NOTES ON REPRESENTATIONS OF COMPACT GROUPS

DRAGAN MILIČIĆ

1. HAAR MEASURE ON COMPACT GROUPS

1.1. **Compact groups.** Let G be a group. We say that G is a topological group if G is equipped with hausdorff topology such that the multiplication $(g, h) \mapsto gh$ from the product space $G \times G$ into G and the inversion $g \mapsto g^{-1}$ from G into G are continuous functions.

Let G and H be two topological groups. A morphism of topological groups $\varphi: G \longrightarrow H$ is a group homomorphism which is also continuous.

Topological groups and morphisms of topological groups for the category of topological groups.

Let G be a topological group. Let G^{opp} be the topological space G with the multiplication $(g, h) \mapsto g \star h = h \cdot g$. Then G^{opp} is also a topological group which we call the *opposite group* of G. Clearly, the inverse of an element $g \in G$ is the same as the inverse in G^{opp} . Moreover, the map $g \mapsto g^{-1}$ is an isomorphism of G with G^{opp} . Clearly, we have $(G^{opp})^{opp} = G$.

A topological group G is *compact*, if G is a compact space. The opposite group of a compact group is compact.

We shall need the following fact. Let G be a topological group. We say that a function $\phi : G \longrightarrow \mathbb{C}$ is right (resp. left) uniformly continuous on G if for any $\epsilon > 0$ there exists an open neighborhood U of 1 such that $|\phi(g) - \phi(h)| < \epsilon$ for any $g, h \in G$ such that $gh^{-1} \in U$ (resp. $g^{-1}h \in U$). Clearly, a right uniformly continuous function on G is left uniformly continuous function on G^{opp} .

1.1.1. **Lemma.** Let G be a compact group. Let ϕ be a continuous function on G. Then ϕ is right and left uniformly continuous on G.

Proof. By the above discussion, it is enough to prove that ϕ is right uniformly continuous.

Let $\epsilon > 0$. Let consider the set $A = \{(g,g') \in G \times G \mid |\phi(g) - \phi(g')| < \epsilon\}$. Then A is an open set in $G \times G$. Let U be an open neighborhood of 1 in G and $B_U = \{(g,g') \in G \times G \mid g'g^{-1} \in U\}$. Since the function $(g,g') \mapsto g'g^{-1}$ is continuous on $G \times G$ the set B_U is open. It is enough to show that there exists an open neighborhood V of 1 in G such that $B_V \subset A$.

Clearly, B_U are open sets containing the diagonal Δ in $G \times G$. Moreover, under the homomorphism κ of $G \times G$ given by $\kappa(g,g') = (g,g'g^{-1}), g,g' \in G$, the sets B_U correspond to the sets $G \times U$. In addition, the diagonal Δ corresponds to $G \times \{1\}$. Assume that the open set O corresponds to A.

By the definition of product topology, for any $g \in G$ there exist neighborhoods U_g of 1 and V_g of g such that $V_g \times U_g$ is a neighborhood of (g, 1) contained in O. Clearly, $(V_g; g \in G)$ is an open cover of G. Since G is compact, there exists a finite subcovering $(V_{g_i}; 1 \leq i \leq n)$ of G. Put $U = \bigcap_{i=1}^n U_{g_i}$. Then U is an open

DRAGAN MILIČIĆ

neighborhood of 1 in G. Moreover, $G \times U$ is an open set in $G \times G$ contained in O. Therefore $B_U \subset A$.

Therefore, we can say that a continuous function on G is uniformly continuous.

1.2. A compactness criterion. Let X be a compact space. Denote by C(X) the space of all complex valued continuous functions on X. Let $||f|| = \sup_{x \in X} |f(x)|$ for any $f \in C(X)$. Then $f \mapsto ||f||$ is a norm on C(X), C(X) is a Banach space. Let \mathcal{S} be a subset of C(X).

We say that S is *equicontinuous* if for any $\epsilon > 0$ and $x \in X$ there exists a neighborhood U of x such that $|f(y) - f(x)| < \epsilon$ for all $y \in U$ and $f \in S$.

We say that S is *pointwise bounded* if for any $x \in X$ there exists M > 0 such that $|f(x)| \leq M$ for all $f \in S$.

The aim of this section is to establish the following theorem.

1.2.1. **Theorem** (Arzelà-Ascoli). Let S be a pointwise bounded, equicontinuous subset of C(X). Then the closure of S is a compact subset of C(X).

Proof. We first prove that S is bounded in C(X). Let $\epsilon > 0$. Since S is equicontinuous, for any $x \in X$, there exists an open neighborhood U_x of x such that $y \in U_x$ implies that $|f(y) - f(x)| < \epsilon$ for all $f \in S$. Since X is compact, there exists a finite set of points $x_1, x_2, \ldots, x_n \in X$ such that $U_{x_1}, U_{x_2}, \ldots, U_{x_n}$ cover X.

Since S is pointwise bounded, there exists $M \ge 2\epsilon$ such that $|f(x_i)| \le \frac{M}{2}$ for all $1 \le i \le n$ and all $f \in S$. Let $x \in X$. Then $x \in U_{x_i}$ for some $1 \le i \le n$. Therefore, we have

$$|f(x)| \le |f(x) - f(x_i)| + |f(x_i)| < \frac{M}{2} + \epsilon \le M$$

for all $f \in S$. It follows that $||f|| \leq M$ for all $f \in S$. Hence S is contained in a closed ball of radius M centered at 0 in C(X).

Now we prove that S is contained in a finite family of balls of fixed small radius centered in elements of S. We keep the choices from the first part of the proof. Let $D = \{z \in \mathbb{C} \mid |z| \leq M\}$. Then D is compact. Consider the compact set D^n . It has natural metric given by $d(z, y) = \max_{1 \leq i \leq n} |z_i - y_i|$. There exist points $\alpha_1, \alpha_2, \ldots, \alpha_m$ in D^n such that the balls $B_i = \{\beta \in D^n \mid d(\alpha_i, \beta) < \epsilon\}$ cover D^n .

Denote by Φ the map from S into D^n given by $f \mapsto (f(x_1), f(x_2), \ldots, f(x_n))$. Then we can find a subfamily of the above cover of D^n consisting of balls intersecting $\Phi(S)$. After a relabeling, we can assume that these balls are B_i for $1 \leq i \leq k$. Let f_1, f_2, \ldots, f_k be functions in S such that $\Phi(f_i)$ is in the ball B_i for any $1 \leq i \leq k$. Denote by C_i the open ball of radius 2ϵ centered in $\Phi(f_i)$. Let $\beta \in B_i$. Then we have $d(\beta, \alpha_i) < \epsilon$ and $d(\Phi(f_i), \alpha_i) < \epsilon$. Hence, we have $d(\beta, \Phi(f_i)) < 2\epsilon$, i.e., $B_i \subset C_i$. It follows that $\Phi(S)$ is contained in the union of C_1, C_2, \ldots, C_k .

Differently put, for any function $f \in S$, there exists $1 \le i \le k$ such that $|f(x_j) - f_i(x_j)| < 2\epsilon$ for all $1 \le j \le n$.

Let $x \in X$. Then $x \in U_{x_i}$ for some $1 \le j \le n$. Hence, we have

 $|f(x) - f_i(x)| \le |f(x) - f(x_j)| + |f(x_j) - f_i(x_j)| + |f_i(x_j) - f_i(x)| < 4\epsilon,$

i.e., $||f - f_i|| < 4\epsilon$.

Now we can prove the compactness of the closure \bar{S} of S. Assume that \bar{S} is not compact. Then there exists an open cover \mathcal{U} of \bar{S} which doesn't contain a finite subcover. By the above remark, \bar{S} can be covered by finitely many closed balls $\{f \in C(X) \mid ||f - f_i|| \leq 1\}$ with $f_i \in S$. Therefore, there exists a set K_1

 $\mathbf{2}$

which is the intersection of \overline{S} with one of the closed balls and which is not covered by a finite subcover of \mathcal{U} . By induction, we can construct a decreasing family $K_1 \supset K_2 \supset \cdots \supset K_n \supset \cdots$ of closed subsets of \overline{S} which are contained in closed balls of radius $\frac{1}{n}$ centered in some point of S, such that none of K_n is covered by a finite subcover of \mathcal{U} .

Let $(F_n; n \in \mathbb{N})$ be a sequence of functions such that $F_n \in K_n$ for all $n \in \mathbb{N}$. Then $F_p, F_q \in K_n$ for all p, q greater than n. Since K_n are contained in closed balls of radius $\frac{1}{n}$, $||F_p - F_q|| \leq \frac{2}{n}$ for all p, q greater than n. Hence, (F_n) is a Cauchy sequence in C(X). Therefore, it converges to a function $F \in C(X)$. This function is in \overline{S} and therefore in one element V of the open cover \mathcal{U} . Therefore, for sufficiently large n, there exists a closed ball of radius $\frac{2}{n}$ centered in F which is contained in V. Since F is also in K_n , we see that K_n is in V. This clearly contradicts our construction of K_n . It follows that \overline{S} must be compact.

1.3. Haar measure on compact groups. Let $C_{\mathbb{R}}(G)$ be the space of real valued functions on G. For any function $f \in C_{\mathbb{R}}(G)$ we define the maximum $M(f) = \max_{g \in G} f(g)$ and minimum $m(f) = \min_{g \in G} f(g)$. Moreover, we denote by V(f) = M(f) - m(f) the variation of f.

Clearly, the function f is constant on G if and only if V(f) = 0. Let $f, f' \in \mathcal{C}_{\mathbb{R}}(G)$ be two functions such that $||f - f'|| < \epsilon$. Then

$$f(g) - \epsilon < f'(g) < f(g) + \epsilon$$

for all $g \in G$. This implies that

$$m(f) - \epsilon < f'(g) < M(f) + \epsilon$$

for all $g \in G$, and

$$m(f) - \epsilon < m(f') < M(f') < M(f) + \epsilon.$$

Hence

$$V(f') = M(f') - m(f') < M(f) - m(f) + 2\epsilon = V(f) + 2\epsilon$$

i.e., $V(f') - V(f) < 2\epsilon$. By symmetry, we also have $V(f) - V(f') < 2\epsilon$. It follows that $|V(f) - V(f')| < 2\epsilon$.

Therefore, we have the following result.

1.3.1. Lemma. The variation V is a continuous function on $\mathcal{C}_{\mathbb{R}}(G)$.

Let $f \in C_{\mathbb{R}}(G)$ and $\mathbf{a} = (a_1, a_2, \dots, a_n)$ a finite sequence of points in G. We define the *(right) mean value* $\mu(f, \mathbf{a})$ of f with respect to \mathbf{a} as

$$\mu(f, \mathbf{a})(g) = \frac{1}{n} \sum_{i=1}^{n} f(ga_i)$$

for all $g \in G$. Clearly, $\mu(f, \mathbf{a})$ is a continuous real function on G.

If f is a constant function, $\mu(f, \mathbf{a}) = f$.

Clearly, mean value $f \mapsto \mu(f, \mathbf{a})$ is a linear map. Moreover, we have the following result.

1.3.2. Lemma. (i) The linear map $f \mapsto \mu(f, \mathbf{a})$ is continuous. More precisely, we have

$$\|\mu(f,\mathbf{a})\| \le \|f\|$$

for any $f \in C_{\mathbb{R}}(G)$;

(ii)

(iii)
for any
$$f \in C_{\mathbb{R}}(G)$$
;
(iii)
for any $f \in C_{\mathbb{R}}(G)$;
(iv)
 $M(\mu(f, \mathbf{a})) \leq M(f)$
 $m(\mu(f, \mathbf{a})) \geq m(f)$
 $V(\mu(f, \mathbf{a})) \leq V(f)$

for any $f \in C_{\mathbb{R}}(G)$.

Proof. (i) Clearly, we have

$$\|\mu(f, \mathbf{a})\| = \max_{g \in G} |\mu(f, \mathbf{a})| \le \frac{1}{n} \sum_{g \in G} \max_{g \in G} |f(ga_i)| = \|f\|.$$

(ii) We have

$$M(\mu(f, \mathbf{a})) = \frac{1}{n} \max_{g \in G} \left(\sum_{i=1}^{n} f(ga_i) \right) \le \frac{1}{n} \sum_{i=1}^{n} \max_{g \in G} f(ga_i) = M(f).$$

(iii) We have

$$m(\mu(f, \mathbf{a})) = \frac{1}{n} \min_{g \in G} \left(\sum_{i=1}^{n} f(ga_i) \right) \ge \frac{1}{n} \sum_{i=1}^{n} \min_{g \in G} f(ga_i) = m(f).$$

(iv) By (ii) and (iii), we have

$$V(\mu(f, \mathbf{a})) = M(\mu(f, \mathbf{a})) - m(\mu(f, \mathbf{a})) \le M(f) - m(f) = V(f).$$

Denote by \mathcal{M}_f the set of mean values of f for all finite sequences in G.

1.3.3. Lemma. The set of functions \mathcal{M}_f is uniformly bounded and equicontinuous. Proof. By 1.3.2 (ii) and (iii), it follows that

$$m(f) \le m(\mu(f, \mathbf{a})) \le \mu(f, \mathbf{a})(g) \le M(\mu(f, \mathbf{a})) \le M(f).$$

This implies that \mathcal{M}_f is uniformly bounded.

Now we want to prove that \mathcal{M}_f is equicontinuous. First, by 1.1.1, the function f is uniformly continuous. Hence, for any $\epsilon > 0$, there exists an open neighborhood U of 1 in G such that $|f(g) - f(h)| < \epsilon$ if $gh^{-1} \in U$. Since, this implies that $(ga_i)(ha_i)^{-1} = gh^{-1} \in U$ for any $1 \leq i \leq n$, we see that

$$\left|\mu(f,\mathbf{a})(g) - \mu(f,\mathbf{a})(h)\right| = \frac{1}{n} \left|\sum_{i=1}^{n} (f(ga_i) - f(ha_i))\right| \le \frac{1}{n} \sum_{i=1}^{n} |f(ga_i) - f(ha_i)| < \epsilon$$

for $g \in hU$. Hence, the family \mathcal{M}_f is equicontinuous.

By 1.2.1, we have the following consequence.

1.3.4. Lemma. The set \mathcal{M}_f of all right mean values of f has compact closure in $\mathcal{C}_{\mathbb{R}}(G)$.

We need another result on variation of mean value functions. Clearly, if f is a constant function $\mu(f, \mathbf{a}) = f$ for any \mathbf{a} .

1.3.5. Lemma. Let f be a function in $C_{\mathbb{R}}(G)$. Assume that f is not a constant. Then there exists \mathbf{a} such that $V(\mu(f, \mathbf{a})) < V(f)$.

Proof. Since f is not constant, we have m(f) < M(f). Let C be such that m(f) < C < M(f). Then there exists an open set V in G such that $f(g) \leq C$ for all $g \in V$. Since the right translates of V cover G, by compactness of G we can find $\mathbf{a} = (a_1, a_2, \dots, a_n)$ such that $(Va_i^{-1}, 1 \leq i \leq n)$ is an open cover of G. For any $g \in Va_i^{-1}$ we have $ga_i \in V$ and $f(ga_i) \leq C$. Hence, we have

$$\mu(f, \mathbf{a})(g) = \frac{1}{n} \sum_{j=1}^{n} f(ga_j) = \frac{1}{n} \left(f(ga_i) + \sum_{j \neq i} f(ga_j) \right)$$
$$\leq \frac{1}{n} (C + (n-1)M(f)) < M(f).$$

On the other hand, by 1.3.2. (iii) we know that $m(\mu(f,\mathbf{a})) \geq m(f)$ for any $\mathbf{a}.$ Hence we have

$$V(\mu(f, \mathbf{a})) = M(\mu(f, \mathbf{a})) - m(\mu(f, \mathbf{a})) < M(f) - m(f) = V(f).$$

Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_m)$ be two finite sequences in G. We define $\mathbf{a} \cdot \mathbf{b} = (a_i b_j; 1 \le i \le n, 1 \le j \le m)$.

1.3.6. Lemma. We have

$$\mu(\mu(f, \mathbf{b}), \mathbf{a}) = \mu(f, \mathbf{b} \cdot \mathbf{a}).$$

Proof. We have

$$\mu(\mu(f, \mathbf{b}), \mathbf{a}) = \frac{1}{m} \sum_{i=1}^{m} \mu(f, \mathbf{b})(ga_i) = \frac{1}{nm} \sum_{j=1}^{m} \sum_{i=1}^{n} f(ga_i b_j) = \mu(f, \mathbf{a} \cdot \mathbf{b}).$$

1.3.7. Lemma. For any $f \in C_{\mathbb{R}}(G)$, the closure \mathcal{M}_f contains a constant function on G.

Proof. By 1.3.4, we know that $\overline{\mathcal{M}_f}$ is compact. Since, by 1.3.1, the variation V is continuous on $\mathcal{C}_{\mathbb{R}}(G)$, it attains its minimum α at some $\varphi \in \overline{\mathcal{M}_f}$.

Assume that φ is not a constant. By 1.3.5, there exists **a** such that $V(\mu(\varphi, \mathbf{a})) < V(\varphi)$. Let $\alpha - V(\mu(\varphi, \mathbf{a})) = \epsilon > 0$.

Since V and $\mu(\cdot, \mathbf{a})$ are continuous maps by 1.3.1 and 1.3.2.(i), this implies that there is **b** such that $|V(\mu(\varphi, \mathbf{a})) - V(\mu(\mu(f, \mathbf{b}), \mathbf{a}))| < \frac{\epsilon}{2}$. Therefore, we have

$$V(\mu(\mu(f, \mathbf{b}), \mathbf{a})) \le V(\mu(\varphi, \mathbf{a})) + \frac{\epsilon}{2} = \alpha - \frac{\epsilon}{2}.$$

By 1.3.6, we have

$$V(\mu(f,\mathbf{a}\cdot\mathbf{b})) < \alpha - \frac{\epsilon}{2}$$

contrary to our choice of α .

It follows that φ is a constant function. In addition $\alpha = 0$.

Consider now left mean values of a function $f \in \mathcal{C}_{\mathbb{R}}(G)$. We define the left mean value of f with respect to $\mathbf{a} = (a_1, a_2, \dots, a_n)$ as the function

$$\nu(f, \mathbf{a})(g) = \frac{1}{n} \sum_{i=1}^{n} f(a_i g)$$

for $g \in G$. We denote my \mathcal{N}_f the set of all left mean values of f.

Let G^{opp} be the compact group opposite to G. Then the left mean values of fon G are the right mean values of f on G^{opp} .

Hence, from 1.3.7, we deduce the following result.

1.3.8. Lemma. For any $f \in C_{\mathbb{R}}(G)$, the closure \mathcal{N}_f contains a constant function on G.

By direct calculation we get the following result.

1.3.9. Lemma. For any $f \in C_{\mathbb{R}}(G)$ we have

$$\nu(\mu(f, \mathbf{a}), \mathbf{b}) = \mu(\nu(f, \mathbf{b}), \mathbf{a})$$

for any two finite sequences \mathbf{a} and \mathbf{b} in G.

Proof. We have

$$\nu(\mu(f, \mathbf{a}), \mathbf{b})(g) = \frac{1}{m} \sum_{j=1}^{m} \mu(f, \mathbf{a})(b_j g) = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} f(b_j g a_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \nu(f, \mathbf{b})(g a_i) = \mu(\nu(f, \mathbf{b}), \mathbf{a})(g)$$
or any $g \in G$.

for any $g \in G$.

Putting together these results, we finally get the following.

1.3.10. **Proposition.** For any $f \in C_{\mathbb{R}}(G)$, the closure \mathcal{M}_f contains a unique function constant on G.

This function is also the unique constant function in \mathcal{N}_f .

Proof. Let φ and ψ be two constant functions such that φ is in the closure of \mathcal{M}_f and ψ is in the closure of \mathcal{N}_f . For any $\epsilon > 0$ we have **a** and **b** such that $\|\mu(f, \mathbf{a}) - \varphi\| < \frac{\epsilon}{2} \text{ and } \|\nu(f, \mathbf{b}) - \psi\| < \frac{\epsilon}{2}.$

On the other hand, we have

$$\begin{split} \|\nu(\mu(f,\mathbf{a}),\mathbf{b}) - \varphi\| &= \|\nu(\mu(f,\mathbf{a}),\mathbf{b}) - \nu(\varphi,\mathbf{b})\| \\ &= \|\nu(\mu(f,\mathbf{a}) - \varphi,\mathbf{b})\| \le \|\mu(f,\mathbf{a}) - \varphi\| < \frac{\epsilon}{2}. \end{split}$$

In the same way, we also have

$$\begin{aligned} \|\mu(\nu(f,\mathbf{b}),\mathbf{a}) - \psi\| &= \|\mu(\nu(f,\mathbf{b}),\mathbf{a}) - \mu(\psi,\mathbf{a})\| \\ &= \|\mu(\nu(f,\mathbf{b}) - \psi,\mathbf{a})\| \le \|\nu(f,\mathbf{b}) - \psi\| < \frac{\epsilon}{2}. \end{aligned}$$

By 1.3.9, this immediately yields

$$\|\varphi - \psi\| \le \|\nu(\mu(f, \mathbf{a}), \mathbf{b}) - \varphi\| + \|\mu(\nu(f, \mathbf{b}), \mathbf{a}) - \psi\| < \epsilon.$$

This implies that $\varphi = \psi$. Therefore, any constant function in the closure of \mathcal{M}_f has to be equal to ψ . The value of the unique constant function in the closure of \mathcal{M}_f is denoted by $\mu(f)$ and called *the mean value* of f on G. In this way, we get a function $f \mapsto \mu(f)$ on $\mathcal{C}_{\mathbb{R}}(G)$.

Let $\gamma : \mathcal{C}_{\mathbb{R}}(G) \longrightarrow \mathbb{R}$ be a linear form. We say that γ is *positive* if for any $f \in \mathcal{C}_{\mathbb{R}}(G)$ such that $f(g) \ge 0$ for any $g \in G$ we have $\gamma(f) \ge 0$.

1.3.11. **Lemma.** The function μ is a positive linear form on $\mathcal{C}_{\mathbb{R}}(G)$.

To prove this result we need some preparation.

1.3.12. Lemma. Let $f \in C_{\mathbb{R}}(G)$. Then, for any **a** we have

$$\mu(\mu(f, \mathbf{a})) = \mu(f).$$

Proof. Let $\mu(f) = \alpha$. Let φ be the function equal to α everywhere on G. Fix $\epsilon > 0$. Then there exists a finite sequence **b** such that

$$\|\nu(f, \mathbf{b}) - \varphi\| < \epsilon.$$

This implies that

$$\|\nu(f-\varphi,\mathbf{b})\| = \|\nu(f,\mathbf{b}) - \nu(\varphi,\mathbf{b})\| = \|\nu(f,\mathbf{b}) - \varphi\| < \epsilon.$$

This, by 1.3.2.(i), implies that

$$\|\mu(\nu(f-\varphi,\mathbf{b}),\mathbf{a})\| \le \|\nu(f-\varphi,\mathbf{b})\| < \epsilon$$

for any finite sequence **a**.

By 1.3.9, we have

$$\|\nu(\mu(f-\varphi,\mathbf{a}),\mathbf{b})\| = \|\mu(\nu(f-\varphi,\mathbf{b}),\mathbf{a})\| < \epsilon,$$

and

$$\|\nu(\mu(f,\mathbf{a}),\mathbf{b})-\varphi\| = \|\nu(\mu(f,\mathbf{a})-\varphi,\mathbf{b})\| = \|\nu(\mu(f-\varphi,\mathbf{a}),\mathbf{b})\| < \epsilon.$$

Therefore, if we fix **a**, we see that φ is in the closure of $\mathcal{N}_{\mu(f,\mathbf{a})}$. By 1.3.10, this proves our assertion.

Let f and f' be two functions in $C_{\mathbb{R}}(G)$. Let $\alpha = \mu(f)$ and $\beta = \mu(f')$. Denote by φ and ψ the corresponding constant functions. Let $\epsilon > 0$.

Clearly. there exists **a** such that

$$\|\mu(f,\mathbf{a})-\varphi\|<\frac{\epsilon}{2}.$$

This, by 1.3.2.(ii) implies, that we have

$$\|\mu(\mu(f, \mathbf{a}), \mathbf{b}) - \varphi\| = \|\mu(\mu(f, \mathbf{a}) - \varphi, \mathbf{b})\| < \frac{\epsilon}{2}$$

for arbitrary **b**. By 1.3.6, this in turn implies that

$$\|\mu(f, \mathbf{a} \cdot \mathbf{b}) - \varphi\| < \frac{\epsilon}{2}.$$

On the other hand, by 1.3.12, we have $\mu(\mu(f', \mathbf{a})) = \mu(f') = \beta$. Therefore, there exists a finite sequence **b** such that

$$\|\mu(\mu(f',\mathbf{a}),\mathbf{b})-\psi\|<\frac{\epsilon}{2}.$$

This, by 1.3.6, implies that

$$\|\mu(f', \mathbf{a} \cdot \mathbf{b}) - \psi\| < \frac{\epsilon}{2}.$$

Hence, we have

 $\|\mu(f+f',\mathbf{a}\cdot\mathbf{b}) - (\varphi+\psi)\| \le \|\mu(f,\mathbf{a}\cdot\mathbf{b}) - \varphi\| + \|\mu(f',\mathbf{a}\cdot\mathbf{b}) - \psi\| < \epsilon.$

Therefore, $\varphi + \psi$ is in the closure of $\mathcal{M}_{f+f'}$. It follows that

$$\mu(f+f') = \alpha + \beta = \mu(f) + \mu(f'),$$

i.e., μ is additive.

Let $c \in \mathbb{R}$ and $f \in C_{\mathbb{R}}(G)$. Then $\mu(cf, \mathbf{a}) = c\mu(f, \mathbf{a})$ for any \mathbf{a} . Therefore, $\mathcal{M}_{cf} = c\mathcal{M}_f$. This immediately implies that $\mu(cf) = c\mu(f)$. Therefore μ is a linear form.

Assume that f is a function in $C_{\mathbb{R}}(G)$ such that $f(g) \ge 0$ for all $g \in G$. Then $\mu(f, \mathbf{a})(g) \ge 0$ for any \mathbf{a} and $g \in G$. Hence, any function $\phi \in \mathcal{M}_f$ satisfies $\phi(g) \ge 0$ for all $g \in G$. This immediately implies that $\phi(g) \ge 0$, $g \in G$, for any ϕ in the closure of \mathcal{M}_f . It follows that $\mu(f) \ge 0$. Hence, we μ is a positive linear form. This completes the proof of 1.3.11.

Clearly, $\mu(1) = 1$. Let $f \in \mathcal{C}_{\mathbb{R}}(G)$. Then we have

$$-\|f\| \le f(g) \le \|f\|$$

for any $g \in G$. Since μ is a positive linear form, we see that

$$-\|f\| = \mu(-\|f\|) \le \mu(f) \le \mu(\|f\|) = \|f\|$$

Therefore, we have

$$|\mu(f)| \le \|f\|$$

for any $f \in \mathcal{C}_{\mathbb{R}}(G)$. In particular, μ is a continuous linear form on $\mathcal{C}_{\mathbb{R}}(G)$.

By Riesz representation theorem, the linear form $\mu : C_{\mathbb{R}}(G) \longrightarrow \mathbb{R}$ defines a regular positive measure μ on G such that

$$\mu(f) = \int_G f \, d\mu.$$

Clearly, we have

$$\mu(G) = \int_G d\mu = \mu(1) = 1.$$

so we say that μ is *normalized*.

Denote by R (resp. L) the right regular representation (resp. left regular representation of G on C(G) given by (R(g)f)(h) = f(hg) (resp. $(L(g)f)(h) = f(g^{-1}h))$ for any $f \in C(G)$ and $g, h \in G$.

1.3.13. Lemma. Let $f \in C_{\mathbb{R}}(G)$ and $g \in G$. Then

$$\mu(R(g)f) = \mu(L(g)f) = \mu(f).$$

Proof. Let $\mathbf{g} = (g)$. Clearly, we have

$$\mu(f, \mathbf{g})(h) = f(hg) = (R(g)f)(h)$$

for all $h \in G$, i.e., $R(g)f = \mu(f, \mathbf{g})$. By 1.3.12, we have

$$\mu(R(g)f) = \mu(\mu(f, \mathbf{g})) = \mu(f)$$

This statement for G^{opp} implies the other equality.

We say that the linear form μ is *biinvariant*, i.e., *right invariant* and *left invariant*.

The above result implies that the measure μ is *biinvariant*, i.e., we have the following result.

8

1.3.14. Lemma. Let A be a measurable set in G. Then gA and Ag are also measurable and

$$\mu(gA) = \mu(Ag) = \mu(A)$$

for any $g \in G$.

Proof. Since $C_{\mathbb{R}}(G)$ is dense in $L^1(\mu)$, the invariance from 1.3.13 holds for any function $f \in L^1(\mu)$. Applying it to the characteristic function of the set A implies the result.

A normalized biinvariant positive measure μ on G is called a *Haar measure* on G.

We proved the existence part of the following result.

1.3.15. **Theorem.** Let G be a compact group. Then there exists a unique Haar measure μ on G.

Proof. We constructed a Haar measure on G.

It remains to prove the uniqueness. Let ν be another Haar measure on G. Then, by left invariance, we have

$$\int_{G} \mu(f, \mathbf{a}) \, d\nu = \frac{1}{n} \sum_{i=1}^{n} \int_{G} f(ga_i) \, d\nu(g) = \int_{G} f \, d\nu$$

for any **a**. Hence the integral with respect to ν is constant on \mathcal{M}_f . By continuity, it is also constant on its closure. Therefore, we have

$$\int_G f \, d\nu = \mu(f) \int_G d\nu = \mu(f) = \int_G f \, d\mu$$

for any $C_{\mathbb{R}}(G)$. This in turn implies that $\nu = \mu$.

1.3.16. Lemma. Let μ be the Haar measure on G. Let U be a nonempty open set in G. Then $\mu(U) > 0$.

Proof. Since U is nonempty, $(Ug; g \in G)$ is an open cover of G. It contains a finite subcover $(Ug_i; 1 \le i \le n)$. Therefore we have

$$1 = \mu(G) = \mu\left(\bigcup_{i=1}^{n} Ug_i\right) \le \sum_{i=1}^{n} \mu(Ug_i) = \sum_{i=1}^{n} \mu(U) = n \,\mu(U)$$

by 1.3.14. This implies that $\mu(U) \ge \frac{1}{n}$.

1.3.17. Lemma. Let f be a continuous function on G. Then

$$\int_G f(g^{-1}) \, d\mu(g) = \int_G f(g) \, d\mu(g).$$

Proof. Clearly, it is enough to prove the statement for real-valued functions. Therefore, we can consider the linear form $\nu : f \mapsto \int_G f(g^{-1}) d\mu(g)$. Clearly, this a positive continuous linear form on $C_{\mathbb{R}}(G)$. Moreover,

$$\begin{split} \nu(f) &= \int_G f(h^{-1}) \, d\mu(h) = \int_G f((hg)^{-1}) \, d\mu(h) \\ &= \int_G f(g^{-1}h^{-1}) \, d\mu(h) = \int_G (L(g)f)(h^{-1}) \, d\mu(h) = \nu(L(g)f) \end{split}$$

and

$$\begin{split} \nu(f) &= \int_G f(h^{-1}) \, d\mu(h) = \int_G f((g^{-1}h)^{-1}) \, d\mu(h) \\ &= \int_G f(h^{-1}g) \, d\mu(h) = \int_G (R(g)f)(h^{-1}) \, d\mu(h) = \nu(R(g)f) \end{split}$$

for any $g \in G$. Hence, this linear form is left and right invariant. By the uniqueness of the Haar measure we get the statement.

2. Algebra of matrix coefficients

2.1. Topological vector spaces. Let E be a vector space over \mathbb{C} . We say that E is a *topological vector space* over \mathbb{C} , if it is also equipped with a topology such that the functions $(u, v) \mapsto u + v$ from $E \times E$ into E, and $(\alpha, u) \mapsto \alpha u$ from $\mathbb{C} \times E$ into E are continuous.

A morphism $\varphi : E \longrightarrow F$ of topological vector space E into F is a continuous linear map from E to F.

We say that E is a hausdorff topological vector space if the topology of E is hausdorff.

The vector space \mathbb{C}^n with its natural topology is a hausdorff topological vector space.

Let E be a topological vector space and F a vector subspace of E. Then F is a topological vector space with the induced topology. Moreover, if E is hausdorff, F is also hausdorff.

2.1.1. **Lemma.** Let E be a topological vector space over \mathbb{C} . Then the following conditions are equivalent:

- (i) E is hausdorff;
- (ii) $\{0\}$ is a closed set in E.

Proof. Assume that E is hausdorff. Let $v \in E$, $v \neq 0$. Then there exist open neighborhoods U of 0 and V of v such that $U \cap V = \emptyset$. In particular, $V \subset E - \{0\}$. Hence, $E - \{0\}$ is an open set. This implies that $\{0\}$ is closed.

Assume now that $\{0\}$ is closed in E. Then $E - \{0\}$ is an open set. Let u and v be different vectors in E. Then $u - v \neq 0$. Since the function $(x, y) \mapsto x + y$ is continuous, there exist open neighborhoods U of u and V of v such that $U - V \subset E - \{0\}$. This in turn implies that $U \cap V = \emptyset$.

The main result of this section is the following theorem. It states that hausdorff finite-dimensional topological vector spaces have unique topology.

2.1.2. **Theorem.** Let E be a finite-dimensional hausdorff topological vector space over \mathbb{C} . Let v_1, v_2, \ldots, v_n be a basis of E. Then the linear map $\mathbb{C}^n \longrightarrow E$ given by

$$(c_1, c_2, \ldots, c_n) \longmapsto \sum_{i=1}^n c_i v_i$$

is an isomorphism of topological vector spaces.

Clearly, the map

$$\phi(z) = \sum_{i=1}^{n} z_i v_i,$$

for all $z = (z_1, z_2, ..., z_n) \in \mathbb{C}^n$, is a continuous linear isomorphism of \mathbb{C}^n onto E. Therefore, it is enough to show that that map is also open.

We start with an elementary lemma.

2.1.3. **Lemma.** Let E and F be topological vector spaces and $\phi : E \longrightarrow F$ a linear map. Let $(U_i, i \in I)$ be a fundamental system of neighborhoods of 0 in E. If $\phi(U_i)$, $i \in I$, are neighborhoods of 0 in F, ϕ is an open map.

Proof. Let U be an open set in E. For any $u \in U$ there exists $i \in I$ such that $u + U_i$ is a neighborhood of u contained in U. Therefore, $\phi(u + U_i) = \phi(u) + \phi(U_i)$ is a neighborhood of $\phi(u)$ contained in $\phi(U)$. Hence, $\phi(u)$ is an interior point of $\phi(U)$. This implies that $\phi(U)$ is open.

We consider on \mathbb{C}^n the standard euclidean norm $\|\cdot\|$. Let $B_1 = \{z \in \mathbb{C}^n \mid \|z\| < 1\}$ be the open unit ball in \mathbb{C}^n . Then the balls $\{\epsilon B_1 \mid 0 < \epsilon < \infty\}$ form a fundamental system of neighborhoods of 0 in \mathbb{C}^n . By 2.1.3, to show that the above map $\phi : \mathbb{C}^n \longrightarrow E$ is open it is enough to show that $\phi(B_1)$ is a neighborhood of 0 in E.

Let $S = \{z \in \mathbb{C}^n \mid ||z|| = 1\}$ be the unit sphere in \mathbb{C}^n . Then, S is a bounded and closed set in \mathbb{C}^n . Hence it is compact. This implies that $\phi(S)$ is a compact set in E. Since 0 is not in S, 0 is not in $\phi(S)$. Since E is hausdorff, $\phi(S)$ is closed and $E - \phi(S)$ is an open neighborhood of 0 in E. By continuity of multiplication by scalars at (0,0), there exists $\epsilon > 0$ and an open neighborhood U of 0 in E such that $zU \subset E - \phi(S)$, i.e., $zU \cap \phi(S) = \emptyset$ for all $|z| \leq \epsilon$.

Let $v \in U - \{0\}$. Then we have

$$v = \sum_{i=1}^{n} c_i v_i.$$

Let $c = (c_1, c_2, \ldots, c_n) \in \mathbb{C}^n$. Then, $\frac{1}{\|c\|} c \in S$, and $\frac{1}{\|c\|} v \in \phi(S)$. By our construction, we must have $\frac{1}{\|c\|} > \epsilon$. Hence, we have $\|c\| < \frac{1}{\epsilon}$, i.e., $c \in B_{\frac{1}{\epsilon}}$. This in turn yields $v \in \phi(\frac{1}{\epsilon}B_1)$. Therefore, we have

$$\phi\left(\frac{1}{\epsilon}B_1\right)\supset U,$$

i.e., $\phi(B_1) \supset \epsilon U$. Hence, $\phi(B_1)$ is a neighborhood of 0 in *E*. This completes the proof of 2.1.2.

2.1.4. Corollary. Let E be a hausdorff topological vector space over \mathbb{C} . Let F be a finite-dimensional vector subspace of E. Then F is closed in E.

Proof. Clearly, the topology of E induces a structure of hausdorff topological vector space on F. Let v_1, v_2, \ldots, v_n be a basis of F. Assume that F is not closed. Let w be a vector in the closure of F which is not in F. Then w is linearly independent of v_1, v_2, \ldots, v_n . Let F' be the direct sum of F and $\mathbb{C}w$. Then F' is a (n + 1)-dimensional hausdorff topological vector space. By 2.1.2, we know that

$$(c_1, c_2, \dots, c_n, c_{n+1}) \longmapsto \sum_{i=1}^n c_i v_i + c_{n+1} w$$

is an isomorphism of the topological vector space \mathbb{C}^{n+1} onto F'. This isomorphism maps $\mathbb{C}^n \times \{0\}$ onto F. Therefore, F is closed in F', and w is not in the closure of F. Hence, we have a contradiction.

2.1.5. **Lemma.** Let E and F be two finite-dimensional hausdorff topological vector spaces. Then any linear map $\phi : E \longrightarrow F$ is continuous.

2.2. Representations on topological vector spaces. Let G be a compact group. Let E be a hausdorff topological vector space over \mathbb{C} . We denote by GL(E) the group of all automorphisms of E.

A (continuous) representation of G on E is a group homomorphism $\pi : G \longrightarrow$ GL(E) such that $(g, v) \mapsto \pi(g)v$ is continuous from $G \times E$ into E.

2.2.1. **Lemma.** Let E be a Banach space and $\pi : G \longrightarrow GL(E)$ a homomorphism such that $g \longmapsto \pi(g)v$ is continuous function from G into E for all $v \in E$. Then (π, E) is a representation of G on E.

Proof. Assume that the function $g \mapsto \pi(g)v$ is continuous for any $v \in V$. Then the function $g \mapsto ||\pi(g)v||$ is continuous on G. Since G is compact, there exists Msuch that $||\pi(g)v|| < M$ for all $g \in G$. By Banach-Steinhaus theorem, we see that the function $g \mapsto ||\pi(g)||$ is bounded on G.

Pick C > 0 such that $||\pi(g)|| \leq C$ for all $g \in G$. Then we have

$$\begin{aligned} \|\pi(g)v - \pi(g')v'\| &= \|(\pi(g)v - \pi(g')v) + \pi(g')(v - v')\| \\ &\leq \|\pi(g)v - \pi(g')v\| + \|\pi(g')\|\|v - v'\| \leq \|\pi(g)v - \pi(g')v\| + C\|v - v'\| \end{aligned}$$

for all $g, g' \in G$ and $v, v' \in E$. This clearly implies the continuity of the function $(g, v) \mapsto \pi(g)v$.

If E is a finite-dimensional hausdorff topological vector space, by 2.1.5, any linear automorphism of E is automatically an automorphism of topological vector spaces. Therefore GL(E) is just the group of all linear automorphisms of E as before.

Moreover, since the topology of E is described by the euclidean norm and E is a Banach space with respect to it, by 2.2.1, the only additional condition for a representation of G is the continuity of the function $g \mapsto \pi(g)v$ for any $v \in E$. This implies the following result.

2.2.2. **Lemma.** Let E be a finite-dimensional hausdorff topological vector space and π a homomorphism of G into GL(E). Let v_1, v_2, \ldots, v_n be a basis of E.

- (i) (π, E) is a representation of G on E;
- (ii) all matrix coefficients of $\pi(g)$ with respect to the basis v_1, v_2, \ldots, v_n are continuous functions on G.

2.3. Algebra of matrix coefficients. Let G be a compact group. The Banach space C(G) is an commutative algebra with pointwise multiplication of functions, i.e., $(\psi, \phi) \mapsto \psi \cdot \phi$ where $(\psi \cdot \phi)(g) = \psi(g)\phi(g)$ for any $g \in G$.

First, we remark the following fact.

2.3.1. Lemma. R and L are representations of G on C(G).

Proof. Clearly, we have

$$\|R(g)\phi\| = \max_{h \in G} |(R(g)\phi)(h)| = \max_{h \in G} |\phi(hg)| = \max_{h \in G} |\phi(h)| = \|\phi\|.$$

Hence R(g) is a continuous linear map on C(G). Its inverse is $R(g^{-1})$, so $R(g) \in GL(C(G))$.

By 2.2.1, it is enough to show that the function $g \mapsto R(g)\phi$ is continuous for any function $\phi \in C(G)$.

By 1.1.1, ϕ is uniformly continuous, i.e., there exists a neighborhood U of 1 in G such that $g^{-1}g' \in U$ implies $|\phi(hg) - \phi(hg')| < \epsilon$ for all $h \in G$. Hence, we have

$$\|R(g)\phi - R(g')\phi\| = \max_{h \in G} |(R(g)\phi)(h) - (R(g')\phi)(h)| = \max_{h \in G} |\phi(hg) - \phi(hg')| < \epsilon$$

for $g' \in gU$. Hence, the function $g \longrightarrow R(g)\phi$ is continuous. The proof for L is analogous.

We say that the function $\phi \in C(G)$ is right (resp. left) *G*-finite if the vectors $\{R(g)\phi; g \in G\}$ (resp. $\{L(g)\phi; g \in G\}$) span a finite-dimensional subspace of C(G).

2.3.2. Lemma. Let $\phi \in C(G)$. The following conditions are equivalent.

- (i) ϕ is left *G*-finite;
- (ii) ϕ is right G-finite;

(iii) there exist n and functions $a_i, b_i \in C(G), 1 \leq i \leq n$, such that

$$\phi(gh) = \sum_{i=1}^{n} a_i(g)b_i(h)$$

for all $g, h \in G$.

Proof. Let ϕ be a right *G*-finite function. Then ϕ is in a finite-dimensional subspace *F* invariant for *R*. The restriction of the representation *R* to *F* is continuous. Let a_1, a_2, \ldots, a_n be a basis of *F*. Then, by 2.2.2, there exist $b_1, b_2, \ldots, b_n \in C(G)$ such that $R(g)\phi = \sum_{i=1}^n b_i(g)a_i$. Therefore we have

$$\phi(hg) = \sum_{i=1}^{n} b_i(g)a_i(h) = \sum_{i=1}^{n} a_i(h)b_i(g)$$

for all $h, g \in G$. Therefore (iii) holds.

If (iii) holds,

$$R(g)\phi = \sum_{i=1}^{n} a_i(g)b_i$$

and ϕ is right *G*-finite.

Since the condition (iii) is symmetric, the equivalence of (i) and (iii) follows by applying the above argument to the opposite group of G.

Therefore, we can call ϕ just a *G*-finite function in C(G). Let R(G) be the subset of all *G*-finite functions in C(G).

2.3.3. **Proposition.** The set R(G) is a subalgebra of C(G).

Proof. Clearly, a multiple of a G-finite function is a G-finite function.

Let ϕ and ψ be two *G*-finite functions. Then, by 2.3.2, there exists functions $a_i, b_i, c_i, d_i \in C(G)$ such that

$$\phi(gh) = \sum_{i=1}^{n} a_i(g)b_i(h) \text{ and } \psi(gh) = \sum_{i=1}^{m} c_i(g)d_i(h)$$

for all $g, h \in G$. This implies that

$$(\phi + \psi)(gh) = \sum_{i=1}^{n} a_i(g)b_i(h) + \sum_{i=1}^{m} c_i(g)d_i(h)$$

and

$$(\phi \cdot \psi)(gh) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i(g)c_j(g)b_i(h)d_j(h) = \sum_{i=1}^{n} \sum_{j=1}^{m} (a_i \cdot c_j)(g)(b_i \cdot d_i)(h)$$

for all $g, h \in G$. Hence, $\phi + \psi$ and $\phi \cdot \psi$ are G-finite.

Clearly, R(G) is an invariant subspace for R and L.

The main result of this section is the following observation. Let V be a finitedimensional complex linear space and π a continuous homomorphism of G into GL(V), i.e., (π, V) is a representation of G. For $v \in V$ and $v \in V^*$ we call the continuous function $g \mapsto c_{v,v*}(g) = \langle \pi(g)v, v^* \rangle$ a matrix coefficient of (π, V) .

2.3.4. **Theorem.** Let $\phi \in C(G)$. Then the following statements are equivalent:

- (i) ϕ is in R(G);
- (ii) ϕ is a matrix coefficient of a finite-dimensional representation of G.

Proof. Let (π, V) be a finite-dimensional representation of G. Let $v \in V$ and $v^* \in V^*$. By scaling v^* if necessary, we can assume that v is a vector in a basis of V and v^* a vector in the dual basis of V^* . Then, $c_{v,v^*}(g)$ is a matrix coefficient of the matrix of $\pi(g)$ in the basis of V. The rule of matrix multiplication implies that (iii) from 2.3.2 holds for c_{v,v^*} . Hence ϕ is G-finite.

Assume that ϕ is *G*-finite. Then, by 2.3.2, we have $R(g)\phi = \sum_{i=1}^{n} a_i(g)b_i$ where $a_i, b_i \in C(G)$. We can also assume that b_i are linearly independent. Let *V* be the subspace of R(G) spanned by b_1, b_2, \ldots, b_n . Then *V* is a *G*-invariant subspace. Let $v = \phi$ and $v^* \in V^*$ such that $b_i(1) = \langle b_i, v^* \rangle$. Then

$$\langle R(g)v, v^* \rangle = \sum_{i=1}^n a_i(g) \langle b_i, v^* \rangle = \sum_{i=1}^n a_i(g) b_i(1) = \phi(g),$$

i.e., ϕ is a matrix coefficient of the restriction of R to V.

Therefore, we call R(G) the algebra of matrix coefficients of G. We also have the following stronger version of 2.3.2

2.3.5. Corollary. Let $\phi \in R(G)$. Then there exist n and functions $a_i, b_i \in R(G)$, $1 \leq i \leq n$, such that

$$\phi(gh) = \sum_{i=1}^{n} a_i(g)b_i(h)$$

for all $g, h \in G$.

Proof. Since ϕ is a matrix coefficient of a finite-dimensional representation by 2.3.4, the statement follows from the formula for the product of two matrices.

Moreover, R(G) has the following properties. For a function $\phi \in C(G)$ we denote by $\overline{\phi}$ the function $g \mapsto \overline{f(g)}$ on G; and by $\hat{\phi}$ the function $g \mapsto f(g^{-1})$.

2.3.6. Lemma. Let $\phi \in R(G)$. Then

- (i) the function $\overline{\phi}$ is in R(G);
- (ii) the function $\hat{\phi}$ is in R(G).

Proof. Obvious by 2.3.2.

3. Some facts from functional analysis

3.1. Compact operators. Let *E* be a Hilbert space and $T: E \longrightarrow E$ a bounded linear operator.

We say that T is a *compact operator* if T is a bounded linear operator which maps the unit ball in E into a relatively compact set.

3.1.1. Lemma. Compact operators for a two-sided ideal in the algebra of all bounded linear operators on E.

Proof. Let S and T be compact operators. Let B be the unit ball in E. Then the images of B in E under T and S have compact closure. Hence, the image of $B \times B$ under $S \times T : E \times E \longrightarrow E \times E$ has compact closure. Since the addition is a continuous map from $E \times E$ into E, the image of B under S + T also has compact closure. Therefore, S + T is a compact operator.

If S is a bounded linear operator and T a compact operator, the image of B under T has compact closure. Since S is continuous, the image of B under ST also has compact closure. Hence, ST is compact.

Analogously, the image of B under S is a bounded set since S is bounded. Therefore, the image of B under TS has compact closure and TS is also compact.

3.2. Compact selfadjoint operators. Let *E* be a Hilbert space. Let $T : E \longrightarrow E$ be a nonzero compact selfadjoint operator.

3.2.1. **Theorem.** Either ||T|| or -||T|| is an eigenvalue of T.

First we recall a simple fact.

3.2.2. Lemma. Let u and v be two nonzero vectors in E such that $|(u|v)| = ||u|| \cdot ||v||$. Then u and v are colinear.

Proof. Let λv be the orthogonal projection of u to v. Then $u = \lambda v + w$ and w is perpendicular to v. This implies that $||u||^2 = |\lambda|^2 ||v||^2 + ||w||^2$. On the other hand, we have $||u|| \cdot ||v|| = |(u|v)| = |\lambda| ||v||^2$, i.e., $|\lambda| = \frac{||u||}{||v||}$. Hence, it follows that

$$||u||^{2} = |\lambda|^{2}||v||^{2} + ||w||^{2} = ||u||^{2} + ||w||^{2}$$

i.e., $||w||^2 = 0$ and w = 0.

Now we can prove the theorem. By rescaling T, we can assume that ||T|| = 1. Let B be the unit ball in E. By our assumption, we know that

$$1 = \|T\| = \sup_{v \in B} \|Tv\|.$$

Therefore, there exists a sequence of vectors $v_n \in B$ such that $\lim_{n\to\infty} ||Tv_n|| = 1$. Since T is compact, by going to a subsequence, we can also assume that $\lim_{n\to\infty} Tv_n = u$. This implies that

$$1 = \lim_{n \to \infty} \|Tv_n\| = \|u\|.$$

Moreover, we have $\lim_{n\to\infty} T^2 v_n = Tu$. Hence, we have

$$1 = ||T|| \cdot ||u|| \ge ||Tu|| = \lim_{n \to \infty} ||T^2 v_n|| \ge \limsup_{n \to \infty} (||T^2 v_n|| \cdot ||v_n||)$$

$$\ge \limsup_{n \to \infty} (T^2 v_n |v_n) = \lim_{n \to \infty} (Tv_n ||Tv_n|) = \lim_{n \to \infty} ||Tv_n||^2 = 1.$$

It follows that

$$||Tu|| = 1.$$

Moreover, we have

$$1 = ||Tu||^{2} = (Tu|Tu) = (T^{2}u||u) \le ||T^{2}u|||u|| \le ||T^{2}|||u||^{2} \le ||T||^{2}||u||^{2} = 1.$$

This finally implies that

$$(T^2 u|u) = ||T^2 u|| ||u||.$$

By 3.2.2, it follows that T^2u is proportional to u, i.e. $T^2u = \lambda u$. Moreover, we have

$$\lambda = \lambda(u|u) = (T^2 u|u) = ||Tu||^2 = 1.$$

It follows that $T^2u = u$.

Therefore, the linear subspace F of E spanned by u and Tu is T-invariant. Either Tu = u or $v = \frac{1}{2}(u - Tu) \neq 0$. In the second case, we have Tv = -v.

This completes the proof of the existence of eigenvalues.

We need another fact.

3.2.3. **Lemma.** Let T be a compact selfadjoint operator. Let λ be an eigenvalue different from 0. Then the eigenspace of λ is finite-dimensional.

Proof. Assume that the corresponding eigenspace V is infinite-dimensional. Then there would exist an orthonormal sequence $(e_n, n \in \mathbb{N})$ in F. Clearly, then the sequence $(Te_n, n \in \mathbb{N})$ would consist of mutually orthogonal vectors of length $|\lambda|$, hence it could not have compact closure in V, contradicting the compactness of T. Therefore, V cannot be infinite-dimensional.

3.3. An example. Denote by μ the Haar measure on G. Let $L^2(G)$ be the Hilbert space of square-integrable complex valued functions on G with respect to the Haar measure μ . We denote its norm by $\|\cdot\|_2$. Clearly, we have

$$\|f\|_2^2 = \int_G |f(g)|^2 \, d\mu(g) \le \|f\|^2$$

for any $f \in C(G)$. Hence the inclusion $C(G) \longrightarrow L^2(G)$ is a continuous map.

3.3.1. Lemma. The continuous linear map $i: C(G) \longrightarrow L^2(G)$ is injective.

Proof. Let $f \in C(G)$ be such that i(f) = 0. This implies that $||f||_2 = 0$. On the other hand, the function $g \mapsto |f(g)|$ is a nonnegative continuous function on G. Assume that M is the maximum of this function on G. If we would have M > 0, there would exist a nonempty open set $U \subset G$ such that $|f(g)| \geq \frac{M}{2}$ for $g \in U$. Therefore, we would have

$$||f||_2^2 = \int_G |f(g)|^2 \, d\mu(g) \ge \frac{M^2}{4}\mu(U) > 0$$

by 1.3.16. Therefore, we must have M = 0.

Since the measure of G is 1, by Cauchy-Schwartz inequality, we have

$$\int_{G} |\phi(g)| \, d\mu(g) = \int_{G} 1 \cdot |\phi(g)| \, d\mu(g) \le \|1\|_2 \cdot \|\phi\|_2 = \|\phi\|_2$$

for any $\phi \in L^2(\mu)$. Hence, $L_2(G) \subset L_1(G)$, where $L_1(G)$ is the Banach space of integrable functions on G.

Let f be a continuous function on G. For any $\phi \in L^2(G)$, we put

$$(R(f)\phi)(g) = \int_G f(h)\phi(gh)d\mu(h)$$

for $g \in G$.

By 1.1.1, f is uniformly continuous on G. This implies that for any $\epsilon > 0$ there exists a neighborhood U of 1 in G such that $g'g^{-1} \in U$ implies $|f(g) - f(g')| < \epsilon$. Therefore, for arbitrary $h \in G$, we see that for $(g'^{-1}h)(g^{-1}h)^{-1} = g'^{-1}g \in U$ and we have

$$|f(g^{-1}h) - f(g'^{-1}h)| < \epsilon.$$

This in turn implies that

$$\begin{split} |(R(f)\phi)(g) - (R(f)\phi)(g')| &= \left| \int_{G} f(h)\phi(gh)d\mu(h) - \int_{G} f(h)\phi(g'h)\,d\mu(h) \right| \\ &= \left| \int_{G} (f(g^{-1}h) - f(g'^{-1}h))\phi(h)\,d\mu(h) \right| = \int_{G} |f(g^{-1}h) - f(g'^{-1}h)|\,|\phi(h)|\,d\mu(h) \\ &< \epsilon \cdot \int_{G} |\phi(h)|\,d\mu(h) \le \epsilon \cdot \|\phi\|_{2} \end{split}$$

for any $g' \in Ug$ and ϕ in $L^2(G)$. This proves that functions $R(f)\phi$ are in C(G) for any $\phi \in L^2(G)$.

Moreover, by the invariance of Haar measure, we have

$$\begin{split} |(R(f)\phi)(g)| &\leq \int_{G} |f(h)| |\phi(gh)| \, d\mu(h) \leq \|f\| \int_{G} |\phi(gh)| \, d\mu(h) \\ &\leq \|f\| \int_{G} |\phi(h)| \, d\mu(h) \leq \|f\| \cdot \|\phi\|_{2}, \end{split}$$

it follows that

$$||R(f)\phi|| \le ||f|| \cdot ||\phi||_2$$

for any $\phi \in L^2(G)$. Hence, R(f) is a bounded linear operator from $L^2(G)$ into C(G).

Hence the set $S = \{R(f)\phi \mid ||\phi||_2 \le 1\}$ is bounded in C(G).

Clearly, the composition of R(f) with the natural inclusion $i : C(G) \longrightarrow L^2(G)$ is a continuous linear map from $L^2(G)$ into itself which will denote by the same symbol. Therefore, the following diagram of continuous maps

is commutative.

We already remarked that S is a bounded set in C(G). Hence, S is a pointwise bounded family of continuous functions. In addition, by the above formula

$$|(R(f)\phi)(g) - (R(f)\phi)(g')| < \epsilon,$$

for all $g' \in Ug$ and ϕ in the unit ball in $L^2(G)$. Hence, the set S is equicontinuous. Hence we proved the following result.

3.3.2. Lemma. The set $S \subset C(G)$ is pointwise bounded and equicontinuous.

By 1.2.1, the closure of the set S in C(G) is compact. Since $i : C(G) \longrightarrow L^2(G)$ is continuous, S has compact closure in $L^2(G)$. Therefore, we have the following result.

3.3.3. Lemma. The linear operator $R(f): L^2(G) \longrightarrow L^2(G)$ is compact.

Put $f^*(g) = \overline{f(g^{-1})}, g \in G$. Then $f^* \in C(G)$.

3.3.4. Lemma. For any $f \in C(G)$ we have

$$R(f)^* = R(f^*).$$

Proof. For $\phi, \psi \in L^2(G)$, we have, by 1.3.17,

$$\begin{split} (R(f)\phi \mid \psi) &= \int_{G} (R(f)\phi)(g)\overline{\psi(g)} \, d\mu(g) = \int_{G} \left(\int_{G} f(h)\phi(gh) \, d\mu(h) \right) \overline{\psi(g)} \, d\mu(g) \\ &= \int_{G} f(h) \left(\int_{G} \phi(gh)\overline{\psi(g)} \, d\mu(g) \right) \, d\mu(h) = \int_{G} f(h) \left(\int_{G} \phi(g)\overline{\psi(gh^{-1})} \, d\mu(g) \right) \, d\mu(h) \\ &= \int_{G} \phi(g) \left(\overline{\int_{G} \overline{f(h)}\psi(gh^{-1}) \, d\mu(h)} \right) \, d\mu(g) \\ &= \int_{G} \phi(g) \left(\overline{\int_{G} f^{*}(h^{-1})\psi(gh^{-1}) \, d\mu(h)} \right) \, d\mu(g) \\ &= \int_{G} \phi(g) \left(\overline{\int_{G} f^{*}(h)\psi(gh) \, d\mu(h)} \right) \, d\mu(g) = (\phi \mid R(f^{*})\psi). \\ \Box \end{split}$$

3.3.5. Corollary. The operator $R(f^*)R(f) = R(f)^*R(f)$ is a positive compact selfadjoint operator on $L^2(G)$.

4. Peter-Weyl Theorem

4.1. L^2 version. Let $\phi \in L^2(G)$. Let $g \in G$. We put $(R(g)\phi)(h) = \phi(hg)$ for any $h \in G$. Then we have

$$\|R(g)\phi\|_{2}^{2} = \int_{G} |(R(g)\phi)(h)|^{2} d\mu(h) = \int_{G} |\phi(hg)|^{2} d\mu(h) = \int_{G} |\phi(h)|^{2} d\mu(h) = \|\phi\|_{2}^{2}.$$

Therefore, R(g) is a continuous linear operator on $L^2(G)$. Clearly it is in $GL(L^2(G))$. Moreover, R(g) is unitary.

Clearly, for any $g \in G$, the following diagram

$$\begin{array}{ccc} C(G) & \xrightarrow{R(g)} & C(G) \\ i & & & \downarrow i \\ L^2(G) & \xrightarrow{R(g)} & L^2(G) \end{array}$$

is commutative.

Analogously, we define $(L(g)\phi)(h) = \phi(g^{-1}h)$ for $h \in G$. Then L(g) is a unitary operator on $L^2(G)$ which extends from C(G).

Clearly, R(g) and L(h) commute for any $g, h \in G$.

4.1.1. Lemma. L and R are unitary representations of G on $L^2(G)$.

Proof. It is enough to discuss R. The proof for L is analogous.

Let $g \in G$ and $\phi \in L^2(G)$. We have to show that $h \mapsto R(h)\phi$ is continuous at g. Let $\epsilon > 0$. Since C(G) is dense in $L^2(G)$, there exists $\psi \in C(G)$ such that $\|\phi - \psi\|_2 < \frac{\epsilon}{3}$. Since R is a representation on C(G), there exists a neighborhood U of g such that $h \in U$ implies $\|R(h)\psi - R(g)\psi\| < \frac{\epsilon}{3}$. This in turn implies that $\|R(h)\psi - R(g)\psi\|_2 < \frac{\epsilon}{3}$. Therefore we have

$$\begin{aligned} \|R(h)\phi - R(g)\phi\|_{2} &\leq \|R(h)(\phi - \psi)\|_{2} + \|R(h)\psi - R(g)\psi\|_{2} + \|R(g)(\psi - \phi)\|_{2} \\ &\leq 2\|\phi - \psi\|_{2} + \|R(h)\psi - R(g)\psi\|_{2} < \epsilon \end{aligned}$$

for any $h \in U$.

Let f be a continuous function on G. By 3.3.3, R(f) is a compact operator on $L^2(G)$. Let $\phi \in L^2(G)$. Then

Let
$$\phi \in L^{-}(G)$$
. Then

$$(R(f)L(g)\phi)(h) = \int_{G} f(k)(L(g)\phi)(hk) d\mu(k)$$

=
$$\int_{G} f(k)\phi(g^{-1}hk) d\mu(k) = (R(f)\phi)(g^{-1}h) = (L(g)R(f)\phi)(h)$$

for all $g, h \in G$. Therefore, R(f) commutes with L(g) for any $g \in G$.

Let F be the eigenspace of $R(f^*)R(f)$ for eigenvalue $\lambda > 0$. Then F is finitedimensional by 3.2.3.

4.1.2. Lemma. (i) Let $\phi \in F$. Then ϕ is a continuous function. (ii) The vector subspace F of C(G) is in R(G).

Proof. (i) The function ϕ is in the image of $R(f^*)$. Hence it is a continuous function.

(ii) By (i), $F \subset C(G)$. As we remarked above, the operator $R(f^*)R(f)$ commutes with the representation L. Therefore, the eigenspace F is invariant subspace for L. Let ϕ be a function in F. Since F is invariant for L, ϕ is G-finite. Hence, $\phi \in R(G)$.

4.1.3. Lemma. The subspace R(G) is invariant for R(f).

Proof. Let $\phi \in R(G)$. By 2.3.5 we have

$$(R(f)\phi)(g) = \int_G f(h)\phi(gh) \, d\mu(h) = \sum_{i=1}^n a_i(g) \int_G f(h)b_i(h) \, d\mu(h)$$

for any $g \in G$, i.e., $R(f)\phi$ is a linear combination of $a_i, 1 \leq i \leq n$.

Let $E = R(G)^{\perp}$ in $L^2(G)$. Then, by 4.1.3, R(G) is invariant for selfadjoint operator $R(f^*)R(f)$. This in turn implies that E is also invariant for this operator. Therefore the restriction of this operator to E is a positive selfadjoint compact operator. Assume that its norm is greater than 0. Then, by 3.2.1, the norm is an eigenvalue of this operator, and there exists a nonzero eigenvector $\phi \in E$ for that eigenvalue. Clearly, ϕ is an eigenvector for $R(f^*)R(f)$ too. By 4.1.2, ϕ is also in R(G). Hence, we have $\|\phi\|_2^2 = (\phi \mid \phi) = 0$, and $\phi = 0$ in $L^2(G)$. Hence, we have a contradiction.

Therefore, the operator $R(f^*)R(f)$ is 0 when restricted to E. Hence

$$0 = (R(f^*)R(f)\psi|\psi) = ||R(f)\psi||_2^2$$

for any $\psi \in E$. It follows that $R(f)\psi = 0$. Since $R(f)\psi$ is a continuous function, we have

$$0 = (R(f)\psi)(1) = \int_G f(g)\psi(g)d\mu(g),$$

i.e., ψ is orthogonal to f.

Since $f \in C(G)$ was arbitrary and C(G) is dense in $L^2(G)$, it follows that $\psi = 0$. This implies that $E = \{0\}$.

This completes the proof of the following result.

4.1.4. Theorem (Peter-Weyl). The algebra R(G) is dense in $L^2(G)$.

4.2. Continuous version. Let $g \in G$. Assume that $g \neq 1$. Then there exists an open neighborhood U of 1 such that U and Ug are disjoint. There exists positive function ϕ in C(G) such that $\phi|_U = 0$ and $\phi|_{Ug} = 1$. This implies that

$$\begin{split} \|R(g)\phi - \phi\|^2 &= \int_G |\phi(hg) - \phi(h)|^2 d\mu(h) \\ &= \int_U |\phi(hg) - \phi(h)|^2 d\mu(h) + \int_{G-U} |\phi(hg) - \phi(h)|^2 d\mu(h) \ge \mu(U). \end{split}$$

Therefore $R(g) \neq I$. Since by 4.1.4, R(G) is dense in $L^2(G)$, $R(g)|_{R(G)}$ is not the identity operator.

This implies the following result.

4.2.1. Lemma. Let $g, g' \in G$ and $g \neq g'$. Then there exists a function $\phi \in R(G)$ such that $\phi(g) \neq \phi(g')$.

Proof. Let $h = g^{-1}g' \neq 1$. Then there exists $\psi \in R(G)$ such that $R(h)\psi \neq \psi$. Hence, we have $R(g)\psi \neq R(g')\psi$. It follows that $\psi(hg) \neq \psi(hg')$ for some $h \in G$. Therefore, the function $\phi = L(h^{-1})\psi$ has the required property.

In other words, R(G) separates points in G. By Stone-Weierstrass theorem, we have the following result which is a continuous version of Peter-Weyl theorem.

4.2.2. Theorem (Peter-Weyl). The algebra R(G) is dense in C(G).

Another consequence of 4.2.1 is the following result.

4.2.3. **Lemma.** Let U be an open neighborhood of 1 in G. Then there exists a finite-dimensional representation (π, V) of G such that ker $\pi \subset U$.

Proof. The complement G - U of U is a compact set. Since R(G) separates the points of G, for any $g \in G - U$ there exists a function $\phi_g \in R(G)$ and an open neighborhood U_g of g such that $|\phi_g(h) - \phi_g(1)| > \epsilon$ for $h \in U_g$. Since G - U is compact, there exists a finite set g_1, g_2, \dots, g_m in G - U such that $U_{g_1}, U_{g_2}, \dots, U_{g_m}$ form an open cover of G - U and $|\phi_{g_i}(h) - \phi_{g_i}(1)| > \epsilon$ for $h \in U_{g_i}$. Let π_i be a finite-dimensional representation of G with matrix coefficient ϕ_{g_i} . Then $\pi_i(h) \neq I$ for $h \in U_{g_i}, 1 \leq i \leq n$. Let π be the direct sum of π_i . Then $\pi(h) \neq I$ for $h \in G - U$, i.e., ker $\pi \subset U$.

4.3. Matrix groups. Let G be a topological group. We say that G has no small subgroups if there exists a neighborhood U of $1 \in G$ such that any subgroup of G contained in U is trivial.

4.3.1. **Lemma.** Let V be a finite-dimensional complex vector space. Then the group GL(V) has no small subgroups.

Proof. Let $\mathcal{L}(V)$ be the space of all linear endomorphisms of V. Then exp : $\mathcal{L}(V) \longrightarrow \operatorname{GL}(V)$ given by

$$\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n$$

defines a holomorphic map. Its differential at 0 is the identity map I on $\mathcal{L}(V)$. Hence, by the inverse function theorem, it is a local diffeomorphism.

Let U be an open neighborhood of 1 in $\operatorname{GL}(V)$ and V the open ball around 0 in $\mathcal{L}(V)$ of radius ϵ (with respect to the linear operator norm) such that $\exp: V \longrightarrow U$ is a diffeomorphism. Let V' be the open ball of radius $\frac{\epsilon}{2}$ around 0 in $\mathcal{L}(V)$. Then $U' = \exp(V')$ is an open neighborhood of 1 in $\operatorname{GL}(V)$. Let H be a subgroup of $\operatorname{GL}(V)$ contained in U'. Let $S \in H$. Then $S = \exp(T)$ for some $T \in V'$. Hence, we have $S^2 = \exp(T)^2 = \exp(2T) \in H$. Moreover, $S^2 \in H$ and $S^2 = \exp(T')$ for some $T' \in V'$. It follows that $\exp(T') = \exp(2T)$ for $2T, T' \in V$. Since exp is injective on V, we must have 2T = T'. Hence, $T \in \frac{1}{2}V'$. It follows that $H \subset \exp\left(\frac{1}{2}V'\right)$. By induction we get that $H \subset \exp\left(\frac{1}{2^n}V'\right)$ for any $n \in \mathbb{N}$. This implies that $H = \{1\}$.

A compact subgroup of GL(V) we call a compact *matrix* group.

4.3.2. **Theorem.** Let G be a compact group. Then the following conditions are equivalent:

- (i) G has no small subgroups;
- (ii) G is isomorphic to a compact matrix group.

Proof. (i) \Rightarrow (ii) Let U be an open neighborhood of $1 \in G$ such that it contains no nontrivial subgroups of G. By 4.2.3, there exists a finite-dimensional representation (π, V) of G such that ker $\pi \subset U$. This clearly implies that ker $\pi = \{1\}$, and $\pi : G \longrightarrow \operatorname{GL}(V)$ is an injective homomorphism. Since G is compact, π is homoeomprphism of G onto $\pi(G)$. Therefore, G is isomorphic to the compact subgroup $\pi(G)$ of $\operatorname{GL}(V)$.

(ii) \Rightarrow (i) Assume that G is a compact subgroup of GL(V). By 4.3.1, there exists an open neighborhood U of 1 in GL(V) such that it contains no nontrivial subgroups. This implies that $G \cap U$ contains on nontrivial subgroups of G.

4.3.3. **Remark.** For a compact matrix group G, since matrix coefficients of the natural representation separate points in G, 4.2.1 obviously holds. Therefore, in this situation, Stone-Weierstrass theorem immediately implies the second version of Peter-Weyl theorem, which in turn implies the first one.

4.3.4. **Remark.** By Cartan's theorem [?], any compact matrix group is a Lie group. On the other hand, by [?] any Lie group has no small subgroups. Hence, compact Lie groups have no small subgroups and therefore they are compact matrix groups.

4.3.5. **Remark.** Let $T = \mathbb{R}/\mathbb{Z}$. Then T is a compact abelian group. Let G be the product of inifinite number of copies of T. Then G is a compact abelian group. By the definition of product topology, any neghborhood of 1 contains a nontrivial subgroup.

DRAGAN MILIČIĆ

Let G be an arbitrary compact group. Let (π, V) be a finite-dimensional representation. Put $N = \ker \pi$. Then N is a compact normal subgroup of G and G/N equipped with the quotient topology is a compact group. Clearly, G/N is a compact matrix group.

Let S be the family of all compact normal subgroups N of G such that G/N is a compact matrix group. Clearly, N, N' in S implies $N \cap N' \in S$. Therefore, Sordered by inclusion is a directed set. One can show that G is a projective limit of the system G/N, $N \in S$. Therefore, any compact group is a projective limit of compact matrix groups. By the above remark, this implies that any compact group is a projective limit of compact Lie groups.