ν(µ(f,a),b)− ϕ‖+ ‖µ(ν(f,b),a)− ψ‖ < ε.

This implies that ϕ = ψ. Therefore, any constant function in the closure of Mf

has to be equal to ψ. �
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The value of the unique constant function in the closure of Mf is denoted by
µ(f) and called the mean value of f on G. In this way, we get a function f 7−→ µ(f)
on CR(G).

Let γ : CR(G) −→ R be a linear form. We say that γ is positive if for any
f ∈ CR(G) such that f(g) ≥ 0 for any g ∈ G we have γ(f) ≥ 0.

1.3.11. Lemma. The function µ is a positive linear form on CR(G).

To prove this result we need some preparation.

1.3.12. Lemma. Let f ∈ CR(G). Then, for any a we have

µ(µ(f,a)) = µ(f).

Proof. Let µ(f) = α. Let ϕ be the function equal to α everywhere on G. Fix ε > 0.
Then there exists a finite sequence b such that

‖ν(f,b)− ϕ‖ < ε.

This implies that

‖ν(f − ϕ,b)‖ = ‖ν(f,b)− ν(ϕ,b)‖ = ‖ν(f,b)− ϕ‖ < ε.

This, by 1.3.2.(i), implies that

‖µ(ν(f − ϕ,b),a)‖ ≤ ‖ν(f − ϕ,b)‖ < ε

for any finite sequence a.
By 1.3.9, we have

‖ν(µ(f − ϕ,a),b)‖ = ‖µ(ν(f − ϕ,b),a)‖ < ε,

and

‖ν(µ(f,a),b)− ϕ‖ = ‖ν(µ(f,a)− ϕ,b)‖ = ‖ν(µ(f − ϕ,a),b)‖ < ε.

Therefore, if we fix a, we see that ϕ is in the closure of Nµ(f,a). By 1.3.10, this
proves our assertion. �

Let f and f ′ be two functions in CR(G). Let α = µ(f) and β = µ(f ′). Denote
by ϕ and ψ the corresponding constant functions. Let ε > 0.

Clearly. there exists a such that

‖µ(f,a)− ϕ‖ < ε

2
.

This, by 1.3.2.(ii) implies, that we have

‖µ(µ(f,a),b)− ϕ‖ = ‖µ(µ(f,a)− ϕ,b)‖ < ε

2

for arbitrary b. By 1.3.6, this in turn implies that

‖µ(f,a · b)− ϕ‖ < ε

2
.

On the other hand, by 1.3.12, we have µ(µ(f ′,a)) = µ(f ′) = β. Therefore, there
exists a finite sequence b such that

‖µ(µ(f ′,a),b)− ψ‖ < ε

2
.

This, by 1.3.6, implies that

‖µ(f ′,a · b)− ψ‖ < ε

2
.
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Hence, we have

‖µ(f + f ′,a · b)− (ϕ+ ψ)‖ ≤ ‖µ(f,a · b)− ϕ‖+ ‖µ(f ′,a · b)− ψ‖ < ε.

Therefore, ϕ+ ψ is in the closure of Mf+f ′ . It follows that

µ(f + f ′) = α+ β = µ(f) + µ(f ′),

i.e., µ is additive.
Let c ∈ R and f ∈ CR(G). Then µ(cf,a) = cµ(f,a) for any a. Therefore,

Mcf = cMf . This immediately implies that µ(cf) = cµ(f). Therefore µ is a linear
form.

Assume that f is a function in CR(G) such that f(g) ≥ 0 for all g ∈ G. Then
µ(f,a)(g) ≥ 0 for any a and g ∈ G. Hence, any function φ ∈Mf satisfies φ(g) ≥ 0
for all g ∈ G. This immediately implies that φ(g) ≥ 0, g ∈ G, for any φ in the
closure ofMf . It follows that µ(f) ≥ 0. Hence, we µ is a positive linear form. This
completes the proof of 1.3.11.

Clearly, µ(1) = 1. Let f ∈ CR(G). Then we have

−‖f‖ ≤ f(g) ≤ ‖f‖
for any g ∈ G. Since µ is a positive linear form, we see that

−‖f‖ = µ(−‖f‖) ≤ µ(f) ≤ µ(‖f‖) = ‖f‖.
Therefore, we have

|µ(f)| ≤ ‖f‖
for any f ∈ CR(G). In particular, µ is a continuous linear form on CR(G).

By Riesz representation theorem, the linear form µ : CR(G) −→ R defines a
regular positive measure µ on G such that

µ(f) =

∫
G

f dµ.

Clearly, we have

µ(G) =

∫
G

dµ = µ(1) = 1.

so we say that µ is normalized.
Denote by R (resp. L) the right regular representation (resp. left regular repre-

sentation of G on C(G) given by (R(g)f)(h) = f(hg) (resp. (L(g)f)(h) = f(g−1h))
for any f ∈ C(G) and g, h ∈ G.

1.3.13. Lemma. Let f ∈ CR(G) and g ∈ G. Then

µ(R(g)f) = µ(L(g)f) = µ(f).

Proof. Let g = (g). Clearly, we have

µ(f,g)(h) = f(hg) = (R(g)f)(h)

for all h ∈ G, i.e., R(g)f = µ(f,g). By 1.3.12, we have

µ(R(g)f) = µ(µ(f,g)) = µ(f).

This statement for Gopp implies the other equality. �

We say that the linear form µ is biinvariant, i.e., right invariant and left invariant.
The above result implies that the measure µ is biinvariant, i.e., we have the

following result.
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1.3.14. Lemma. Let A be a measurable set in G. Then gA and Ag are also mea-
surable and

µ(gA) = µ(Ag) = µ(A)

for any g ∈ G.

Proof. Since CR(G) is dense in L1(µ), the invariance from 1.3.13 holds for any
function f ∈ L1(µ). Applying it to the characteristic function of the set A implies
the result. �

A normalized biinvariant positive measure µ on G is called a Haar measure on
G.

We proved the existence part of the following result.

1.3.15. Theorem. Let G be a compact group. Then there exists a unique Haar
measure µ on G.

Proof. We constructed a Haar measure on G.
It remains to prove the uniqueness. Let ν be another Haar measure on G. Then,

by left invariance, we have∫
G

µ(f,a) dν =
1

n

n∑
i=1

∫
G

f(gai) dν(g) =

∫
G

f dν

for any a. Hence the integral with respect to ν is constant on Mf . By continuity,
it is also constant on its closure. Therefore, we have∫

G

f dν = µ(f)

∫
G

dν = µ(f) =

∫
G

f dµ

for any CR(G). This in turn implies that ν = µ. �

1.3.16. Lemma. Let µ be the Haar measure on G. Let U be a nonempty open set
in G. Then µ(U) > 0.

Proof. Since U is nonempty, (Ug; g ∈ G) is an open cover of G. It contains a finite
subcover (Ugi; 1 ≤ i ≤ n). Therefore we have

1 = µ(G) = µ

(
n⋃
i=1

Ugi

)
≤

n∑
i=1

µ(Ugi) =
n∑
i=1

µ(U) = nµ(U)

by 1.3.14. This implies that µ(U) ≥ 1
n . �

1.3.17. Lemma. Let f be a continuous function on G. Then∫
G

f(g−1) dµ(g) =

∫
G

f(g) dµ(g).

Proof. Clearly, it is enough to prove the statement for real-valued functions. There-
fore, we can consider the linear form ν : f 7−→

∫
G
f(g−1) dµ(g). Clearly, this a

positive continuous linear form on CR(G). Moreover,

ν(f) =

∫
G

f(h−1) dµ(h) =

∫
G

f((hg)−1) dµ(h)

=

∫
G

f(g−1h−1) dµ(h) =

∫
G

(L(g)f)(h−1) dµ(h) = ν(L(g)f)
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and

ν(f) =

∫
G

f(h−1) dµ(h) =

∫
G

f((g−1h)−1) dµ(h)

=

∫
G

f(h−1g) dµ(h) =

∫
G

(R(g)f)(h−1) dµ(h) = ν(R(g)f)

for any g ∈ G. Hence, this linear form is left and right invariant. By the uniqueness
of the Haar measure we get the statement. �

2. Algebra of matrix coefficients

2.1. Topological vector spaces. Let E be a vector space over C. We say that E
is a topological vector space over C, if it is also equipped with a topology such that
the functions (u, v) 7−→ u + v from E × E into E, and (α, u) 7−→ αu from C × E
into E are continuous.

A morphism ϕ : E −→ F of topological vector space E into F is a continuous
linear map from E to F .

We say that E is a hausdorff topological vector space if the topology of E is
hausdorff.

The vector space Cn with its natural topology is a hausdorff topological vector
space.

Let E be a topological vector space and F a vector subspace of E. Then F is a
topological vector space with the induced topology. Moreover, if E is hausdorff, F
is also hausdorff.

2.1.1. Lemma. Let E be a topological vector space over C. Then the following
conditions are equivalent:

(i) E is hausdorff;
(ii) {0} is a closed set in E.

Proof. Assume that E is hausdorff. Let v ∈ E, v 6= 0. Then there exist open
neighborhoods U of 0 and V of v such that U ∩V = ∅. In particular, V ⊂ E−{0}.
Hence, E − {0} is an open set. This implies that {0} is closed.

Assume now that {0} is closed in E. Then E − {0} is an open set. Let u and
v be different vectors in E. Then u− v 6= 0. Since the function (x, y) 7−→ x+ y is
continuous, there exist open neighborhoods U of u and V of v such that U − V ⊂
E − {0}. This in turn implies that U ∩ V = ∅. �

The main result of this section is the following theorem. It states that hausdorff
finite-dimensional topological vector spaces have unique topology.

2.1.2. Theorem. Let E be a finite-dimensonal hausdorff topological vector space
over C. Let v1, v2, . . . , vn be a basis of E. Then the linear map Cn −→ E given by

(c1, c2, . . . , cn) 7−→
n∑
i=1

civi

is an isomorphism of topological vector spaces.

Clearly, the map

φ(z) =

n∑
i=1

zivi,
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for all z = (z1, z2, . . . , zn) ∈ Cn, is a continuous linear isomorphism of Cn onto E.
Therefore, it is enough to show that that map is also open.

We start with an elementary lemma.

2.1.3. Lemma. Let E and F be topological vector spaces and φ : E −→ F a linear
map. Let (Ui, i ∈ I) be a fundamental system of neighborhoods of 0 in E. If φ(Ui),
i ∈ I, are neighborhoods of 0 in F , φ is an open map.

Proof. Let U be an open set in E. For any u ∈ U there exists i ∈ I such that u+Ui
is a neighborhood of u contained in U . Therefore, φ(u + Ui) = φ(u) + φ(Ui) is a
neighborhood of φ(u) contained in φ(U). Hence, φ(u) is an interior point of φ(U).
This implies that φ(U) is open. �

We consider on Cn the standard euclidean norm ‖ · ‖. Let B1 = {z ∈ Cn |
‖z‖ < 1} be the open unit ball in Cn. Then the balls {εB1 | 0 < ε < ∞} form a
fundamental system of neighborhoods of 0 in Cn. By 2.1.3, to show that the above
map φ : Cn −→ E is open it is enough to show that φ(B1) is a neighborhood of 0
in E.

Let S = {z ∈ Cn | ‖z‖ = 1} be the unit sphere in Cn. Then, S is a bounded
and closed set in Cn. Hence it is compact. This implies that φ(S) is a compact
set in E. Since 0 is not in S, 0 is not in φ(S). Since E is hausdorff, φ(S) is closed
and E − φ(S) is an open neighborhood of 0 in E. By continuity of multiplication
by scalars at (0, 0), there exists ε > 0 and an open neighborhood U of 0 in E such
that zU ⊂ E − φ(S), i.e., zU ∩ φ(S) = ∅ for all |z| ≤ ε.

Let v ∈ U − {0}. Then we have

v =

n∑
i=1

civi.

Let c = (c1, c2, . . . , cn) ∈ Cn. Then, 1
‖c‖c ∈ S, and 1

‖c‖v ∈ φ(S). By our construc-

tion, we must have 1
‖c‖ > ε. Hence, we have ‖c‖ < 1

ε , i.e., c ∈ B 1
ε
. This in turn

yields v ∈ φ( 1
εB1). Therefore, we have

φ

(
1

ε
B1

)
⊃ U,

i.e., φ(B1) ⊃ εU . Hence, φ(B1) is a neighborhood of 0 in E. This completes the
proof of 2.1.2.

2.1.4. Corollary. Let E be a hausdorff topological vector space over C. Let F be a
finite-dimensional vector subspace of E. Then F is closed in E.

Proof. Clearly, the topology of E induces a structure of hausdorff topological vector
space on F . Let v1, v2, . . . , vn be a basis of F . Assume that F is not closed. Let w
be a vector in the closure of F which is not in F . Then w is linearly independent
of v1, v2, . . . , vn. Let F ′ be the direct sum of F and Cw. Then F ′ is a (n + 1)-
dimensional hausdorff topological vector space. By 2.1.2, we know that

(c1, c2, . . . , cn, cn+1) 7−→
n∑
i=1

civi + cn+1w

is an isomorphism of the topological vector space Cn+1 onto F ′. This isomorphism
maps Cn × {0} onto F . Therefore, F is closed in F ′, and w is not in the closure of
F . Hence, we have a contradiction. �
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2.1.5. Lemma. Let E and F be two finite-dimensional hausdorff topological vector
spaces. Then any linear map φ : E −→ F is continuous.

2.2. Representations on topological vector spaces. LetG be a compact group.
Let E be a hausdorff topological vector space over C. We denote by GL(E) the
group of all automorphisms of E.

A (continuous) representation of G on E is a group homomorphism π : G −→
GL(E) such that (g, v) 7−→ π(g)v is continuous from G× E into E.

2.2.1. Lemma. Let E be a Banach space and π : G −→ GL(E) a homomorphism
such that g 7−→ π(g)v is continuous function from G into E for all v ∈ E. Then
(π,E) is a representation of G on E.

Proof. Assume that the function g 7−→ π(g)v is continuous for any v ∈ V . Then
the function g 7−→ ‖π(g)v‖ is continuous on G. Since G is compact, there exists M
such that ‖π(g)v‖ < M for all g ∈ G. By Banach-Steinhaus theorem, we see that
the function g 7−→ ‖π(g)‖ is bounded on G.

Pick C > 0 such that ‖π(g)‖ ≤ C for all g ∈ G. Then we have

‖π(g)v − π(g′)v′‖ = ‖(π(g)v − π(g′)v) + π(g′)(v − v′)‖
≤ ‖π(g)v − π(g′)v‖+ ‖π(g′)‖‖v − v′‖ ≤ ‖π(g)v − π(g′)v‖+ C‖v − v′‖

for all g, g′ ∈ G and v, v′ ∈ E. This clearly implies the continuity of the function
(g, v) 7−→ π(g)v. �

If E is a finite-dimensional hausdorff topological vector space, by 2.1.5, any linear
automorphism of E is automatically an automorphism of topological vector spaces.
Therefore GL(E) is just the group of all linear automorphisms of E as before.

Moreover, since the topology of E is described by the euclidean norm and E
is a Banach space with respect to it, by 2.2.1, the only additional condition for a
representation of G is the continuity of the function g 7−→ π(g)v for any v ∈ E.
This implies the following result.

2.2.2. Lemma. Let E be a finite-dimensional hausdorff topological vector space and
π a homomorphism of G into GL(E). Let v1, v2, . . . , vn be a basis of E.

(i) (π,E) is a representation of G on E;
(ii) all matrix coefficients of π(g) with respect to the basis v1, v2, . . . , vn are

continuous functions on G.

2.3. Algebra of matrix coefficients. Let G be a compact group. The Banach
space C(G) is an commutative algebra with pointwise multiplication of functions,
i.e., (ψ, φ) 7−→ ψ · φ where (ψ · φ)(g) = ψ(g)φ(g) for any g ∈ G.

First, we remark the following fact.

2.3.1. Lemma. R and L are representations of G on C(G).

Proof. Clearly, we have

‖R(g)φ‖ = max
h∈G
|(R(g)φ)(h)| = max

h∈G
|φ(hg)| = max

h∈G
|φ(h)| = ‖φ‖.

Hence R(g) is a continuous linear map on C(G). Its inverse is R(g−1), so R(g) ∈
GL(C(G)).

By 2.2.1, it is enough to show that the function g 7−→ R(g)φ is continuous for
any function φ ∈ C(G).
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By 1.1.1, φ is uniformly continuous, i.e., there exists a neighborhood U of 1 in
G such that g−1g′ ∈ U implies |φ(hg)− φ(hg′)| < ε for all h ∈ G. Hence, we have

‖R(g)φ−R(g′)φ‖ = max
h∈G
|(R(g)φ)(h)− (R(g′)φ)(h)| = max

h∈G
|φ(hg)− φ(hg′)| < ε

for g′ ∈ gU . Hence, the function g −→ R(g)φ is continuous.
The proof for L is analogous. �

We say that the function φ ∈ C(G) is right (resp. left) G-finite if the vectors
{R(g)φ; g ∈ G} (resp. {L(g)φ; g ∈ G}) span a finite-dimensional subspace of C(G).

2.3.2. Lemma. Let φ ∈ C(G). The following conditions are equivalent.

(i) φ is left G-finite;
(ii) φ is right G-finite;

(iii) there exist n and functions ai, bi ∈ C(G), 1 ≤ i ≤ n, such that

φ(gh) =

n∑
i=1

ai(g)bi(h)

for all g, h ∈ G.

Proof. Let φ be a right G-finite function. Then φ is in a finite-dimensional subspace
F invariant for R. The restriction of the representation R to F is continuous. Let
a1, a2, . . . , an be a basis of F . Then, by 2.2.2, there exist b1, b2, . . . , bn ∈ C(G) such
that R(g)φ =

∑n
i=1 bi(g)ai. Therefore we have

φ(hg) =

n∑
i=1

bi(g)ai(h) =

n∑
i=1

ai(h)bi(g)

for all h, g ∈ G. Therefore (iii) holds.
If (iii) holds,

R(g)φ =

n∑
i=1

ai(g)bi

and φ is right G-finite.
Since the condition (iii) is symmetric, the equivalence of (i) and (iii) follows by

applying the above argument to the opposite group of G. �

Therefore, we can call φ just a G-finite function in C(G). Let R(G) be the subset
of all G-finite functions in C(G).

2.3.3. Proposition. The set R(G) is a subalgebra of C(G).

Proof. Clearly, a multiple of a G-finite function is a G-finite function.
Let φ and ψ be two G-finite functions. Then, by 2.3.2, there exists functions

ai, bi, ci, di ∈ C(G) such that

φ(gh) =

n∑
i=1

ai(g)bi(h) and ψ(gh) =

m∑
i=1

ci(g)di(h)

for all g, h ∈ G. This implies that

(φ+ ψ)(gh) =

n∑
i=1

ai(g)bi(h) +

m∑
i=1

ci(g)di(h)
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and

(φ · ψ)(gh) =

n∑
i=1

m∑
j=1

ai(g)cj(g)bi(h)dj(h) =

n∑
i=1

m∑
j=1

(ai · cj)(g)(bi · di)(h)

for all g, h ∈ G. Hence, φ+ ψ and φ · ψ are G-finite. �

Clearly, R(G) is an invariant subspace for R and L.
The main result of this section is the following observation. Let V be a finite-

dimensional complex linear space and π a continuous homomorphism of G into
GL(V ), i.e., (π, V ) is a representation of G. For v ∈ V and v ∈ V ∗ we call the
continuous function g 7−→ cv,v∗(g) = 〈π(g)v, v∗〉 a matrix coefficient of (π, V ).

2.3.4. Theorem. Let φ ∈ C(G). Then the following statements are equivalent:

(i) φ is in R(G);
(ii) φ is a matrix coefficient of a finite-dimensional representation of G.

Proof. Let (π, V ) be a finite-dimensional representation of G. Let v ∈ V and
v∗ ∈ V ∗. By scaling v∗ if necessary, we can assume that v is a vector in a basis of
V and v∗ a vector in the dual basis of V ∗. Then, cv,v∗(g) is a matrix coefficient of
the matrix of π(g) in the basis of V . The rule of matrix multiplication implies that
(iii) from 2.3.2 holds for cv,v∗ . Hence φ is G-finite.

Assume that φ is G-finite. Then, by 2.3.2, we have R(g)φ =
∑n
i=1 ai(g)bi where

ai, bi ∈ C(G). We can also assume that bi are linearly independent. Let V be the
subspace of R(G) spanned by b1, b2, . . . , bn. Then V is a G-invariant subspace. Let
v = φ and v∗ ∈ V ∗ such that bi(1) = 〈bi, v∗〉. Then

〈R(g)v, v∗〉 =

n∑
i=1

ai(g)〈bi, v∗〉 =

n∑
i=1

ai(g)bi(1) = φ(g),

i.e., φ is a matrix coefficient of the restriction of R to V . �

Therefore, we call R(G) the algebra of matrix coefficients of G.
We also have the following stronger version of 2.3.2

2.3.5. Corollary. Let φ ∈ R(G). Then there exist n and functions ai, bi ∈ R(G),
1 ≤ i ≤ n, such that

φ(gh) =

n∑
i=1

ai(g)bi(h)

for all g, h ∈ G.

Proof. Since φ is a matrix coefficient of a finite-dimensional representation by 2.3.4,
the statement follows from the formula for the product of two matrices. �

Moreover, R(G) has the following properties. For a function φ ∈ C(G) we denote

by φ̄ the function g 7−→ f(g) on G; and by φ̂ the function g 7−→ f(g−1).

2.3.6. Lemma. Let φ ∈ R(G). Then

(i) the function φ̄ is in R(G);

(ii) the function φ̂ is in R(G).

Proof. Obvious by 2.3.2. �
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3. Some facts from functional analysis

3.1. Compact operators. Let E be a Hilbert space and T : E −→ E a bounded
linear operator.

We say that T is a compact operator if T is a bounded linear operator which
maps the unit ball in E into a relatively compact set.

3.1.1. Lemma. Compact operators for a two-sided ideal in the algebra of all bounded
linear operators on E.

Proof. Let S and T be compact operators. Let B be the unit ball in E. Then
the images of B in E under T and S have compact closure. Hence, the image of
B×B under S×T : E×E −→ E×E has compact closure. Since the addition is a
continuous map from E ×E into E, the image of B under S + T also has compact
closure. Therefore, S + T is a compact operator.

If S is a bounded linear operator and T a compact operator, the image of B
under T has compact closure. Since S is continuous, the image of B under ST also
has compact closure. Hence, ST is compact.

Analogously, the image of B under S is a bounded set since S is bounded.
Therefore, the image of B under TS has compact closure and TS is also compact.

�

3.2. Compact selfadjoint operators. Let E be a Hilbert space. Let T : E −→ E
be a nonzero compact selfadjoint operator.

3.2.1. Theorem. Either ‖T‖ or −‖T‖ is an eigenvalue of T .

First we recall a simple fact.

3.2.2. Lemma. Let u and v be two nonzero vectors in E such that |(u|v)| = ‖u‖·‖v‖.
Then u and v are colinear.

Proof. Let λv be the orthogonal projection of u to v. Then u = λv + w and w is
perpendicular to v. This implies that ‖u‖2 = |λ|2‖v‖2 + ‖w‖2. On the other hand,

we have ‖u‖ · ‖v‖ = |(u|v)| = |λ|‖v‖2, i.e., |λ| = ‖u‖
‖v‖ . Hence, it follows that

‖u‖2 = |λ|2‖v‖2 + ‖w‖2 = ‖u‖2 + ‖w‖2,
i.e., ‖w‖2 = 0 and w = 0. �

Now we can prove the theorem. By rescaling T , we can assume that ‖T‖ = 1.
Let B be the unit ball in E. By our assumption, we know that

1 = ‖T‖ = sup
v∈B
‖Tv‖.

Therefore, there exists a sequence of vectors vn ∈ B such that limn→∞ ‖Tvn‖ =
1. Since T is compact, by going to a subsequence, we can also assume that
limn→∞ Tvn = u. This implies that

1 = lim
n→∞

‖Tvn‖ = ‖u‖.

Moreover, we have limn→∞ T 2vn = Tu. Hence, we have

1 = ‖T‖ · ‖u‖ ≥ ‖Tu‖ = lim
n→∞

‖T 2vn‖ ≥ lim sup
n→∞

(‖T 2vn‖ · ‖vn‖)

≥ lim sup
n→∞

(T 2vn|vn) = lim
n→∞

(Tvn|Tvn) = lim
n→∞

‖Tvn‖2 = 1.
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It follows that

‖Tu‖ = 1.

Moreover, we have

1 = ‖Tu‖2 = (Tu|Tu) = (T 2u|u) ≤ ‖T 2u‖‖u‖ ≤ ‖T 2‖‖u‖2 ≤ ‖T‖2‖u‖2 = 1.

This finally implies that

(T 2u|u) = ‖T 2u‖‖u‖.
By 3.2.2, it follows that T 2u is proportional to u, i.e. T 2u = λu. Moreover, we
have

λ = λ(u|u) = (T 2u|u) = ‖Tu‖2 = 1.

It follows that T 2u = u.
Therefore, the linear subspace F of E spanned by u and Tu is T -invariant. Either

Tu = u or v = 1
2 (u− Tu) 6= 0. In the second case, we have Tv = −v.

This completes the proof of the existence of eigenvalues.
We need another fact.

3.2.3. Lemma. Let T be a compact selfadjoint operator. Let λ be an eigenvalue
different from 0. Then the eigenspace of λ is finite-dimensional.

Proof. Assume that the corresponding eigenspace V is infinite-dimensional. Then
there would exist an orthonormal sequence (en, n ∈ N) in F . Clearly, then the
sequence (Ten, n ∈ N) would consist of mutually orthogonal vectors of length |λ|,
hence it could not have compact closure in V , contradicting the compactness of T .
Therefore, V cannot be infinite-dimensional. �

3.3. An example. Denote by µ the Haar measure on G. Let L2(G) be the Hilbert
space of square-integrable complex valued functions on G with respect to the Haar
measure µ. We denote its norm by ‖ · ‖2. Clearly, we have

‖f‖22 =

∫
G

|f(g)|2 dµ(g) ≤ ‖f‖2

for any f ∈ C(G). Hence the inclusion C(G) −→ L2(G) is a continuous map.

3.3.1. Lemma. The continuous linear map i : C(G) −→ L2(G) is injective.

Proof. Let f ∈ C(G) be such that i(f) = 0. This implies that ‖f‖2 = 0. On the
other hand, the function g 7−→ |f(g)| is a nonnegative continuous function on G.
Assume that M is the maximum of this function on G. If we would have M > 0,
there would exist a nonempty open set U ⊂ G such that |f(g)| ≥ M

2 for g ∈ U .
Therefore, we would have

‖f‖22 =

∫
G

|f(g)|2 dµ(g) ≥ M2

4
µ(U) > 0,

by 1.3.16. Therefore, we must have M = 0. �

Since the measure of G is 1, by Cauchy-Schwartz inequality, we have∫
G

|φ(g)| dµ(g) =

∫
G

1 · |φ(g)| dµ(g) ≤ ‖1‖2 · ‖φ‖2 = ‖φ‖2

for any φ ∈ L2(µ). Hence, L2(G) ⊂ L1(G), where L1(G) is the Banach space of
integrable functions on G.
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Let f be a continuous function on G. For any φ ∈ L2(G), we put

(R(f)φ)(g) =

∫
G

f(h)φ(gh)dµ(h)

for g ∈ G.
By 1.1.1, f is uniformly continuous on G. This implies that for any ε > 0 there

exists a neighborhood U of 1 in G such that g′g−1 ∈ U implies |f(g) − f(g′)| < ε.
Therefore, for arbitrary h ∈ G, we see that for (g′−1h)(g−1h)−1 = g′−1g ∈ U and
we have

|f(g−1h)− f(g′−1h)| < ε.

This in turn implies that

|(R(f)φ)(g)− (R(f)φ)(g′)| =
∣∣∣∣∫
G

f(h)φ(gh)dµ(h)−
∫
G

f(h)φ(g′h) dµ(h)

∣∣∣∣
=

∣∣∣∣∫
G

(f(g−1h)− f(g′−1h))φ(h) dµ(h)

∣∣∣∣ =

∫
G

|f(g−1h)− f(g′−1h)| |φ(h)| dµ(h)

< ε ·
∫
G

|φ(h)| dµ(h) ≤ ε · ‖φ‖2

for any g′ ∈ Ug and φ in L2(G). This proves that functions R(f)φ are in C(G) for
any φ ∈ L2(G).

Moreover, by the invariance of Haar measure, we have

|(R(f)φ)(g)| ≤
∫
G

|f(h)||φ(gh)| dµ(h) ≤ ‖f‖
∫
G

|φ(gh)| dµ(h)

≤ ‖f‖
∫
G

|φ(h)| dµ(h) ≤ ‖f‖ · ‖φ‖2,

it follows that
‖R(f)φ‖ ≤ ‖f‖ · ‖φ‖2

for any φ ∈ L2(G). Hence, R(f) is a bounded linear operator from L2(G) into
C(G).

Hence the set S = {R(f)φ | ‖φ‖2 ≤ 1} is bounded in C(G).
Clearly, the composition of R(f) with the natural inclusion i : C(G) −→ L2(G)

is a continuous linear map from L2(G) into itself which will denote by the same
symbol. Therefore, the following diagram of continuous maps

L2(G)
R(f) //

R(f)

��

L2(G)

C(G)

i

::

is commutative.
We already remarked that S is a bounded set in C(G). Hence, S is a pointwise

bounded family of continuous functions. In addition, by the above formula

|(R(f)φ)(g)− (R(f)φ)(g′)| < ε,

for all g′ ∈ Ug and φ in the unit ball in L2(G). Hence, the set S is equicontinuous.
Hence we proved the following result.

3.3.2. Lemma. The set S ⊂ C(G) is pointwise bounded and equicontinuous.
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By 1.2.1, the closure of the set S in C(G) is compact. Since i : C(G) −→ L2(G)
is continuous, S has compact closure in L2(G). Therefore, we have the following
result.

3.3.3. Lemma. The linear operator R(f) : L2(G) −→ L2(G) is compact.

Put f∗(g) = f(g−1), g ∈ G. Then f∗ ∈ C(G).

3.3.4. Lemma. For any f ∈ C(G) we have

R(f)∗ = R(f∗).

Proof. For φ, ψ ∈ L2(G), we have, by 1.3.17,

(R(f)φ | ψ) =

∫
G

(R(f)φ)(g)ψ(g) dµ(g) =

∫
G

(∫
G

f(h)φ(gh) dµ(h)

)
ψ(g) dµ(g)

=

∫
G

f(h)

(∫
G

φ(gh)ψ(g) dµ(g)

)
dµ(h) =

∫
G

f(h)

(∫
G

φ(g)ψ(gh−1) dµ(g)

)
dµ(h)

=

∫
G

φ(g)

(∫
G

f(h)ψ(gh−1) dµ(h)

)
dµ(g)

=

∫
G

φ(g)

(∫
G

f∗(h−1)ψ(gh−1) dµ(h)

)
dµ(g)

=

∫
G

φ(g)

(∫
G

f∗(h)ψ(gh) dµ(h)

)
dµ(g) = (φ | R(f∗)ψ).

�

3.3.5. Corollary. The operator R(f∗)R(f) = R(f)∗R(f) is a positive compact
selfadjoint operator on L2(G).

4. Peter-Weyl theorem

4.1. L2 version. Let φ ∈ L2(G). Let g ∈ G. We put (R(g)φ)(h) = φ(hg) for any
h ∈ G. Then we have

‖R(g)φ‖22 =

∫
G

|(R(g)φ)(h)|2 dµ(h) =

∫
G

|φ(hg)|2 dµ(h) =

∫
G

|φ(h)|2 dµ(h) = ‖φ‖22.

Therefore, R(g) is a continuous linear operator on L2(G). Clearly it is in GL(L2(G)).
Moreover, R(g) is unitary.

Clearly, for any g ∈ G, the following diagram

C(G)
R(g)−−−−→ C(G)

i

y yi
L2(G) −−−−→

R(g)
L2(G)

is commutative.
Analogously, we define (L(g)φ)(h) = φ(g−1h) for h ∈ G. Then L(g) is a unitary

operator on L2(G) which extends from C(G).
Clearly, R(g) and L(h) commute for any g, h ∈ G.

4.1.1. Lemma. L and R are unitary representations of G on L2(G).
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Proof. It is enough to discuss R. The proof for L is analogous.
Let g ∈ G and φ ∈ L2(G). We have to show that h 7−→ R(h)φ is continuous

at g. Let ε > 0. Since C(G) is dense in L2(G), there exists ψ ∈ C(G) such that
‖φ − ψ‖2 < ε

3 . Since R is a representation on C(G), there exists a neighborhood
U of g such that h ∈ U implies ‖R(h)ψ − R(g)ψ‖ < ε

3 . This in turn implies that
‖R(h)ψ −R(g)ψ‖2 < ε

3 . Therefore we have

‖R(h)φ−R(g)φ‖2 ≤ ‖R(h)(φ− ψ)‖2 + ‖R(h)ψ −R(g)ψ‖2 + ‖R(g)(ψ − φ)‖2
≤ 2‖φ− ψ‖2 + ‖R(h)ψ −R(g)ψ‖2 < ε

for any h ∈ U . �

Let f be a continuous function on G. By 3.3.3, R(f) is a compact operator on
L2(G).

Let φ ∈ L2(G). Then

(R(f)L(g)φ)(h) =

∫
G

f(k)(L(g)φ)(hk) dµ(k)

=

∫
G

f(k)φ(g−1hk) dµ(k) = (R(f)φ)(g−1h) = (L(g)R(f)φ)(h)

for all g, h ∈ G. Therefore, R(f) commutes with L(g) for any g ∈ G.
Let F be the eigenspace of R(f∗)R(f) for eigenvalue λ > 0. Then F is finite-

dimensional by 3.2.3.

4.1.2. Lemma. (i) Let φ ∈ F . Then φ is a continuous function.
(ii) The vector subspace F of C(G) is in R(G).

Proof. (i) The function φ is in the image of R(f∗). Hence it is a continuous function.
(ii) By (i), F ⊂ C(G). As we remarked above, the operator R(f∗)R(f) commutes

with the representation L. Therefore, the eigenspace F is invariant subspace for
L. Let φ be a function in F . Since F is invariant for L, φ is G-finite. Hence,
φ ∈ R(G). �

4.1.3. Lemma. The subspace R(G) is invariant for R(f).

Proof. Let φ ∈ R(G). By 2.3.5 we have

(R(f)φ)(g) =

∫
G

f(h)φ(gh) dµ(h) =

n∑
i=1

ai(g)

∫
G

f(h)bi(h) dµ(h)

for any g ∈ G, i.e., R(f)φ is a linear combination of ai, 1 ≤ i ≤ n. �

Let E = R(G)⊥ in L2(G). Then, by 4.1.3, R(G) is invariant for selfadjoint
operator R(f∗)R(f). This in turn implies that E is also invariant for this operator.
Therefore the restriction of this operator to E is a positive selfadjoint compact
operator. Assume that its norm is greater than 0. Then, by 3.2.1, the norm is an
eigenvalue of this operator, and there exists a nonzero eigenvector φ ∈ E for that
eigenvalue. Clearly, φ is an eigenvector for R(f∗)R(f) too. By 4.1.2, φ is also in
R(G). Hence, we have ‖φ‖22 = (φ | φ) = 0, and φ = 0 in L2(G). Hence, we have a
contradiction.

Therefore, the operator R(f∗)R(f) is 0 when restricted to E. Hence

0 = (R(f∗)R(f)ψ|ψ) = ‖R(f)ψ‖22
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for any ψ ∈ E. It follows that R(f)ψ = 0. Since R(f)ψ is a continuous function,
we have

0 = (R(f)ψ)(1) =

∫
G

f(g)ψ(g)dµ(g),

i.e., ψ is orthogonal to f̄ .
Since f ∈ C(G) was arbitrary and C(G) is dense in L2(G), it follows that ψ = 0.

This implies that E = {0}.
This completes the proof of the following result.

4.1.4. Theorem (Peter-Weyl). The algebra R(G) is dense in L2(G).

4.2. Continuous version. Let g ∈ G. Assume that g 6= 1. Then there exists an
open neighborhood U of 1 such that U and Ug are disjoint. There exists positive
function φ in C(G) such that φ|U = 0 and φ|Ug = 1. This implies that

‖R(g)φ− φ‖2 =

∫
G

|φ(hg)− φ(h)|2dµ(h)

=

∫
U

|φ(hg)− φ(h)|2dµ(h) +

∫
G−U

|φ(hg)− φ(h)|2dµ(h) ≥ µ(U).

Therefore R(g) 6= I. Since by 4.1.4, R(G) is dense in L2(G), R(g)|R(G) is not
the identity operator.

This implies the following result.

4.2.1. Lemma. Let g, g′ ∈ G and g 6= g′. Then there exists a function φ ∈ R(G)
such that φ(g) 6= φ(g′).

Proof. Let h = g−1g′ 6= 1. Then there exists ψ ∈ R(G) such that R(h)ψ 6= ψ.
Hence, we have R(g)ψ 6= R(g′)ψ. It follows that ψ(hg) 6= ψ(hg′) for some h ∈ G.
Therefore, the function φ = L(h−1)ψ has the required property. �

In other words, R(G) separates points in G. By Stone-Weierstrass theorem, we
have the following result which is a continuous version of Peter-Weyl theorem.

4.2.2. Theorem (Peter-Weyl). The algebra R(G) is dense in C(G).

Another consequence of 4.2.1 is the following result.

4.2.3. Lemma. Let U be an open neighborhood of 1 in G. Then there exists a
finite-dimensional representation (π, V ) of G such that kerπ ⊂ U .

Proof. The complement G − U of U is a compact set. Since R(G) separates the
points of G, for any g ∈ G − U there exists a function φg ∈ R(G) and an open
neighborhood Ug of g such that |φg(h) − φg(1)| > ε for h ∈ Ug. Since G − U is
compact, there exists a finite set g1, g2, · · · , gm in G−U such that Ug1 , Ug2 , · · · , Ugm
form an open cover of G − U and |φgi(h) − φgi(1)| > ε for h ∈ Ugi . Let πi be a
finite-dimensional representation of G with matrix coefficient φgi . Then πi(h) 6= I
for h ∈ Ugi , 1 ≤ i ≤ n. Let π be the direct sum of πi. Then π(h) 6= I for h ∈ G−U ,
i.e., kerπ ⊂ U . �

4.3. Matrix groups. Let G be a topological group. We say that G has no small
subgroups if there exists a neighborhood U of 1 ∈ G such that any subgroup of G
contained in U is trivial.
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4.3.1. Lemma. Let V be a finite-dimensional complex vector space. Then the group
GL(V ) has no small subgroups.

Proof. Let L(V ) be the space of all linear endomorphisms of V . Then exp :
L(V ) −→ GL(V ) given by

exp(T ) =

∞∑
n=0

1

n!
Tn

defines a holomorphic map. Its differential at 0 is the identity map I on L(V ).
Hence, by the inverse function theorem, it is a local diffeomorphism.

Let U be an open neighborhood of 1 in GL(V ) and V the open ball around 0 in
L(V ) of radius ε (with respect to the linear operator norm) such that exp : V −→ U
is a diffeomorphism. Let V ′ be the open ball of radius ε

2 around 0 in L(V ). Then
U ′ = exp(V ′) is an open neighborhood of 1 in GL(V ). Let H be a subgroup of
GL(V ) contained in U ′. Let S ∈ H. Then S = exp(T ) for some T ∈ V ′. Hence, we
have S2 = exp(T )2 = exp(2T ) ∈ H. Moreover, S2 ∈ H and S2 = exp(T ′) for some
T ′ ∈ V ′. It follows that exp(T ′) = exp(2T ) for 2T, T ′ ∈ V . Since exp is injective
on V , we must have 2T = T ′. Hence, T ∈ 1

2V
′. It follows that H ⊂ exp

(
1
2V
′).

By induction we get that H ⊂ exp
(

1
2nV

′) for any n ∈ N. This implies that
H = {1}. �

A compact subgroup of GL(V ) we call a compact matrix group.

4.3.2. Theorem. Let G be a compact group. Then the following conditions are
equivalent:

(i) G has no small subgroups;
(ii) G is isomorphic to a compact matrix group.

Proof. (i)⇒(ii) Let U be an open neighborhood of 1 ∈ G such that it contains
no nontrivial subgroups of G. By 4.2.3, there exists a finite-dimensional represen-
tation (π, V ) of G such that kerπ ⊂ U . This clearly implies that kerπ = {1},
and π : G −→ GL(V ) is an injective homomorphism. Since G is compact, π is
homoeomprphism of G onto π(G). Therefore, G is isomorphic to the compact
subgroup π(G) of GL(V ).

(ii)⇒(i) Assume that G is a compact subgroup of GL(V ). By 4.3.1, there ex-
ists an open neighborhood U of 1 in GL(V ) such that it contains no nontrivial
subgroups. This implies that G ∩ U contains on nontrivial subgroups of G. �

4.3.3. Remark. For a compact matrix group G, since matrix coefficients of the
natural representation separate points in G, 4.2.1 obviously holds. Therefore, in
this situation, Stone-Weierstrass theorem immediately implies the second version
of Peter-Weyl theorem, which in turn implies the first one.

4.3.4. Remark. By Cartan’s theorem [?], any compact matrix group is a Lie group.
On the other hand, by [?] any Lie group has no small subgroups. Hence, compact
Lie groups have no small subgroups and therefore they are compact matrix groups.

4.3.5. Remark. Let T = R/Z. Then T is a compact abelian group. Let G be the
product of inifinite number of copies of T . Then G is a compact abelian group.
By the definition of product topology, any neghborhood of 1 contains a nontrivial
subgroup.
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Let G be an arbitrary compact group. Let (π, V ) be a finite-dimensional rep-
resentation. Put N = kerπ. Then N is a compact normal subgroup of G and
G/N equipped with the quotient topology is a compact group. Clearly, G/N is a
compact matrix group.

Let S be the family of all compact normal subgroups N of G such that G/N is
a compact matrix group. Clearly, N , N ′ in S implies N ∩ N ′ ∈ S. Therefore, S
ordered by inclusion is a directed set. One can show that G is a projective limit
of the system G/N , N ∈ S. Therefore, any compact group is a projective limit of
compact matrix groups. By the above remark, this implies that any compact group
is a projective limit of compact Lie groups.


