Consequences of Peter-Weyl theorem

Remark. Uniform version of Peter-Weyl is stronger than the L^2-version (as discussed last time). The only place in the proof of uniform version where we used L^2-version is to show that $R(G)$ differs points in G.

If G is a linear group (i.e., a group of matrices like $SO(n)$) the natural
representation differs points of G and Peter-Weyl theorem follows immediately from Stone-Weierstrass theorem. We shall discuss this later in more detail.

Since $R(G)$ differs points of G, for any $g \in G, g \neq 1$, there exists $f \in R(G)$ such that $f(g) \neq f(1)$.

Since f is a matrix coefficient of a finite-dimensional representation, we get
Lemma. Let \(g \in G, g \neq 1 \).
Then there exists a finite-dimensional representation \((\pi, \mathbb{V})\) of \(G \) such that \(\pi(g) \neq I \).

Now we prove a variant of a result we proved for finite groups.
Let \((\pi, \mathbb{V})\) be a finite-dimensional representation of \(G \). Let \(\langle \cdot, \cdot \rangle \) be an arbitrary inner product on \(\mathbb{V} \), since \(\pi \) is continuous for any \(u, v \in \mathbb{V} \) the function
\[g \mapsto \langle \pi(g)u, \pi(g)v \rangle \]

is continuous. Hence
\[
(\mu|\nu) = \int \langle \pi(g)u, \pi(g)v \rangle \, d\mu(g)
\]

is well-defined function on \(V \times V \).

As in the case of finite groups we show directly that \((.1,.)\) is linear in first and antilinear in second variable.

Moreover, \((\mu|\nu) = (\nu|\mu) \) and \((\mu|\nu) \geq 0 \) for \(u, v \in V \)

Moreover, we have
\[(u|u) = \int_G <\pi(g)u|\pi(g)u> \, dm(g),\]

\[<\pi(g)u|\pi(g)u> \geq 0 \text{ for all } g \in G, \text{ and}\]

\[g \mapsto <\pi(g)u|\pi(g)u> \text{ is continuous}.\]

Assume that \(u \neq 0 \).

Then \(<u|u> > 0 \). Hence there exist an open neighborhood \(\mathcal{U} \) of 1 such that

\[<\pi(g)u|\pi(g)u> > \varepsilon\]

on \(\mathcal{U} \) for some \(\varepsilon > 0 \).

Hence

\[(u|u) = \int_G <\pi(g)u|\pi(g)u> \, dm(g) = \]

\[= \int_G <\pi(g)u|\pi(g)u> \, dm(g).\]
\[
\begin{align*}
= & \int \langle \pi(g) u | \pi(g) u \rangle \, d\mu(g) + \\
\geq & \varepsilon \cdot \mu(u).
\end{align*}
\]

Since \(\mu(u) > 0 \) it follows that \((u | u) > 0 \).

It follows that \((u | u) = 0 \) implies \(u = 0 \) and C.1. is an inner product on \(V \).

Moreover

\[
\langle \pi(g)u | \pi(g)u \rangle = \\
= \int \langle \pi(h) \pi(g) u | \pi(h) \pi(g) u \rangle \, d\mu(h)
\]
\[
\int_G \langle \pi(h) u | \pi(h) v \rangle \, d\mu(h) = 1
\]

= \int_G \langle \pi(h) u | \pi(h) v \rangle \, d\mu(h) = (u|v)

by the invariance of Haar measure.

Hence, \(\pi(h) \) are unitary operators with respect to (1.1), and \(\pi \) is a unitary representation. This proves the following result.

Proposition Any finite-dimensional representation of \(G \) is unitary (with respect to an appropriate...
inner product.

Let \((\pi, V)\) be a finite-dimensional representation of \(G\) (unitary with respect to \((I, 1)\)). Let \(U\) be a \(G\)-invariant subspace of \(V\). Then \(U\) is invariant for all \(\pi(g), g \in G\).

Hence \(U^\perp\) is invariant for all \(\pi(g^\star), g \in G\).

Since \(\pi\) is unitary, \(\pi(g^\star) = \pi(g^{-1})\), so \(U^\perp\) is \(G\)-invariant.

Hence, \(V = U \oplus U^\perp\) is
a direct sum of representations.

By induction in dimension of π we prove the following theorem.

Theorem. Every finite-dimensional representation of G is a direct sum of irreducible representations.

A direct consequence is the following result.

Theorem. Let $g \in G$, $g \neq 1$.

Then there exists an irreducible finite-dimensional representation (π, V) of G such that $\pi(g) \neq I$.
As we remarked, the irreducible representation in above theorem is unitary (with respect to appropriate inner product).

Remark: Let (π, V) be a representation of a locally compact group G on a Hilbert space V. We say that π is irreducible if the only closed G-invariant subspaces of V are $\{0\}$ and V.

If V is finite-dimensional
this agrees with old definition (since all finite-dim. subspaces are closed).

We have the following generalization of the above result:

Theorem (Gelfand–Raikov)

Let G be a locally compact group. Let $g \in G$, $g \neq 1$. Then there exists an irreducible unitary representation (π, V) of G such that $\pi(g) \neq I$.
The proof of Gelfand-Raikov theorem is quite different from our discussion. The essential point of the theorem is that we have to consider infinite dimensional irreducible unitary representations of G. Finite-dimensional irreducible unitary representations do not suffice!

This can be seen from the following theorem.
Theorem (Segal-von Neumann)
Let G be a noncompact simple Lie group. Let (π, V) be a finite-dimensional irreducible unitary representation of G. Then (π, V) is trivial, (i.e., V is one-dim., and $\pi(g) = 1$, for all $g \in G$).

Remark: $SL(n, \mathbb{R})$, are examples of noncompact simple Lie groups.