Proof of Peter-Weyl (L^2-version)

Last time we constructed the linear operator $R(f)$ on $L^2(G)$ and proved that it is compact for any $f \in C(G)$.

Now we are going to use its properties to prove the following version of Peter-Weyl theorem.

Theorem. The subspace $R(G)$ is dense in $L^2(G)$.

Let $\varphi \in R(G)$. Then φ is a matrix coefficient of a finite-dimensional representation of G.

Denote this representation by (γ, U). Then, if $n = \dim U$, γ is a linear combination of matrix coefficients $\gamma(g)_{ij}$ in some basis of U. Moreover, we have

$$v(gh)_{ij} = \sum_{k=1}^{m} \gamma(g)_{ik} \gamma(h)_{kj}.$$

This implies that

$$y(gh) = \sum_{\ell=1}^{m} a_{\ell}(g) b_{\ell}(h)$$

for some functions $a_{\ell}, b_{\ell} \in \mathbb{R}(G)$. This is a stronger form of 2.3.2 in texed notes.
Let \(f \in C(G) \) and \(\varphi \in \mathcal{R}(G) \).

Then
\[
(Rf)(g) = \int_{G} f(h) \varphi(gh) \, d\mu(h)
\]
\[
= \int_{G} \sum_{\ell=1}^{m} a_{\ell}(g) b_{\ell}(h) \, d\mu(h)
\]
\[
= \sum_{\ell=1}^{m} \left(\int_{G} f(h) b_{\ell}(h) \, d\mu(h) \right) a_{\ell}(g)
\]
\[
= \sum_{\ell=1}^{m} c_{\ell} a_{\ell}(g)
\]
\[
\Rightarrow \quad (Rf) \varphi \in \mathcal{R}(G).
\]

Hence,
\[
(Rf)(\mathcal{R}(G)) \subset \mathcal{R}(G).
\]

Since \(Rf \) is continuous,
\[
(Rf)(\overline{\mathcal{R}(G)}) \subset \overline{\mathcal{R}(G)}.
\]
Let \(E = (R(G))^\perp = (\overline{R(G)})^\perp \)

Then \(E \) is a closed subspace of \(L^2(G) \). Moreover, we have

\[
L^2(G) = \overline{R(G)} \oplus E
\]
as orthogonal sum of two closed subspaces.

Let \(\psi \in E \) and \(\varphi \in \overline{R(G)} \).

Then

\[
(R(f)\varphi | \psi) = (\varphi | R(f)^* \psi) = \overline{(\varphi | R(f^*) \psi)} = 0
\]
Hence $R(f)\varphi \in E$, i.e. E is $R(f)$-invariant.

Claim: $R(f): E \rightarrow E$ is zero for all $f \in C(G)$.

Assuming the claim we are going to prove the theorem.

Let $\varphi \in E$. Then $R(f)\varphi$ is a continuous function and

$$\left(R(f)\varphi \right) (g) = \int_G f(h) \varphi(gh) d\mu(h)$$

If $R(f) = 0$ on E, $R(f)\varphi = 0$ in E and $(R(f)\varphi)(i) = 0$ since $R(f)\varphi$ is continuous.
Therefore
\[\int_{\mathbb{R}} f(x) \varphi(x) \, dx = 0, \]
i.e. \((f, \varphi) = 0 \).

Therefore \(\varphi \perp C(G) \) is \(L^2(G) \). Since \(C(G) \) is dense in \(L^2(G) \), \(\varphi \perp L^2(G) \),
\[\implies \varphi \perp \varphi \implies \varphi = 0 \implies \varphi = 0. \]

This proves that \(E = \{0\} \) and \(L^2(G) = \overline{R(G)} \),
what is the statement of the theorem.
It remains to prove the claim.

Assume that \(f \in C(G) \) is such that \(R(f)|_E \) is not zero.

We have

\[
(R(f)^* R(f) \varphi | \varphi) = (R(f) \varphi | R(f) \varphi) = |R(f) \varphi|^2.
\]

This implies that

\(R(f)^* R(f) = R(f^*) R(f) : \)

\(E \to E \) is not zero.

From the last lecture, we know that it is a
positive selfadjoint compact operator),
If it is nonzero, from its spectral theory we know that it must have an eigenvalue \(\lambda > 0 \) with finite-dimensional eigenspace \(F \).
Let \(\varphi \in F \). Then
\[
R(f)^* R(f) \varphi = \lambda \varphi
\]
and \(R(f) \varphi \) is a continuous function. Hence \(\varphi \) is continuous, i.e., it is in \(C(G) \).
Now

\[(R(f)L(g)\varphi)(h) = \int h \cdot \varphi(k) (L(g)\varphi)(h-k) \, d\mu(k) = \int \varphi(k) \varphi(g^{-1}h-k) \, d\mu(k) = (R(f)\varphi)(g^{-1}k) = (L(g)R(f)\varphi)(h) \\Rightarrow \]

\[R(f)L(g)\varphi = L(g)R(f)\varphi.\]

Hence

\[(R(f)^*R(f))L(g)\varphi = \]

\[= R(f)^*L(g)R(f)\varphi = \]

\[= R(f^*)L(g)R(f)\varphi = \]

\[= L(g)R(f^*)R(f)\varphi = \]

\[= L(g)(R(f)^*R(f))\varphi = \lambda L(g)\varphi.\]
Hence, \(L(g)\psi \in F \), for any \(g \in G \).

It follows that \(\psi \) is \(G \)-finite, i.e., \(\psi \in \mathcal{R}(G) \).

But \(\psi \in E \), so \(\psi \perp \psi \)

\[\Rightarrow (\psi | \psi) = 0 \Rightarrow \| \psi \|^2 = 0 \]

\[\Rightarrow \psi = 0! \]

Hence any eigenfunction in \(F \) is 0 and we have a contradiction.

This proves the claim and completes the proof of \(L^2 \)-version of Peter-Weyl theorem.